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Bounds are obtained on near-forward scattering amplitudes that violate the Pomeranchuk theorem. It
is proved that these amplitudes have zeros in C'( ~t

~

lnss&C". Experimental consequences are estimated,
including phases of near-forward amplitudes, growth of the forward peak and shrinkage of its width, and
possible oscillations. A narrow peak in the Coulomb region cannot be excluded and may invalidate experi-
mental estimates of total cross sections.

I. ASSUMPTIONS

HE data on total cross sections obtained at
Serpukhov' are open to a variety of possible

interpretations, which depend mainly on the type of
variation that is allowed in the cross sections at ener-
gies higher than those measured. In this paper we
investigate the consequences of assuming that total
cross sections for particle-target and antiparticle-target
collisions tend to unequal constants at asymptotic
energies. This problem has previously been considered
qualitatively by one of us, ' and in a special model by
Finkelstein, ' and in a special class of models by Casella. 4

Vfe will show that certain properties deduced in the
special models can also be proved from axiomatic
quantum 6eld theory. One of our general results has
also been proved independently by Kinoshita, ' using
similar assumptions. These are as follows.

(a) For a particle at and its antiparticle as, as s hoo,
or(total, at+a) ~ Cr, oz(total, a,+b) ~ C, .

(b) The Pomeranchuk theorem is violated,

Ci~C2.

FB(s,0) =(Ft+Fz) is(Cs+Cr). (2)

It has been proved by Martin' that the partial-wave
series can be truncated after I. terms with negligible
error as s ~~, if

~
t I & ts,' the nearest singularity:

I 2t
F(s,t)-16z. Q (21+1)f((s)Fi 1+—

L=O s

I.=Cs't' lns

where, for example, C=1/4tts for sS scattering. We
measure s and l in Gev' (but see Sec. III).

Using partial-wave unitarity and the Cauchy in-
equality, we have9

II. THEORETICAL DISCUSSION AND RESULTS

F(s,i) will be used to denote either Ft or F„which
are the elastic scattering amplitudes for particle and
antiparticle, respectively. From the forward dispersion
relations, using assumptions (a) and (b), it follows that,
as s~~

q

Fz.(s,0) = (Fr —Fs) (2s/z) (Cs —Ct) (lns —-'zi7r), (1)

(c) Scattering amplitudes have the analyticity and the
asymptotic growth properties that have been proved
from axiomatic quantum field theory. 6

(d) Spin is neglected, but we do not believe our results
depend on this.

In Sec. II we describe our theoretical method and
results, and in Sec. III we indicate possible experimental
consequences.
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IF(r,O) I

(16m-s)'

~& -2 (2I+I) If~(x) I' -2 (21+I) (5)
s

~& Lzo (elastic) C' In's j/16' .

From (1), (2), and (6) it follows that

(6)

(
1 Cs —C

~

~&o(elastic) ~&max(Cr, C,) =Czr. (7)
~C i

Using unitarity and the Cauchy inequality for ]&{),

7 See, e.g. , R. J. Eden, High Energy Collisions of Elementary
Particles (Cambridge U. P., New York, 1967).

8 A. Martin, Phys. Rev. 129, 1432 (1963).
T. Kinoshita, in Perspectives in Modern Physics, edited by

R. E. Marshak (Wiley, New York, 1966); R. J. Eden, Phys. Rev.
Letters 16, 39 (1964),

2286



THEORETICAL AND EXPERI MENTAL CONSEQUENCES. 2287

we obtain

provided
I
t I (to. For large 1 and s,

IFi(1+2t/s) I exp(2tl t/sl "') (9)

I f(s,t) I

'=—
F(s,t) '

F(s,0)

16irso (el) L' exp(4L,
I
t/s

I
"')

(10)
IF(,o) I'

Using (4), (7), and (10) as s —+~, we obtain

I f(s, t) I ~& Ca exp(2CI tl "' lns) & (11)

where Ci denotes 4ir't'Csr't'(irC/I C2 —Cil).
We now use a theorem of Bessis, ' which states that

if a function f(t) is regular in
I tl (R, if f(0) =1 and

I f(t) I &M(R) on
I
t

I
=R, then f(t) has no zero inside a

circle of radius r=R/M(R). Using (11), this theorem
proves that f(s, t) can have no zeros inside:

I tl ((Ca) 'R exp( —2CR't'lns). (12)

Maximizing this value by taking CE'I21ns=1, we see
that f(s,t) can have no zeros in

4

ltl &"()=
ln's e'C3C' In's

(13)

1
IF(s,t) I'& —E (2t+1) lf (.) I'

(16ms)' s

1 2t
&& -& (2t+1) Fi 1+—,(8)

s s

(C2—Ci) ' ln's
dt exp(16CtR 't' lns) (17)

/ 16~

I tl (DN/ln's. (20)

This proves the general result on zeros that was 6rst
noticed in the Finkelstein model. '

From the bounds (13) and (15), we see that
I f(s, t) I

'
cannot decrease to less than e—' when

~«2(s) =
4 lnC3 4 lnC3 ln's

(21)

Note that we have chosen the least allowed value of R
in this inequality. This sets a lower bound r2(s) on the
width of the forward peak of the elastic cross section.

We can obtain an upper bound on the width of the
forward peak by assuming in 0& t& —r3

(Cg —Ci) R'~2lns
L1—exp( —8CR"' lns)7. (18)

/ 236C

We know from (13) that R) ro, so the exponential in
(18) is not equal to 1. From (18) we find

R(s) &~ ri(s) =Cq/1n's. (19)

This proves that f(s,t) has at least one zero in
I tl « ri(s).

Suppose now that there is just one zero of f(s,t) at
ti(s) in

I
t

I (R2(s). Apply the inequalities (14) and (15)
to the function fi(s, t) =f(s,t)(1—t/ti) ' and repeat the
steps leading to (19). We find only a change in the
constant C5. The same conclusion holds for any 6nite
number X of zeros. Given E, we can 6nd a constant
DN such that there must be X zeros in

lf(s, t) I'~e""'.

' 16m Csr
ra(s)

(C2 —Ci In's
ReDn f(s,t)]~& 2CR't' 1ns+lnCi.

We prove next that there must be a zero of f(s, t) in a
circle in the t plane whose radius ri is a constant multiple Substituting in (16), we obtain
of ro(s). Let f(s,t) have no zeros in

I tl &~R(s). Then
lnf(s, t) will be regular in this circle, and from (11) for
t&R,

(22)

(23)

From (14), Caratheodory's inequality" "gives

2
I
t

I
(2CR"' Ins+lnC, )

1»f(s,t) I
~&

R—Itl

Hence, using (1) and (15)

0 (elastic)

C2
—Cg 'ln's

~tl f( t) I'
16m;g

(16)
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value of Caratheodory's inequality in studying growth rates.

The lower bound r&(s) on the width given by (21)
provides a bound on the region in which Kinoshita's
result' applies. It also proves his result that di6erential
cross sections for elastic scattering of particles and of
antiparticles become asymptotically equal if

I
t

I & const
&((lns) '. This follows from our discussion because,
when (21) holds, the two amplitudes will both be
dominated by the real part of Fz(s, t) containing an
s lns term.

Although we have located E zeros in the region (20),
we have not proved that they tend to the physical
region t (real) &0 as s —+~. This result holds for all
zeros in the Finkelstein model, ' but holds only for
"most" zeros in the extension by Casella. 4 However,
there seems no reason why it should apply to the zeros
nearest t=0, which have the best chance of. being
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III. EXPERIMENTAL CONSEQUENCES

We now consider experimental consequences of our
results given in Sec. II based on our interpretation of
the Serpukhov data' that was stated in Sec. I. For
illustration, we take the scale factors so and to in
ln(s/so) and t/to to be 1 GeV', but we emphasize that
they are not known theoretically. We also take asymp-
totic total cross sections to give

C2 —Cg

C2+Ci 10
(25)

We approximate the constants in Eqs. (13), (19), (21),
and (23),

r0=10r2=10 '(lns) ', ri ——10'(lns) ',
ra ——10'(lns) —'. (26)

A. Real-to-Imaginary Ratio for Forward Amylitudes

From (1),
ReF(s,0) 1—lns.
ImF(s, 0) 15

(27)

This would be observable at s~30 GeV', provided the
width of the ln's contribution to the forward peak is not
so narrow that the effect occurs only within the region
(t(0.002) where Coulomb effects dominate.

B. Growth of Forward Peak at Fixed s = t ln's

do(1 or 2) (Ci+C,)' (1ns '-
(1&8)'+D.(s)I, (28)

dt &15

where D.(s) ~ 1, as s —&0. From (21) and (23), the
width A of the forward peak (1&D&e ') satisfies

relevant to experiment. The distant zeros provide an
interesting mathematical problem, which we will dis-
cuss elsewhere. " For example, using the method of
Eden and Lukaszuk, '4 it can be shown that the number
of zeros N(s, r) inside

I
t ln'sI (r satisfies the inequality

N(s, r)(Cer'" for large r. (24)

10% contribution outside the Coulomb region for
s&100 GeV', which could be observable unless A(s)
oscillates with s.

C. Shrinkage of Forward Peak at Fixed t

At fixed t, the coeScient D, (z) in (28) will give a
width A(s) that shrinks like (lns) 2. Our bounds (29)
allow A(s) to oscillate within wide limits. Only if A(s)
is fairly large would an effect be observable; it might
give a spuriously large (or small) effect due to enhance-
ment by the oscillations of A(s).

D. Asymytotic Equality of Differential Cross Sections

When the last term in Eq. (28) dominates doi and do2,

they will be nearly equal. This is obviously outside the
range of accessible energies. Even if ln(s) 100 were
accessible, the dominance could be concealed by
Coulomb effects.

E. Oscillations of Differential Cross Sections
due to Zeros

If the width A(s) exceeds —,'0(lns) ' and if the nearest
zero of F(s,t) is favorably placed so that D,(s) in (28)
nearly vanishes within the forward peak, an oscillation
of a few percent could occur with s~100 GeV2, and t
outside the Coulomb region.

F. Interference with Coulomb Effects near k=0

Our bounds (29) on the width A(s) of the forward
peak refer to the asymptotically dominant part that
grows like (lns)' as s —+~. These bounds do not exclude
the possibilities that at the relevant high energies,

(i) the ln's peak may lie entirely inside the Coulomb
dominant region ItI«0.003 GeV', or
(ii) the peak causes a rapid change in the strong-
interaction amplitude in the Coulomb interference
region Itl 0003 Gev'.

If either of these possibilities does occur, it would
invalidate the usual experimental methods for evalu-
ating total cross sections and phases of forward
amplitudes.
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