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Characteristics of a Regge Trajectory with a Finite Asymptotic Phase*
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The hypothesis that the width of a resonance on a leading Regge trajectory is proportional to its mass
is compared with the alternative that high-spin resonances become very stable. When the width grows with
the mass, it is observed that the kinematics allow decay channels to have low orbital angular momentum.
The dynamical implications of this observation are discussed.

I. INTRODUCTION

AKING the limit of zero-width resonances is an
extremely delicate process. In spite of the attrac-

tive simplicity of the Veneziano model, ' detailed
analyses of its predictions always conclude that a
description of hadronic scattering processes involving
meromorphic amplitudes is strained and artificial. ' As
an example of the subtle nature of the narrow-resonance
limit, consider a Regge trajectory with a small but
finite asymptotic phase.

5(co ) =lim arctanLImsr(i)/Resr(t) j.
A high-spin particle on such a trajectory can communi-
cate with open channels of low orbital angular momen-
tum, while if the asymptotic phase is zero, these
channels are closed kinematically. '

It is entirely possible that the dynamics of two
cases will be completely difFerent. Observations based
on coupled-channel unitarity approximations suggest
strongly that the dynamics are dominated by low-
orbital-angular-momentum channels. In order to
maintain itself, an asymptotically real Regge trajectory
could require a rich spectrum of nonleading singulari-
ties. 4 In contrast, the dynamics of a leading trajectory
with finite asymptotic phase can be compatible with
a model proposed by Carruthers' where a particle of
spin J on the leading trajectory is primarily a bound
state in the system formed by a particle of spin J—1
on the same trajectory and an arbitrary, low-mass
particle. In this sort of model, there is no need for all
nonleading Regge singularities to rise to high values of J.

Experimental evidence on baryon widths is con-
sistent with these states lying on trajectories with
finite asymptotic phase. There is also some indication
that this notion is applicable to meson trajectories
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even though it implies that the very narrow peaks in
the CERN missing-mass spectrometer' should not be
identified with recurrences of the p-f trajectory. Instead,
these states would represent fine structure in the meson
spectrum, perhaps connected with the dip in the A2

peak. 7

II. PARAMETRIZATION OF PHYSICAL
REGGE TRAJECTORY

Consider a Regge trajectory which, at 3=0, is the
leading J-plane singularity in a nonvacuum channel.
For simplicity, ignore the inessential complications of
signature and assume the channel has baryon number
zero. A parametrization which is particularly con-
venient for a discussion of the asymptotic behavior of
the trajectory function is the phase representation. ' '

I.et
~(ias0) =

~
n(i)

~

e+*'&s»&4sss' (2.1)

where li(t) is the phase of the Regge trajectory above
the physical cut beginning at t =4m'. The phase
representation for rr(t) is then given by

ll(x)dx
sr(t) =P(t) exp—

4 ~ sc(oc t)—(2.2)

where P(t) is a polynomial. The representation (2.2)
is valid if" (a) cr(t) is analytic in i except for a cut
along the real axis, (b) sr(i) is real, in the sense that
sr*(t)=n(t*), (c) n(t) is bounded as ~i~ ~co on the
physical sheet by a finite polynomial in i, and (d) the
phase above the physical cut, 5(t), goes to a finite
limit as t ~~ +i0.

Conditions (a) and (b) are quite generally true for
meson trajectories" if the singularity surface repre-
sented by sr(i) does not collide with any other singularity
in the partial-wave amplitude. For fermion trajectories,
the analyticity condition for the trajectory function is
usually derived in terms of the variable 8'=t'~', but the
situation is complicated by the cuts which seem to be
present to shield the parity partners implied by Mac-
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Phase of 6(I236) Regge trajectory threshold. " Except at a point where Ren=0, this
constraint then leads to the bound

O. I 5— 0&8(t)(n. . (2 5)
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FIG. 1. Phase of the b, trajectory calculated from the masses
and widths of the I=-,' baryons listed in the Particle Data Group
(Ref. 21) compilations. A linear extrapolation of the phase gives
an approximate lower limit of the energy at which this trajectory
might turn over to be s=160 GeV', but the data are perfectly
consistent with an indefinitely rising trajectory.

Dowell symmetry. "It is possible that, even in meson
channels, trajectory functions develop extra cuts associ-
ated with the collision of different singularity sur-
faces.""The representation (2.2) can be extended to
include contributions from other cuts but it is a sensible
first step to deal with trajectory functions having only
the physical threshold cut and a discussion of possible
complications due to collisions will be deferred to
Sec. IV.

Condition (c) seems to be a reasonable restriction on
the asymptotic behavior of physically interesting tra-
jectory functions. Although there is no a Priori reason
to prohibit exponential growth of the trajectory func-
tion in certain sections of the t plane, such behavior is
unexpected from experimental grounds. The phase
b(t) of the trajectory function is well defined along the
physical cut, except, possibly at those points where

~n(t)
~

=0; The phase can be shown to be piecewise
continuous, and it makes physical sense to limit the
magnitude of discontinuities in b(t) to be less than n.,

lim
~
o(to 7/)

—b(to+ g) ~
(3 . — (2.3)

Condition (d) seems to be a reasonable assumption in
view of (2.5). This assumption only eliminates the
possibility that the phase oscillates as t —+~ without
approaching a definite limit.

Using conditions (a)—(d), plus the extra assumption
that the phase is consistent with the usual unitarity
conditions at the elastic threshold, "Childers' was able
to show that the polynomial P(f) in (2.2) has one and
only one zero so that it must be of order one,

P(t) =a+bt (b/0). (2.6)

Except for possible logarithmic factors, the asymptotic
behavior of the exponential in (2.2) is determined by a
single parameter b(~), the asymptotic limit of the
phase. ' Making use of the result (2.6), the asymptotic
behavior of the trajectory function in (2.2) is given by

lim n(t) =be" &"it' '&"'i
f gf ~co

(2.7)

uniformly on the first sheet. This means, for example,
that if the trajectory rises indefinitely (Ren —&+~ as
i —++ao) faster than a power of a logarithm, then it
also falls indefinitely (Ren ~—~ as i ~ ~).

Dynamical trajectory functions found in potential
scattering" and in those approaches such as the 1V/D
model'~ which attempt to saturate the unitarity con-
dition with a small number of internal channels are
consistent with the prediction (2.7) in that they have

b(~) =m (2.8)

and they approach negative integers as |i~ ~~. The
strictly real, linear trajectory functions used as input
in the Veneziano model are also trivially consistent
with (2.7). The convenience of the phase representation
for n(i) is seen in the fact that a wide class of possi-
bilities are covered by the single formula (2.2). This
contrasts to the parametrization of n(/) in terms of a
dispersion relation" "such as

Imn(t+i0) &0, t&4m' (2.4)

Consistency with the analytic continuation of the
unitarity condition requires

i " Imn(x)
n(/) =n(0)+i d+ — dx—

4 ~ x(x—t)
(2.9)

unless at the point where Imp=0 on the physical cut,
the residue function associated with n(t) also vanishes.
In conjunction with the requirement that there can be
no resonance poles on the physical sheet, it is fre-
quently conjectured that (2.4) holds for all t above
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which d can be nonzero are expressed in terms of Im(n)
and are quite complicated. ~o

Figure j. shows a plot of the phase of the d trajectory
against t. The points are determined from the resonance
parameters given in the Particle Data Group" compila-
tions. The plot is consistent with a phase which quickly
approaches a sn1all constant although, on the basis of
the data, it is not possible to eliminate the situation
where the phase continues to rise so that the trajectory
eventuaBy turns over. The linear extrapolation in-
cluded on. this graph gives an approximate lower bound
on the energy where such R turnover could occur."In
view of the fact that the analyticity properties of
fermion trajectories are expected to be more complicated
than those assumed in (2.2), the relation between the
phase of the 6 trajectory and the asymptotic behavior
implied by (2.7) should not be taken too seriously.

Figure 2 shows a plot of the phase of an exchange-
degenerate p ftraje-ctory with the points again de-
termined from the Particle Data Group compliations. "
If the very narrow peaks, the T(2200) and the U(2375),
found by the CERN xnissing-mass spectrometer, 6 are
identified as recurrences of this trajectory, then the
data suggest that the phase may go to zero. However,
there is some reason to doubt that R missing-mass
spectroxneter could discriminate peaks with widths
I90—220 MCV from the background in this region, so
the evidence is not'conclusive that there are not wide
resonances in the 2' and U regions. 's In fact, the p(22 "/5),
the S¹i(2345), and the EXr s(2380) are candidates.
The question then becomes one of understanding what
thc QRI'I'ow' pcRks Rx'c. ID vlcw of pI'cscnt Inodels fol
the A2 fine structure, it seems plausible that there
could exist many narrow "doorway" states in. the
meson spectrum which coexist with wide resonances. ~ 23

Perhaps these are what the CERN spectrometer is
scclQg. It would certainly bc Rn uQRttI'Rctlvc theoretical
situation if the A2 were unique, but the question has
ultimately to be resolved experimentally. What is
important here is that there Inay be two alternatives
for the asymptotic phase of the p ftrajectory. -If

(2.10)

thc stRtcs on this trajectory wou1d gIow to bc vcI'y

~0 The constant fg in (2.9}can be nonzero only if (a} Imo. —+ ~
in upper half t plane, (b) lim to(t) [

= ~ for directions not parallel
to real axis, and (c) J'I"dyy "Imo, (iy)=cc for all xg(0,2).
H. Melder, Nuovo Cimento 51A, 882 (1967), Ref. 10. See also
N. Aronszan and %. F. Donaghue, J. Anal. Math. (Israel) 5,
321 (1956-57).
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qm'. Fol 8(/) +@m' so that Ima+ Rce& the ldentl6catlon of the point
Reo. (/) =Jwith a spin- J resonance is uncertain.
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FIG. 2. Phase of an exchange-degenerate trajectory contain-
ing the p(765), IOJ~= 1+1, and the f(1260), 0+2+. The g(1660)
and the p(1710) are listed separately by dashed lines and as a
single g(1690) state by a solid bar. The I=O enhancement de-
generate with the I=1, p(1900) is chosen to be the recurrence
of the f. The solid, straight line extrapolation predicts wide
resonances in the T and U regions with F=190—220 MeV, while
the dashed extrapolation goes through the CERN missing-mass
spectrometer peaks.

wide. If
(2.11)

then the large widths of the low-spin xesonances such as
the p, f, and g are anomalous and the high-spin recur-
rences will become very stable. The physical conse-
quences of the two alternatives (2.10) and (2.11) are
quite distinct. In particular, a high-spin state on a
tI'Rjcctory with R finite phase cRIl dccRy lilto open
channels with low orbital angular momentum while in
the case (2.11), a theorem due to Brower and Harte'
shows that such decays are kinematica1ly forbidden.

This brings up one of the anomalies of the Vcneziano
model' ' which may give R bint that the concept of an
asymptotic phase has physical relevance. Although the
model requires strictly rea1, nonphysical trajectories, it
only hRs Rcggc asymptotic behavior ln R I'cgloll ex-
cluding a, wedge of 6.nite axis along the real axis of the
t plane where there is a hne of poles. 24 There may be
some confusion on this point since Roskies, "who bases
his argument on the requirement that the beta, function
BP—n(t), —o.(u)] decreases exponentially at fixed s,
hRs quoted this I'cqulI'cIDcnt, ln thc form

Imn(t)/~ t~'ts~~, all t &0 (2.12)

which depends on. the fact that hc used the dispersion
relation (2.9), for n(t), so that Ren d. Since the argu-
ment of the beta function depends on t on1y parametri-
callv thlougli n(t), it is obvious tliat tile bound

Imo. (t)/~ Ren(t)
~

'+& ~~, all p&0 (2.13)

would satisfy Roskies constraint. Equation (2.12) is
essentially the condition that the trajectory phase be

~ R. Z. Roskies, Phys. Rev. Letters 2l, 1851 (1968).
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finite asymptotically or fall no faster than an inverse
power of a logarithm.

In terms of the interpretation of the role of smaH

parameters in physics presented by Chew, " it is the
smallness of e which justices the use of the Veneziano
model. It is not surprising that the physics of the two
cases (2.10) and (2.11) should be quite different so that
a simple extrapolation procedure should fail.

hm MJ=JMoo

J —1/ (2—2e)

b cos(2r2)-
(3 1)

III. KINEMATICS OF DECAY

Assume that the behavior of the Regge trajectory is
given asymptotically by (2.7) and (2.9). This then gives
the expression for the mass of the particle of spin J

Brower and Harte' showed that kinematic constraints
decouple a high-spin resonance from all available
channels with low orbital angular momentum unless

lim Ren(t) =0(t'/').
]~oo+s0

(3.6)

j1=&J (3.7a)

Of course, the behavior implied by (3.5) and (3.6) is
inconsistent with the asymptotic behavior implied by
the phase representation (2.2) or the disperison relation
(2.9) and so, in the absence of left-hand cuts in the
trajectory function, the bound (3.6) will not be con-
sidered further.

Consider the decay of a particle of spin J on the
trajectory given by (2.7). Suppose it decays into two
particles of spin j1 and j2 on the same trajectory, where

and
Because the phase 2re =b(~ ) of the trajectory is assumed
to be small, so that j2=(1—V)~. (3.7b)

(Imn) 2/(Rem) 2((1,

the relation between the width of the resonance and the
imaginary part of the trajectory is given by

Conservation of energy permits the decay if

M,+r,&M, ,—r, ,+M, ,—r,„
J —1/ (2—2e)

(3.8)

Imn(M J2)
I'J=-

Dd/dt) Ren(t) ~, 2r, ])&MJ
(3.3)

The reader may wonder about the validity of an expres-
sion such as (3.3), which is based on the Breit-Wigner
formula, when it is used in a situation where the width
it gives is large compared to the spacing of singularities.
A discussion of overlapping resonances which relies
on simple quasi-two-body unitarity has been presented
by Coleman. "The situation for the case of many-body
unitarity may be more complicated but it remains
plausible that (3.3) should give approximately the
imaginary part of the pole in the complex energy plane
in spite of the spacing of nearby singularities. Of course,
as the "lifetime" predicted by (3,3) becomes shorter, it
becomes harder and harder to design an experiment
which would measure the quantum numbers of the
resonance so that the "particle" connection of the pole
is gradually lost and it becomes indistinguishable from
"nonresonant background. "

Combining (3.3) with (2.7) gives

(1+v)
b cos(2r2)

& (1-v)

J —1/ (2—2e)

L2/1/(2 —2e)+(1 1t)1/(2-2e)]
b COS(2re)-

(3.9)

(1+7)/(1 +))/~1/(2 —2e)+ {1 ~) 1/2(—2e1] (3 10)

(3.11a)

(3.11b)

so that (3.10) and (3.4) become

1—e+tan2r2
Q 2 (1—2e) / (2—2e)

1—e —tanm~
(3.12)

This inequality has the solution

c&0.049,

y&0.16)

(3.13a)

(3.13b)

The inequality (3.10) is interesting in that it gives an
idea of what size e must be in order to have a "fission"
decay" where

j1 j2)

t ( ann) 2rJ =yM g . (3.4) so that a "fission" decay appears impossible for a high-
spin particle on the p ftrajectory giv-en in Fig. 2 which
has approximately

1—2 b cos(2r2)-

Under the assumption that (3.4) does not hold, but
instead the trajectory is asymptotically real in the sense

e p
—0.025, (3.14a)

y p
—0.081. (3.14b)

(3.5)
Going back to (3.10) and assuming 2, y, and 2/ are all

lim rg/Mg ——0,
J-moo

"G. F. Chew, Phys. Rev. Letters 22, 364 {1969). '7 C. Quigg and F. von Hippel, in L&xperimental Meson Spec-' S. Coleman, in Theory and Phenomenology in Particle Physics, troscopy, edited by C. Baltay and A. Rosenfeld (Columbia U.P.,II, edited by A. Zichichi (Academic, New York, 1969). New York, 1970);H. Goldberg, Phys. Rev. Letters 21, 788 (1968).
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small, the decay is permitted if

v&-~'". (3 15)
77

Phase of Regge trajectories from coupled channel N/D

Assuming that the asymptotic form (2.7) is adequate
at low values of J, the constraint that J~ (J—1)
+1+(765)] is permitted can be found by putting
)) = 1/J in (3.15) and using (3.14b) I—TI—

2
0.08&-',J-&/2,

J&40.

(3.16a)

(3.16b)

Requiring very low orbital angular momentum in the
final state therefore implies the decay into two particles
on the sense trajectory does not begin to take place until
quite high values of spin.

At intermediate values of spin a "cascade" decay"
into a high-mass meson of opposite G parity plus a
pion is possible. Assuming the asymptotic form (2.7)
hoMs for the leading meson trajectory of both 6
parities. Conservation of energy permits the cascade
decay J-+ (J—1)+s if

Mg+Fg&Mg I —I'g g+m,

(1+~)
cos me

J g
—&/ (2—2~)

+m„. (3.18)

cos(%'E)—

J—1 -1/(2—2e}

CQS(1I 6)- =Q(J—o—2~)/(2-2~)) (3 19)

A more thorough discussion of the theorem of Brower
and Harte is given in the Appendix.

Goldberg'7 has also examined the kinematics of
decays under the assumption (3.5) and has found that
the "cascade" decay J—+ (J L)+~ dominate—s all
other modes. It can take place provided that orbital
angular momentum I is bounded by

L,~2m.J~/2. (3.20)

The partial decay width of this mode then behaves like

1', P(2/J) lnJ]'"~'" (3.21)

and resonances become very stable unless there is a
vast number of other states into which they can decay.
This contrasts with the alternative (3.4) which does
not involve the orbital angular momentum of the decay
products growing large at any stage.

To see how the theorem of Brower and Harte depends
on the assumption (3.5), notice that this decay is
prohibited if y =0,

10

s (Mp)

l5 20

Pro. 3. Phases of output trajectories in the two-channel N/D
model. In the absence of coupling, trajectory 1 is associated with
the 0+0+ channel and trajectory 2 with the 1 0+ channel. When the
coupling is turned on, trajectory 3 is the leadin gsingularity while
trajectory 4 turns over quickly.

IV. IMPLICATIONS FOR DYNAMICAL MODELS

To this point, the discussion has been remarkably
innocent of dynamics. The reduced residue functions
associated with n(t) have nowhere appeared. Crossing
has been ignored in order to discuss poles in one channel
and unitarity has only been invoked to obtain the
analytic structure of n(/) and to obtain the bound (2.5)
on the phase along the physical cut.

Given the perverse, nonlinear character of the uni-
tarity equation, it may be that a good understanding of
its implications can only be obtained after the approxi-
mate nature of the resonance spectrum is known. How-
ever, it is instructive to examine a crude dynamic model
based on coupled-channel unitarity which might be
expected to produce a leading Regge trajectory corre-
sponding to that given asymptotically by (2.7) and
(2.10).

First, consider a simple X/D model for a system of
two coupled channels each consisting of two natural-
parity mesons. One channel has spin zero and the
other has spin one. Using a simple, one-pole approxi-
mation for the left-hand cut, the X/D model gives the
output trajectory functions both in the absence and the
presence of coupling. In the absence of coupling, the
leading singularity in each channel is a pole trajectory
which turns over shortly above threshold before reach-
ing a high value of orbital angular momentum. In
the example considered, the potentials were adjusted
so that a P-wave resonance was formed a short distance
above threshold in each channel. %hen the coupling
was turned on, the two output trajectories "exchanged
tails" to form a leading trajectory which rises above
J=2 (L=1 in the 1 -0+ channel) and a nonleading
trajectory which turns over before reaching J=1.
Figure 3 gives the phase of the two trajectory functions
in both the coupled and uncoupled cases.
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FIG. 4. Data of Crennell et al. (Ref. 34) on pion mass distributions for ~ p —+ m+m n, x P -+ ~ mop, and x+P —+ m-+~+n. These data give
a lower bound on the elasticity of the p' meson predicted by the Veneziano model.

The suggestion that an extension of this simple two-
channel model which included an infinite number of
channels of increasing spin could account for a leading
Regge trajectory which is indennitely rising has been
frequently discussed. ' " Since the model at this stage
ignores crossing, it is not a bootstrap attempt. The
difFiculties in bootstrapping the scheme by getting a
self-consistent set of trajectories which provide the
forces on the left-hand cut as well as containing the
particles on the right will not be discussed here. "The
goals of this discussion are more modest. The idea is
that connecting the existence of high-spin resonances
with the simultaneous existence of high-spin channels
may have some merit whether or not it can lead im-
mediately to a successful bootstrap. The two-channel
Ã/D model illustrated in Fig. 3 gives some indication
already that the dynamics of a trajectory is dominated
"S. Mandelstam, in 1066 Tokyo Surnnser Lectures in Theoretical

Physics, II, edited by G. Takeda and A. Fujii (Benjamin, New
York, 1966); see also S. Mandelstam, Phys. Rev. 166, 1539
(1968).

'P. D. B. Collins and R. C. Johnson, Phys. Rev. 182, 1755
(1969).

by channels coupled to it with low orbital angular
momentum and it seems plausible that this would be
true quite generally.

Two points must be made about the possibility that
a mechanism involving coupled-channel unitarity sup-

ports a leading singularity which rises indefinitely.
First, it seems unlikely that such a mechanism could

produce high-spin resonances which are very stable
since, once the imaginary part of the output trajectory
function has become substantial, the cascade decay
mode becomes available so that there is at least one

decay channel with no orbital angular momentum
barrier as well as an increasing number of other decay
channels open as the spin is increased. From the point
of view of the X/D model just discussed, the high-spin
channels which keep the real part of 0. growing also

keep the imaginary part growing and there appears to be
no mechanism which would turn over the phase plotted
in Fig. 4. If this type of dynamics is relevant, it pro-
vides an argument against the identification of the
U(2375) as a recurrence of the p trajectory. " Quite

simply, the model says that if there are open decay
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channels of low orbital angular momentum, then
resonances should have large widths.

A second point about this mechanism for producing
an indefinitely rising trajectory involves the nature of
the nonleading singularities. The mechanism seems to
require an infinite number of nonleading singularities.
The model implies the collision or near collision of the
various singularity surfaces with the leading trajectory.
The analytic form of the leading trajectory given by
(2.2) is based on the assumption of the absence of such
collisions since the collisions can introduce extra branch
cuts into the function n(t) Th. e existence of left-hand
branch cuts destroys the relation between the asymp-
totic phase and the asymptotic behavior, (2.7), and
changes it to (again ignoring possible logarithmic
factors)

l.5—

lh
C

l.o—
O

0.5—

0.0
I.O

1

2.0
s (GeY )

3.0 4.0

phose of e- p compared to phase of p-f

limo(t) go(h(ao)tl —'(ao)/++5(-ao)/m
$-&oo

(4.1)

where b( ~) i—s the asymptotic phase on the left-hand
cut. The problem is that the phase on the left-hand cut
is not directly measurable and there is no way to put
a bound on it. Notice that if

I'J —$MJ) (43)

which holds for (4.1) as well as for (2.7). The credibility
of the coupled-channel mechanism for producing rising
trajectories is not destroyed. Of course, understanding
the nature of all of the singularities produced by such
a model, cuts as well as poles, is crucial to understanding
questions such as the existence of superconvergence
relations. "

An alternative dynamical model for indefinitely
rising trajectories which has been recently discussed is
the energy-dependent potential approach. ' " Since
the output trajectories in such an approach would have
cut structure implied by potential theory, much of what
has been said is immediately applicable to them. How-
ever, since the mechanism which forced the trajectories
to rise is at least a priori independent of the existence
of inelastic channels it seems that such an approach
could produce a finite asymptotic phase or a zero
asymptotic phase equally well. This approach does have
an advantage in that it can be constrained to produce

' L. A. P. Balizs, Phys. Rev. D 2, 999 (1970).
"H. H. Aly and H. J. W. Miiller, Southern Illinois University

report, 1970 (unpublished).

(4 2)

it is possible for both the real and imaginary parts of
the trajectory function to be asymptotically linear. "
The behavior of the phase along the left-hand cuts
depends crucially on the dynamic mechanism which
generates the pole surfaces, n(t). The important thing
is that the existence of open, low angular momentum
decay channels depends on the width growing with
the mass,

Fxo. 5. Phase of the e-p' —+p' trajectory compared to the phase
of the p-f, indicating the possibility that nonleading singularities
are very wide and turn over quickly. For convenience in plotting,
the real part of the e-p' trajectory was moved by one unit to
coincide with the p-f.

a crossing-symmetric amplitude, '" while crossing can be
put into the coupled channel approach only by a
generalization of the strip model. "

Finally, consider the problem of interpreting Vene-
ziano-model results and extrapolating away from the
lim'" ™(t)=0(often optimistically referred to as
unitarizing the Veneziano model). The only internally
consistent approach has been to treat the 0-width model
as a Born term and construct a field theory based upon
its particle spectrum. " If this scheme can be carried
out, it will answer a lot of questions concerning the role
of quarks, internal symmetries and spin in hadron
scattering. It may also provide a counterexample to
quash the controversial idea of the bootstrap. Without
trying to anticipate the results of such a complicated
endeavor involving such a large number of physicists,
it might be worthwhile to speculate on the basis of
the previous discussion about the two options (2.11)
and (2.10) for the phase of the renormalized trajectory.
If, after renormalization, the leading trajectory has a
finite phase then the output particle spectrum may
look considerably different than the input "bare"
spectrum. Conversely, if the renormalized trajectory
has zero phase then it seems unlikely that the degeneracy
of the daughter singularities will be grossly broken.

One argument for the existence of an exponentially
growing number of states is that, because of the kine-
matics of the angular momentum barrier, states on
rising trajectories find it increasingly dificult to decay
into any particular state. " If the output trajectory
has a finite phase, this argument fails and the leading
trajectory can be largely self-supporting. Instead of
requiring nonleading trajectories which are parallel
to the leading one, this suggests the possibility that

3' A. R. Swift and R. W. Tucker, Phys. Rev. D 2, 2486 (1970).
g A. Kryzwicki, Phys. Rev. 18'7p 1964 (1969).
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APPENDIX: THEOREM OF BROWER AND HARTE

Consider the kinematics for the decay of a high-spin
resonance on the leading Regge trajectory in a par-
ticular channel. The mass of the initial resonance is M,
its width I', and its spin is Renp(M ). It can decay into
a multiparticle channel consisting of nf particles on
each of 1V trajectories, nr. The r th particle on the fth
trajectory then has mass m„f, width I'„f and spin
Renf[(m„f)']. Conservation of energy for the decay
process can then be written

Myr& g p (m.&—r„&).
f=1 v=1

(A1)

If I. is the total orbital angular momentum of the decay

'4 D. Crennell et al. , Phys. Letters 288, 136 (1968)."R. Hagedorn, Nuovo Cimento 56A, 1027 (1968).

nonleading singularities have a completely different
behavior.

The fact that this kind of behavior might have
physical significance is suggested by the large width of
the p(700,0+) and the absence of p'(1250, 1 ) predicted
by the Veneziano model. An analysis of the data of
Crennell et al. (Fig. 4) shows no evidence of the p'. PP

This is inconsistent with the predictions of the Vene-
ziano model unless the width of this resonance is
greater than 1 GeV. This suggests that the phase of the
first-daughter trajectory predicted by the Veneziano
model behaves something like that shown in Fig. 5,
much like the behavior of the nonleading pole in the
coupled-channel 1V/D problem in Fig. 3, so that the
trajectory could turn over or become largely imaginary.
If daughter trajectories acquire large imaginary parts
shortly above threshold, this would reconcile some of
the qualitative success of the Veneziano model with
the nonappearance of those daughter states it predicts.

The possibility that daughter trajectories turn over
could upset the prediction of a number of resonances
which increases exponentially with mass. Since
Hagedorn" is careful to include nonresonant states in
his prediction for the thermodynamic model, this type
of model is not necessarily inconsistent with his
predictions.

channel, conservation of angular momentum gives

I.+P P Re«[(m„~)Pj&R~p(MP)
f=1 v=1

+min
~
+++ Q (&)Renf[(m ) j ~

~ (A2)
f=l v=1

Assuming that the asymptotic behavior of the real
parts of the trajectory functions are given by

and

with

Renp(s) cps p

Renr(s) cps'&,

as&ap, f=(1, ,Ã)

(A3)

(A4)

(A5)

then the theorem of Brower and Harte' generalized to
include the effects of resonance widths can be stated
in the following form.

Theorem: If uo& —,'then the decay process defined by
(A1) and (A2) above must fail to satisfy one of the
following conditions as M-+:

(i) -- -+ 0,
Renp(M')

1 N nf
(ii) —(r+g g r„f)—&0,

f=l v=1

cp=1 (A6)

r/M 0, (A7)

condition (ii) is forced to hold. If condition (i) fails and
the orbital angular momentum grows with np(M') pp M',
then the result of Jones and Teplitz" forces the partial
width of the resonance to this particular decay channel
to decrease exponentially with M'. If the total width
is not to decrease exponentially, then there must be an
exponentially growing number of available decay
channels.

"C. E.Jones and V. Teplitz, Phys. Rev. Letters 19, 135 (1967).

(iii) m„~/M & 1.

It is apparent that if the asymptotic phase of the
trajectory is not zero, condition (ii) does not hold for
simple decay channels. Also, it is possible for condition
(iii) to be violated so that one of the "decay products"
has mass equal to or greater than the original resonance
without violating (A1). On the other hand, if the
asymptotic phase of the trajectories is zero, so that


