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Veneziano Secondary Terms for pn ~ 3~
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We accurately determine the form of the four-point Veneziano amplitude suitable to describe pn ~ 3m

at rest. The essential parameters are found by Gtting the two-dimensional surface of the Dalitz-plot distri-
bution directly. Excellent agreement with experiment is obtained, showing secondary terms to be essential.

I. INTRODUCTION

W~NE of the first triumphs of Veneziano's model' was
its adaptation by Lovelace' to predict the basic

pattern of prt annihilation at rest into three pions'
LFigs. 1(a) and 1(b)j. Doubts concerning the accuracy
of this prediction have led to alternative prescriptions-
to include secondary Veneziano terms, to use the five-

point function generalization, or even to turn back to
non-Veneziano resonance models.

The purpose of this paper is, firstly, to review the
earlier Veneziano models, showing their detailed struc-
ture in a two-dimensional Dalitz-plot representation.
Sy fitting directly to the full two-dimensional surface of
the experimental Dalitz plot, all the available informa-
tion is used. We find that secondary terms are important
and very much needed —contrary to earlier Veneziano
analyses. The most recent phase-shift resonance model4

requires 14 parameters to give the features of pm ~ 3pr,

whereas we find that the Veneziano secondary term
structure with only fogr free parameters gives excellent
agreement with the data.

II. VENEZIANO MODELS

with
I'(e —n, )I'(rt —n )I'„(s,t) =
I'(I+rip n, —o.()—

(2)

Here n; is the i-channel exchange-degenerate p fp tra--
jectory. The coeKcients c are determined from the
experimental data. Equation (1) ensures that Bose
statistics, crossing symmetry, and isospin conservation
are satisfied; it is derived under the assumption of
absence of isospin-2 resonances. Pomeranchuk con-
tributions are ignored. The decay rate for the pip system
to three pions is then given by

R(prt —+ pr+pr pr ) ~
~

A (s,t)
~

',
where

s=M'(pr+pri ), t=3P(pr+ z p ), tt=M'(pri —,prp ).
To have a more physical understanding of the relative
importance of the terms in Eq. (2), it is often better to
think in terms of the coefFicients c which multiply
individually normalized I'-function terms; i.e., A (s,t)
may be written

The prt system decays at rest into pr+pr pr in a 'Sp,
T= 1 state; the initial state of the system then has the
quantum numbers of a heavy pion. The zz~zz
"mplitude in a Veneziano model' is

A (s,t) = P P c„ I'„(s,t)
n=1 m=o

i
I' (s,t) i

'dsdt . (3)
A,'= —,p(A (s,t)+A (s,l)j——,'A (t,pt),

A, '= A (s,t)—A (s,tt),
A/=A (t,tp),

where A, ~ is the isospin-T amplitude in the s channel,
and the most general A (s,t) is written as

~=1 m=O
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Dalitz plot

The original attempt to explain this process using a
Veneziano amplitude was made by Lovelace. ' In the
expansion (2) he makes ciz= 1.0 and all other c„'szero.
A (s,t) in this form contains only the p meson, its re-
currences, and their daughters. The Regge trajectory
used is

n, =ppp+n's+ in" (s—4m~') '"0(s—4m~'),

where np= 0.483 and n'= 0.885 (GeV/c') ' are the same
as for the p trajectory, and n", taken to be 0.28
(GeV/c') ', is claimed to give the p meson a width of
280 MeV. The Dalitz plot distribution given by this
form of the amplitude is shown in Fig. 1(c). The
Lovelace model predicts a depletion in the center of the
Dalitz plot, but it is not steep enough to satisfy experi-
ment [Figs. 2(d)—2(f)j. In addition, the experimental
distribution shows concentrations of events along bands
of constant s and t enhanced at some intersections, This
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TABLE I. COmpariSOn Of the VeneZianO VerSiOnS fOr pn ~ 37r.
The c's are the unnormalized coeScients of Eq. (2), the c's multiply
the physically normalized contributions in Kq. (3).One parameter
is always fixed by over-all normalization and the errors on the
others do not exceed 8%. G is the goodness of fit defined by
Kq. (11).'

Altarelli-
Lovelace Rubinstein A =0.28 A =0.33

C10

C11

C20

C30

1.00
1.00
1.89
0.00
0.00
0.57

1.00 1.00
2.55 2.90
2.96 2.14
7.80 7.31—4.52 —3.74

CIG

C11

C2O

Cao

1.00
1.00
0.78
0.00
0.00
0.00

1.00
1.05
0.70
1.04—0.23

1.00
1.18
0.53
1.02—0, 19

2LI.„„(max)—I.(max) J 1244
G 2.24

1458 606 592
2.62 1.09 1.07

' Note added in proof. The predicted values for the ratio of the total rates
R(ppr 1 ~~+~ 7ro')/R(pn -+~+~ vr ) for the four amplitudes above are
0.69, 1.19, 1.13, and 1.04, respectively.

This led them to propose

r(1 —n, )r(1—n, ) r(1 —n, )r(1—n,)
A(s, t) =cip +cii

F(1 n, n,)——I'(2 —n, —n, )

F(2—n, ) I'(2 —n,) F(2—n, )1'(2 —n, )
+&~0- +c21

r(2 —n, —n, ) r(3 —n. —n, )

I'(3 —n, )I'(3—n„)
+cpu— . (7)

I'(3—n. —n,)

They fit the two invariant (pr+, pr ) and (pr, pr ) mass-
squared histogram projections with the five coefficients
c„ in (7).The Regge trajectory used is the same as that
given by Eq. (4) for each of the five terms. This means
that n" in (4) is assigned the same value for each of the
five terms. Their best values obtained imply that the
first two terms completely dominate (Table I). Figure
1(d) shows the corresponding Dalitz plot distribution.

6 G. Altarelli and H. R. Rubinstein, Phys. Rev. 183, 1469
(1969).

model does not show quite the same enhancements away
from the two major ones (s=t=m, '; s=t=mf').

Altarelli and Rubinstein' (hereafter referred to as
AR) concluded that a single term in Eq. (2) is insuffi-
cient to explain the Dalitz-plot distribution satis-
factorily. Its most striking feature is the hole in the
middle which occurs at values of s and t such that

Re(n, +n, )=3.

Owing to the pole structure in the r function r(e+m
n, n&)—, a la—rge denominator occurs in those terms of

(2) for which

rt+m & 3.

The "hole" in the center is now more accurately fitted.
But the distribution shows a general depletion, in
contradiction with experiment, all along the line I 1.5
(GeV/c')' which corresponds to Re(n, +n,)=3 (see
Figs. 2(e) and 2(f)]. Moreover, the concentration close
to the boundary at s=t=mts /around 1.7 (GeV/c')'j is
present with a density twice that in the experimental
distribution Lsee Fig. 2(a)]. In fact, the over-all fit is
worse than Lovelace's.

We believe that this failure of the AR analysis arises
from the fact that the parameters c„are determined by
fitting the two experimental 3P(pr+, pr ) and M'(pr p )
histograms. Their method thus ignores the strong
correlation between these two variables. Furthermore,
the use of the form 0.28(s—4m P)'" for the imaginary
part of the trajectory for each of the five terms is unduly
restrictive. The residue at a pole in s in the representa-
tion (7) is a polynomial in t whose coefficients are
functions of the five c„'s.The partial-wave decomposi-
tion of this residue implies the presence of certain
particles at this pole. The imaginary part gives a finite
width to this pole (it. is also responsible for "ancestor"
particles arising in addition to the "daughter" particles
from the polynomial in t); this width relates to the
widths and masses of the individual particles present.
The width of the poles in the over-all amplitude (7)
depends on the c 's and the form of Ima. As such, the
c 's are related to the imaginary part of the trajectory.
The more general expression A (s—4m ')~ (8 &&1 from
unitarity), with A and 8 as variable parameters, would
treat this correlation in a better way.

To find the best parameters, we use the Dalitz plot
tlII '(=I) vs ~ —~'(=s). The lower and upper limits
of I and s, fixed by the pion mass and the total center-
of-mass energy, are used to define a 30)&30 grid across
the Dalitz plot. The experimental number of events, E;,
in each square i with at least one corner within the
boundary are determined. For a given set of values of
the free parameters, the predicted probability distribu-
tion p, over the significance squares {i}is found by
integrating the expression

d'p/dsdl=ciA(s, t) i'

over the area of the square i within the boundary (c is
the over-all normalization constant such that P p;= 1).
The predicted distribution of events is simply p;
=Ãp, (N=Q, tV~). As we are compelled to use a fine
grid to retain the unique features of the experimental
Dalitz plot the conventional X2 method is not applicable
in view of the small values of Ã; encountered. Instead
we directly maximize the likelihood of the observation
to find the best parameters. The probability of the
observation {1V,} is

P=ll pP'

where n is the total number of significant squares
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(Iz=561 in this case). The likelihood is defined as

L=lnP=Q LY; lnp;. (10)
i 1

Maximizing L is equivalent to maximizing the Poisson
probability (P, with means p, ,

6'= e ~'-
;-I (LV,.) l

The maximum likelihood with unrestricted proba-
bilities p, is given by

and the ratio

P(max)/P„„(max) = exp{—LL„„(max)—L(max) j)
enables us to define an indication of goodness of fit G as

L„„(max)—L(max)
6=2

number of degrees of freedom

Equation (11) is consistent with the usual definition of
goodness of fit since, writing e,= (LLL, III;)/Iir;, —

L„„(ma,x) =p iY; 1n(.V,/LV), L„„(max)—I (max) = —P LY, ln(1+&,) . (12)



If c, is small, the right-hand side of Eq. (12) becomes

-' Z( —& )'/A'

which is simply one-half the usual X'.
With the above procedure, the four free coeKcients of

Eq. (7) are redetermined with the original Lovelace
form for the trajectory as in Eq. (4). The best values of
c (or equivalently c „)obtained are given in Table I.
No term or pair of terms is dominant, as is indicated by
the relative equality of the 6rst four c 's and the
important role of the destructive interference. The
interference term has an intensity roughly equal to that
of the direct contribution and its structure is complex,
since the relative sign of the five terms varies over the
DaHtz plot. Figure 1(e) shows the corresponding Dalitz-
plot distribution. The main defects of the AR 6t are
remedied. The concentration of events along the line
Re(n, +n~)=3 is now reproduced correctly Lsee also
Figs. 2(d)—2(g)j.Furthermore, the central hole and the
concentration close to the boundary at s=I,=my' now
have the correct densities. These improvements are
reQected in the values of G compared with those ob-
tained using the Lovelace and AR amplitudes as shown
in Table I.

Using the more general representation, A (s—4m, ')e
for Imn, we find that no value of 8 other than 0.5 gives
any significant improvement. However, a better value
for A is found to be 0.33 with some slight readjustment
of the c 's as expected from their correlation to A. The

corresponding distribution is shown in Fig. 1(f) and the
values of c„and 6 are shown in Table I.

The Lovelace and AR analyses in the context of the
Veneziano model were unable to explain all the features
of pe annihilation at rest into three pions because the
strong correlation between the two physical variables
describing the process were ignored. This has led to a
belief that the Veneziano model is inadequate for this
process, The excellent agreement with experiment over
the whole region of the Dalitz plot shown by our 6t
provides ample evidence to the contrary. Moreover, our
values for the coeScients are in disagreement with
those of AR. It is apparent that the secondary Veneziano
terms allowed are all necessary to describe the data
accurately. This necessity stems from the need to in-
clude the "daughter" m-+ resonances into the amplitude
with contributions not manageable with only one or two
terms. Our disagreement with AR also invalidates those
attempts to reduce 85 terms using a pion mass extrapo-
lation which reproduce the AR 84 coefficients.
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