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lt is this asymptotic behavior, which is nicely de-
creasing for Res positive, that one takes advantage
of when defining the Lorentz Laplace transform of a
function of a longitudinal boost angle 8. %e always
have in mind the connection of an invariant subenergy
s with coshe. A behavior like s leads to e"', so suppose
g(8) is bounded by e '. We then define the partial
amplitude which is analytic in Ren) Ren

~
m —jp~:

glltel2(9)amlll2 ' (~)
g«t, ""=Q (sinh0) 'd0 ———, (A29)

0 8(jp,n; li, m, lp)

where the usual measure (sinh8)'de on the SO(1,3)
hyperboloid has entered, and 8 is a combinatorial co-
e%cient which is specified shortly. By using the asymp-
totic behavior of the a&0 "+' functions, and the connec-
tion between them and the usual representation
functions d"" on Sl.(2,C),"one may show that if we
define gi, ~,

""via (A29), we can recover g(e) for positive
8 by

with

(1i+jo)!(4+jo)!
X

(li- jo)!(lp-jp) '

[n,+2 jo]—i+ o[ 'n 2m—+j o]l
X [—n —1—m]„+„+,[n+1+m](,+„+,

[a],=a(a+1), . . . , (a+q ——',) .

(A31)

(A32)

In the text we defined ei, ~, 'o"(0) as

«, i,""(&)=a ~, ~,""+'(8)/&(jp,n, li,m, lp), (A33)

so our transform pair is (46) and (47).

Is
gi -~ (~) = —[jp' —(n+1)']d»-i2'" "(0)gu»""'

C—%co

(A30)
when we take for m&~ j0.

jpo —(n+1)'
fl( jo,n, li,m, l.) = — (2li+1)(2lp+1)

4(m —jp)!(m+ jp)!
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The smoothness assumptions of the chiral SU(2) +SU(2) hard-pion current-algebra method are examined
in detail. A new model, the current-smoothness model, emerges as a plausible alternative to the standard
hard-pion model of Schnitzer and Weinberg, and others. The two models give satisfactory predictions for the
decay A &

—+ p+m. , but quite different predictions for the decay A &
—+ 2r+y and the colliding-beam reaction

e+e —+ A I+++. Other possible models are also discussed.

I. INTRODUCTION

'HE hard-pion current-algebra method, '' which
consists of the chiral SU(2) XSU(2) current com-

mutation relations proposed by Gell-Mann, ' conserva-
tion of the vector current (CVC), partial conservation
of the axial current (PCAC), together with certain
"smoothness" assumptions, provides a useful phenom-
enological tool for the analysis and correlation of various
strong, electromagnetic, and weak processes. In par-
ticular, it leads to relations between the pion electro-
magnetic form factor, A1-meson decays, ' ' pion-pion
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scattering, 4 ' and pion-nucleon scattering. Extension
to the SU(3)XSU(3) current algebra, with nonconser-
vation of the strangeness-changing vector current ap-
propriately taken into account, leads to further rela-

tions between these processes, IC-x scattering, 7 and the
form factors of the %&3 decay, ' "although these rela-

tions are not entirely in agreement with experiment.
The method can also be applied, with rather more
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theoretical ambiguity, to the electromagnetic decays
of co, p, vr', and g mesons. ""

The present work evolved from an attempt to ex-
tend the method to situations in which the zero-width
(pole-dominance) approximation to the particle and
current propagators is inappropriate" (such as in the
colliding-beam reaction e+e —+ 7r+m, discussed by
several authors, " or the physical decay A&~3x).
In the course of this attempt, it was found that the
original smoothness assumptions are in fact not
unique —that by a slight modification of the point of
view of Schnitzer and Weinberg, a wide variety of
models with equal a priori plausibility could be con-
structed. To select one or another of these models re-
quired an appeal to some higher principle, for example,
(1) field-current identities, "(2) explicit Lagrangians, ' "
(3) complete single-particle dominance, ' (4) high-

energy limiting behavior. '~" These principles are not
necessarily wrong; indeed, they have intuitive appeal
to many physicists. But it seemed worthwhile to give an
account of the more general class of models, and to dis-
cuss experimental tests of the various models.

Section II contains a review of the current commuta-
tion relations, CVC, PCAC, and the Ward identities
relevant to the exposition of the models, and introduces
the propagators and the A-A-V vertex functions (the
T products of two axial-vector currents and one vector
current). Section III contains the decomposition of the
vertex functions into invariant amplitudes, and the
implications of the Ward identities for the invariant
amplitudes. Section IV contains a decomposition of the
matrix elements of the current operators between
single-particle states; the large-momentum-transfer be-
havior of these matrix elements is of some interest.
Section V contains the crucial discussion of the smooth-
ness assumptions; it is here that the general models are

' R. Perrin, Phys. Rev. 170, 1367 (1968); S. G. Brown and
G. B.West, ibid. 174, 1777 (1968);R. Arnowitt, M. H. Friedman,
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introduced. Section VI contains predictions of the
models for various processes related to the A-A-V
vertex function —the decays A z

—+ pm-, A z ~ ~p, and the
colliding-beam reaction e+e —+ A z+x+, using analysis'
of the e+t. ~ z+x data as input.

From this emerges a second model, the current-
smoothness model, which assumes maximum smooth-
ness of the T product of three currents, zei]kogt explicit
decomposition of the axial-vector current into spin-0
and spin-1 parts. It does not satisfy any of the higher
principles listed above (except in a certain limit which
is not consistent with present experimental data), but
it gives reasonable predictions for the decay Az —+ p7r

(as does the standard hard-pion model). The predictions
of the model for the decay Az~ xy and the colliding-
beam reaction are quite di6erent from those of the stan-
dard hard-pion model, and can lead to an experimental
choice between the models.

B. Two-Point Functions

The basic two-point functions are

~„.(~)~.,= I
i(OI2'(V„.(x) V„(y)) IO)

—Cvg, og, o5(x —y) 8.o]e*'o &'—&'d'x, (2.3)

6„,"(q)6.o = [i(0
~
2'(A„(x)A, '(y)) ~0)

We have

—Cgg„og„ob(x —y) b.o]e'o'* »d'x. (2.4)

~"4)=I'(v') g" G(v') v.c, —

~""(V)=I'~V)g" G~(C') V.C, —
'9 M. T. Vaughn, Ref. 14.

(2.5)

(2.6)

II. BASIC PRINCIPLES

A. Commutation Relations

The vector currents V„'(x) and axial-vector currents
A„(x) (a =1, 2, 3) are assumed to satisfy the standard
SU(2) XSU(2) commutation relations'

~(xo —yo) LVo (*),V.'(y)]
I =io "V„'(x)b(x y)+ST-

=6(xo—yo) [Ao (x),A„'(y)], (2.1a)

with the usual c-number Schwinger terms (ST), and

g(« —yo)LVo (x),A. '(y)]
=so"A '(x)b(x —y)
=~(»—yo)[Ao'(x), vo'(y)] (2 1b)

without Schwinger terms. Furthermore,

~(xo —yo) LV"(x),~.A.'(y)]
=io "8 A '(x)b(x —y) (2 2)
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S I'UDY

~

)]gj t jng fie (. +1Iectral represej1tat jonswith the standard spectra r

1'(&I') =

G(q') =

F~(q') =

Gg(q') =

o («)
dK )

(g K

o(«)
dK)

K(q —K)

og(«)
dK)

K

1-o.g(«)

K —(g K

(2.7)

(2 8)

(2.9)

(2.10)

o («)
(4, (2.11)

t,o
' '

ite s ectral functions o(«), o~(&:),Wjt h positive definite spectra unc

C, C, eth gi hThe Schwinger constants y, ~ n

( 2)e—&q &z—&&)d4qe- ' — ' . 2.21)A. (I e- 4

4(2ir)

ro a ators (in the
arrow-

terrnine

r n I&)tt'& (o)l~'V&))=g.»'.&.' & .i
(0) I

A &'(q)) =gg»'gp„" q ii.&,

0 n„-(o) I ~'(p)) =iF.»&.p„&...
are the polarizatjon vwhere p~

d»' are the usua. lN, Ng, anpa
ormalizatjon

ns.j'b the e e ation .and F a,re define& y.
e, ' ' ole-dominance limit, q .Then, in the po e-

(2.6) are, respectively,

sdefines the tnterp

(0 I T(y, o(x) w, i(y))
I
0)

-o.g(«)
+op(K) da

sum ru e 'pto the first Weinberg sum ru e,and, according to e

Cy ——Cg —=C.
Note that

(2.12)

(2.13)

2
Rp~"«) =, ,(&"—

(j'—m„

ga
~. "(q)=-

q' —m~'

2
gpgv Fx

2"
mg (I' —m~

(2.5')

and

( ) = [F(V') &I'G(q') 3V—p

= —Cgq„

q,~""(q)= [I'~(&7') &PG~(&7') 3&-
= —[c,+Z(&1')]q. ,

(2.14)

(2.15)

C. Three-Point Functions

e - oint functions are defined byThe basic three-point unc
'

3&1 „abc(p ())

where

Z(q') =
KOp K

de
(I

—K

(2.16)

= —i (olT(n. (*)A„(y)v, (0) o

X '&' e'& 7jd x( y
4 4e

s -
'

re the two-point functjonsAlso required are t e

i(0I T(&t A '(x)n. '(y))Io)

= .i &1 ~ p)a„.~(q)a„„(p+q)1...(p,q,
M.„i,'".(p,q)

(2.25)

and

( ') e i«" »d'q—-2.17)(gag e
— 4

(2ir)' —= ~ '~.( ')~""(q)~~ (p+&J)1'- (p q (2.26)

&p „' ' 0 ) I
0)e'&'"e"«d&xd4'y(o IT( -'( )n '(y)1' '(

(0 I
T(&7 A (x) A&7„'(y))

I
0 M..i."(p,q)

( ')e '&'«* "I'q 6, &, ) 2.18)Apq e' ' 4

(2ir)'
0 to. .' ' 0

I
0)e'" *e« "d4Xd'y(o I T( - (*) -'(y) v '( )

where

Here t eh PCAC condition

x&l A (x) =F.m. q.
'h s. Rev. Letters 18, 507 (1967).~0 S. SVeinberg, Phys. Rev. e

(2.20)

')&a, (q') (2.19)6«&') = — d« (1' —m=+«(&)

""~.(p')~. (&i')~~ (p+q '-1'-.(p, &7),

ro 3ej tjcsWjtth the symn1et, ry p

1'.-(p, q) = —1'."(&7,p),

1 (pq)= 1 "(qp)
b Bose statistics.require y

(2.27)

(2.28)

(2.29)
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D. Vector Ward Identities

As a consequence of the CVC condition

8),Vg'(z) =0, (2.30)

I' „i(p,q) is decomposed according to

(P q) =A LR (P—+q) (P+q) /s7+I 8P +Cq 7&

P'q &+[CD.~-'~.(p')3 ' F~ '(q')~(p') P

(P+q) i~"~'"(P,q) ="'[i1""(P)—~""(q)7
(F-~-') (P+q) i~-i "(P,q)

"L~—(p')P +~(q') q 7

(p+q) ~ „cbc(p q),cbc[g (p2) g (q2)7

(2.31)

(2.32)

(2.33)

the three-point functions satisfy the vector Ward
identities ~(q')+~(p')P q/q' (P+q)i

q, , (3.5)
C~+Z(q') — s

where A, 8, and C depend on the scalar variables p',
q', and s. The vector Ward identity (2.32) is satisfied;
if I',„i(P,q) is to have no pole at s =0, then it is necessary
that

A(p2 q2 0)+(P2 q2)8(P2 q2 0)
= [CrF.m. 'A. (P')Fp(q') 7 'E(P') (3.6)

A(P' q' o)+(P' q')C(P—' q' o)
(CiF—m '6 (P')[CA+K(q')7) '

—1 2 2 2 2

E. Axial-Vector Ward Identities

As a consequence of the PCAC condition (2.20), the
three-point functions are related by the axial-vector
identities

and

X[p qF~ (q)G~(q)~(p )+~(q)7 (37)

+F m„'3E,„ic'(p,q) (2.34) From the axial-vector Ward identity (2.35), it then
follows that

(F,rib ')q„Ã „i '(p, q) = (F m ')'3l i '(p, q)
—""~(p')Pi, (235)

so that M,„i "(p,q) and 3f i'b'(p, q) are determined
from M„„&, b'(p, q) and the two-point functions. In the
derivation of Zq. (2.34), the first Weinberg sum rule,
Eq. (2.13), has been used to cancel the Schwinger terms
from the vector and axial-vector current propagators.

III. DECOMPOSITION OF VERTEX FUNCTIONS

The vertex function. I'
&,(P,q) is decomposed accord-

ing to

I'-i(p, q) = I'(P', q', s)&i
+C; I ~„(P)-~; (q)7(p+q), y/. , (-3.1)

where I'(p', q', s) is a function of the scalar variables,
symmetric under interchange of p' and q', s=—(p+q)',
and

(F-~-') '~-(P') ~-(q')F(s) I'(P', q', s)
=(F.~-')~-(P')LC +~(q')7F(s)[ 'A(p', q', s)-

Pq8(p' q'—s) q'C(P' q';—)7+4~(p'), (3 g)

which determines I'(p', q', s) in terms of A, 8, and C.
Finally, I'„„z(p,q) is decomposed according to

I "i(p,q)
=

I A+a"+(D++D )P.p.+(D+-D )q.q. —-
+F+P.q.+G+q.p.Ãi
+[(8++8 )(p q)„+(C++C—)(P+q),7g„),

+[(8+ 8 )(p q) (C+ C-)(p+q)—]g-
2L8+(P.P q.q ) —8 (P.q q.P—)—-—

+C (p+q) „(p+q),7(p+q) i/s
+C. '&[F. '(p') F-. '(q')-3a.. --

~(p2) p„p„+v (q') q„q„)(p+q),/s, (3.9)

p(x) =Fg '(x)Gg(x)/[—Cg+A(x)7 (3.10)

&i=—(P—q) i—(P' —q') (P+q) i/s. (3 2)
and the X+ (X=A, . . ., G) depend on the scalar vari-
ables p', q', and s, with

The vector Ward identity (2.33) is evidently satisfied;
furthermore, if I' i(p, q) is to have no pole at s=O, then
it is necessary that

(3.11)Xg(q', p', s) =&X~(p',q', s) .

-g —
1(P2) g —1( 2)-

I'(P'q', 0) =Cv '
2 g2 '(P') —F '(q')

(3.12)A„(p',q', 0) =Cv '
2 g2and thus, independently of any assumptions of single-

particle dominance, 8-(P' q'0) —C-(P' q' o) =-'(P' —q')F+(P' q' o) (3»)
(34) 8 (p' q'o)+C (P'q'o)-= —-'(P' —q')-G (P'q'o) (3 14)I'(m. ',m. ' 0) =Cv '.

The vector Ward identity (2.31) is satisfied; if
I'„„b(p,q) is to have no pole at s=0, then it is necessary

(3 3)
that
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2C (p' q' 0)+(p' —q')D+(p' q' 0) where t= (p——q)', and

=-kC~ 'Ev(p') -~(q')3, (3 15) G,(t) =g,F(t)A(m ',m, ',t), (4.7a)

G,(t) =gzF(t)B(m. ',m&', t), (4.7b)

&A~'(q) I ~- (0) I p'(k)&

=«"'N~N. p."*(q)B.~(q,k)p~'(k), (4 g)
with

2B+(P' q' o)+(P'—q')D-(P' q' o)

= —lC~ 'Lv(p')+v (q')] (3 16)

From the axial-vector Ward identity (2.34), it then
follows that

(4 9)B'(q,k) =Pi(p') g.~—P2(P')k.q. ,

where p'=—(q —k)', and

pr(p') =gag, A (p')A(p', mg' m ') (4.10a)

P2(p') = 2g~g pA~(p') B(p',mg', m ') (4.10b)

&~ (p) I
A, '(0)

I p (k)) =i~ "N.N pH„, (p,k)p, ~(k), (4.11)

(F.m ')A (p )A(p' q,s) =F-'(s) —F~- (q )
L~~+—A(p')ALP (P q)(B+—B )—-

P(P+—q)(C+ C )j—-
(F-m-') A-(P')B(P', q', s)

L~~+—A(p') jLA++P'(D++D )+P qG-+

+k(B++B-+C++C-)7 (3 1g)

(F.m. ') A-(P')C(p', q' s)
L~~+A—(p') jLP q(D+ D )+P—'F+-

—2(Bp+B-—C+—C-))—kv (q') (3.19)

with

H„g(p,k) =Hg(q')g. g+LHs(q')p„+Hg(q')q„jP)„, (4.12)

where q—=k —p, and

H&(q ) =g FA(q2)A(m 2 q2m 2) (4.13a)

(q2) 2g FA(q2)B(m 2 q2 m 2) (4.13b) .

(q') =H&(q') —p qH2(q') —2(F,m. ')-'p(q'). (4.13c)

nally, consider the matrix elements

(P) I
l'e(0)

I
A ~'(q))

=""N~ N~'p. "(P)~"~(p,q)p."(q) (4 14)

Then also

(F„m ') 'A. (p') A. (q') I'(p', q', s)
=LC +A(p') jl C~+A( ')j /HE

X{p'qLA++P (D++D )+q (D+ —D )+q'PG+3— Fi
+5k(s 2p' 2q')—B++—sC

(A 1'
+(P' q') (B C—)i+P'-q'—F+)-

+kLC~+A(p')+~(q')+F(s) jF '(s) (3 20)

IV. SINGLE-PARTICLE MATRIX ELEMENTS;
FORM FACTORS

M„„g(P,q) =My(t)g~„(P+q) g+M2(t) (g~)P„+g„)q~)
+%3(t)q„p„(p+q)&, (4.15)

Consider the matrix elements

&~'(P) I
l'~'(0)

I
~'(q)) ="'N.'N-'F-(t) (P+q) ~,

where t=(p —q)', and

&-.(P) I .. (0) I'(»&=2"'N..N,~(q»;"(k)
where q'= (k —p)'

F (t) is the pion electromagnetic form factor;
evidently

with
(4.3)F.(t) = —F(t)r(m„', m. ',t).

N"~(p, q) =N~(p') (q.g" k.g.~)+N2(P')—(q.g'+k.g.~)
—Na(p') g"q~ —N4(P') q.k.q~

+LN~(p') g' —N6(P') k q~3(k —q). , (4 1g)

where p'=—(q —k)',

N~(p') = —g~g.F~(p') I:B+(P',m~', m')
+C~(p', m~', m p') j, (4.19a)

N2(P') =g~g.F~(p') P (P',m~',m')-
+C (P',mg', m, ')j, (4.19b)

N (p') =2g~g Fg(p')A~(p', m~', m ') (4.19c)

N~(p') =2g~g P'~(p')G+(P', m~'m ') (4.19d)

Also,

y(q') =g,A.(q') I'( m. ',q', m, ') . (4.4)

Moreover, consider the matrix elements

&~ (p) I Vg'(0) I A, '(q)) =is "
N. N~G. g( ,p)qp, "(q), (4.5)

with

(P-q).(p-q)~
G.~(p,q)

—=G~(t) g.),—

mg —5s
+G2(t)p, (p+q)~+ (p —q)~, (4 6)

t

where t= (p —q)',—and

(4 1) Mg(t) = —g~'F(t)A+(mg', m~', t), (4.16a)

Ms(t) = gg'F(t) PB+—(mg', m~', t)

+C„(mg', mg', t)j, (4.16b)

(4 2) Ms(t) =gg'F(t)G„(mg' mg', t) . (4.16c)

(A, ~(q) IA„.(O) I p (k)&
=e""N~N,p,"*(q)Ã„,),(q,k)pal'(k), (4.17)



2246 M I CHAEL T. VAUGHN

A. Current-Smoothness Mode1
V. SMOOTHNESS ASSUMPTIONS

The first-class amplitudes are assumed to be of order
zero in the scalar variables. ThenIn order to make predictions, it is necessary to make

assumptions about the amplitudes X+(p', q', s) which
appear in the vertex function F„„i,(p, q). These assump-
tions involve the approximation of the amplitudes by
rational functions of p', q', and s (in the pole-dominance
approximation for the axial-vector current propagator),
invoking the constraints at s=0 expressed in Kqs.
(3.12)—(3.16), and restrictions on the number of sub-
tractions required in dispersion relations for the single-
particle matrix elements introduced in Sec. Dt' (these
correspond to restrictions on derivative couplings in an
effective-Lagrangian approach).

It must be noted that the constraints at s=0 involve
the function q(x) introduced in Eq. (3.10), which has
a pole when

-F~ '(P') —F~ '(q')
(5.4)A+=Cy '

2 g2

(5.5)B++Cp=Cr 'g~ 'k,

with g an arbitrary parameters, and

(5.6)

(owing to the antisymmetry in p' and q'). &t is also a,s-

sumed that
(5.7)

(This is a nontrivial assumption as explained below. )
(5 1) Then the s=0 constraints requireCg+Z(x) =0.

and X5(p') and X6(p') are expressed in terms of matrix For n=0 and 1, this leads to the specific models de-

elements of the pion field with the aid of the PCAC scribed below.
condition.

C~+Z(0) = ag(~)
da&0 (5.2)

C~+Z(x)=F 'nt '/(x —nt ')+const (5.3)

This equation is certain to be satisfied in the interval
0&x&m 2,. since

B+= ——,'Cr '[p(p')+ q (q'-) ),
B =4C~ '[~-(p') v(q') j, —

v (P') —~(q')
P C —1

2 g2

(5.8)

(5.9)

(5.10)

for x=m '.
The poles of p(x), which appear in some of the ampli-

tudes X~, must not appear in the amplitudes 3f„„q,
M „)„and M ),. Thus it is necessary that there be no
poles in the combinations

(5 11)

This model contains a single parameter P, in terms
of which the pion electromagnetic form factor is given by

F (t) = [F(t)/F(0) j(1—Xt/4nt, '), (5.12)

(i) B++C„, (ii) B +C, (iii) C+
with

X = —(2F~'nt, '/gz') (1+$) (5.13)
as functions of either p' or q', in

(iv) D+.+D,
(v) (B+—B-)—(C+—C-)

as functions of p', and thus in

(iv') D+ D, —
(v') (B++B-)—(C++C-)

as functions of q2.

The amplitudes X+ fall naturally into two classes-
the amplitudes (A+,B+,C+), which multiply a linear
function of the momenta, and the amplitudes
(D~,F+G+), which multiply a cubic function of the
momenta. The general procedure is to approximate the
first class by rational functions of degree n in the scalar
variables, and the second class by rational functions of
degree n —'tt, in the limit of pole dominance of the axial-
vector current propagator (although the form of the ap-
proximation does not require that limit to be taken).

B(nt 'q's) = Ci 'F gg '(—1+-'$) (5.15)

A model with a second arbitrary parameter is ob-
tained by replacing Eq. (5.8) with

D +D =C '~o~-(P')/[C-+~(p') j (5 16)

D+—D-=C~-'do~. (q')/[C~+~(q') j (5»)
(which is consistent with the general procedure, since
these are rational functions of degree —1) and ap-
propriately modifying Eqs. (5.9)—(5.11).However, the
behavior of the amplitudes for p' —+~ at fixed q' is
altered, and the model is more appropriately considered
as a special form of the linear model described below.

and the ~-A-V vertex functions are given (on the pion
mass shell) by

A(nt 'q', s)=Cr 'F gg '[nt ' —nt~'

+-', g(s+nt. '—q')], (5.14)



B. Linear Models

The 6rst-class amplitudes are allowed to contain
terms linear in the scalar variables; explicitly, assume

The conditions also require

g=O=B,

P+p 2—f=o
(5.29)

(5.30)» '(P') —F~ '(q')
A+ ——Cv ' +gg 'ns, (5.18)

&++C+=Cv 'g~ 'Lk+ns+p(p'+q')3

The parameter $ is related to the parameter ti of
Schnitzer and Weinberg' by

(5.31)
Q C —

1g —2~

and then the constraint at s=0 requires

& +C = —oC~ 'g~ '(p' —q')v.

(5 20) and to the anomalous magnetic moment X~ of Arnowitt
et cl.' by

(5.32)

do is given in terms of g by
Also assume

do= —Cvg~ '(1+-,'() . (5.33)
~-(p')—

D++D =Cv ' dg+(do+8s)
Cg+Z(p')

~-(q')
D+ D— Cv d1+ (do+ les)

C~+&(q')—

(5 22) The pion electromagnetic form factor hss the form of
Eq. (5.12), with

(gg'/2m 'F ')X=2CvF —'(1+-',(—Xm~&)

+2P ' 1 f—, (—5.34)
with the additional relation

g+= 4Cv 'Cp—(p')+-ip(q')](1+ps)

,'(p' q—')D +—Cv 'g~-'ts,
C = —4Cv-'Co (P') —

o (q') j(1+Ps)
mz' Cv—Pmg'= 1— X

i (5.35)
m, 2Fo i

o(p' q')D+i (5 25) connecting p and X.

CvF 'Xmg' —CvF. '(1+-,' P
—Xmg')

(5.24)

o (p') —
o (q')

F+=Cv ' (1+Xs)
g2

—Cv 'g~ 'v+2D+ (5 26)

The eleven parameters (n, &,rt, p,y, do, A, &,P,l,X) « the
model are reduced to three by requiring the single-
particle matrix elements of Sec. IV to have "reasonable"
behavior for large momentum. This means requiring"

(i) V(q') «or q'

(ii) F (t) -+ const and for t~
(iii) Gq(t), py(p'), Hz{q ) ~ const,

(iv) G,(t),i9o(p'), Ho(q') ~ 0

The s-A-V vertex functions are now given (on the
pion mass shell) by

A(m ',q', s) =Cv 'F gg 'C(,'$ Pmg')s+q-' ——m~'
—(CvF '—1)(m '—q') (1+-',P)j, (5.36)

t

B(m, ',q', s) =Cv 'F.gz '(CvF ' 1)-(1+-,'P) .-—(5.37)

There are several possible assumptions which can be
made to eliminate the parameter P (or X). None of'these
assumptions is very compelling, but we give three ex-
amples below.

Model ZA. The second-class amplitudes are required
to be bounded by constants when one variable is large
with the remaining two fixed. This requires 5 =0, which
is already ensured by Eq. (5.29), and

for t, p', q'-+n, respectively.
These conditions reduce to three the number of free

parameters of the model; these parameters are most con-
veniently taken to be n (or y), P, and P (or X). The
parameter n is related to the quadrupole moment of the
A y meson, and does enter into the A ~-p-~ or p-m-x vertex
functions; also

(5.27)

(5.38)

This model leads to a large width for A~ —+ ps. (2—5
BeV) and will not be discussed further.

3Adet ZB. The constraints (3.12)—(3.14) are required
to be satisfied for all s. This requires n =0 (which a6ects
only the A&-Ag-p vertex), and

(5.39)
Then

gg dj. =p ~ (5.28)
X = —(2m, '/m~') (CvF.-'—1)(1+t)~ ~' These conditions correspond to' those imposed by Brown and

West, Ref. 1'7.
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mys (Cvf' ') '
—,'t —xmas'= — ,'(—C—vF ' 1)—g. (5.41)

m, ' CvF~ '—I

Model ZC. (Standard hard-pion model). Although
there seems to be no elegant justification for the inodel
in the present context, the standard hard-pion model"
is reproduced if

Pmgs= 'CvF.-s]+(-CvF ' 1—)mg'/m ' (5.42)

Xm~' ssCvF——~ '(1+$-)+-', (CrF~ ' 1)m-~—'/m, ' (5.43)

the parameters can be fixed in each of the three models
(current-smoothness, 28, standard hard-pion), and
predictions made about processes related to the A ~-p-m

vertex.

X. Decay Ai~ p+sr

The width for the decay Ai —s p+sr (including both
charge states) is given by

gz gp g~p.
2 2— 2

I'(Ai~ psr) = Ri(m, ')+ Rs(m, ') q.„(6.2)
4m my'- 3m, '

when

y= —(2m '/mg')(CvF '—1)(1+$)
where q p is the pion momentum in the Ai rest system,
and

tt' mg )
pm~' —(1 Cv——F —')( —,'$+

y4(1 —-,'C F.—'), (5.44) R (t)=~A(m ',m ', t)~', (6.3)

Rs(t) =
~ A(m ',m~s, t) (t+m—~s m')B—(m ',m~', t)

~

'
(5 45) 4m/'t~B—(m 'ymg' t) ~' (6.4)

Cv=2F (5.47)

(generalized Kawarabayashi-Suzuki-Riazuddin-Fayya-
zuddin relation),

mg =2mp

(5.49)

In spite of the lack of justification" for Eqs. (5.42)
and (5.43), it is reassuring that Eqs. (5.44) and (5.45),
which are the standard hard-pion results, can be re-
produced by adjusting a single parameter.

Model 28 coincides with the standard hard-pion
model in the limit

gg'= Cvm p', (5.46)

which is approximately true experimentally. However,
the models are suKciently sensitive to deviations from
this relation that they lead to distinct predictions.

IIs The current-smoothness model is an independent
model; it is equivalent to the other two only if Eq.
(5.46) is satisfied and, in addition,

The relation of this width to the experimental width
for the decay 3& —+ 3x is obscured by several effects.

(i) The width for Ai~ p+sr~3sr computed. using
only tree diagrams is affected by the hnite width of the
p and interference between the crossed p bands on the
Dalitz plot. The over-all eRect is to decrease the width
from the result of Eq. (6.2), unless that width is pre-
dicted to be small because of cancellations exactly at
t =m, ' (see the discussion of Model 2B below).

(ii) The decay mode Ai —& 0+sr is present; it may
be small, but it cannot be predicted by standard hard-
pion methods.

(iii) Contact terms in the four-point function in-
volved in the decay A& —&3' may be present; their
effect on the width is unknown at present.

Z. Decay A~ —+~+y
The partial width for the decay A i —& sr+ad is given by

1(gA y mg m
1(A,~ ~+~) = -~

' ', (65)6( 4sr mgs
(corresponding to X~ ——1 or b=0). These relations are where
not well satisfied experimentally. g~, = cCvg~A(ns—.',mg', 0) . (6.6)

e++e——+ sr++sr (6 1)

"of' course, appeal to an effective Lagrangian, as in Ref. 2,
will lead to those results, as will separation of the axial-vector
current into spin-0 and spin-1 structures, followed by insistence
that each spin part separately be single-particle dominated, as
in Ref. 1. However, these arguments seem to treat the particles as
more fundamental than the currents, a point of view which is not
altogether convincing.

VI. PREDICTIONS OF MODELS
AND CONCLUSIONS

With the p-x-x vertex determined from an analysis"
of the data on the colliding-beam reaction

This is the most definite prediction of the model; it is
also the most difficult to verify experimentally.

3. CottsChng Beam Reaction e++e

-+As++sr+T-

hee colliding-beam reaction

e++e ~As++sr+ ~ 2sr+2sr (6.7)

is a promising method of determining properties of the
Ai, since the four-charged-pion final state, which is
relatively easy to detect, should be dominated by A&-m
states (ca-sr and p-p states are forbidden, while a-p is
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allowed, but presumably not too important at c.m.
energies of 1.2—1.4 BeV). Assuming p dominance into
the 1—2 BeU region, the two-body reaction cross section
at c.m. energy E=+t is given by

o(e++e —+ A~++m )

~P())~2- q „2 -q g
=2~~ —g~' A(&)+ &2(&), (6 g)

her t' 3m'' E

where g & is the pion momentum in the c.m. system,
F(t) is the coefficient of g„„in the vector current propa-
gator, and Eq(t) and R2(/) are given by Eqs. (6.3) and

(6.4).
While there are again complications owing to finite

width and interference effects, contact terms, and other
channels (e —p), the two-body cross section calculated
here should be a reasonable approximation to the total
cross section for the four-body reaction in the c.m.
energy range 1.2—1.4 BeV (and perhaps somewhat

higher) so long as no p' meson, which couples strongly
to both the photon and the Ai-m system, exists in this

energy range.
Numerical results are shown in Table I for each of the

three models under consideration, for p properties cor-
responding to best fits to each set of colliding-beam data
taken from Ref. (14). The colliding-beam cross sections
for m.++m and Aq++~ final states are evaluated at
c.m. energy 1.4 BeV using the Uaughn-Wali propa-
gator'4 for the vector current, with cutoff parameter
0.'=50m '.

If the fit to the Novosibirsk data is ignored, then the
following conclusions can be drawn.

(i) The strong decay of the A ~ is in general not a good
test of the models unless A j ~ 3~ is treated more fully.
However, the small width for A~~ pm in Model 2B,
which is due to almost complete cancellation between
various terms in the amplitude A(m, ',mg', m, '), and
which persists in. the calculation of the width for
A~ —& px —+ 3m via the tree diagram, is sufficient to rule
out Model 2B unless the p data changes drastically.

(ii) A clear distinction between the current-smooth-
ness model and the standard hard-pion model can be
made by a measurement either of the decay rate for
Ar ~~+y or of the cross section for the colliding-beam

TAmE I. Predictions of three models of Ai properties and
colliding-beam cross sections using p-meson parameters obtained
from fits to the low-energy colliding-beam data (Ref. 19). The
first set of values are based on Orsay data, the second and third
on Novosibirsk data, the fourth on combined data. The three
values shown for F(A1 —+ pm) are for A1 mass mal=1. 05, 1.07,
and 1.09 BeV; elsewhere, mA=1. 07 BeV is used. The widths
quoted as small are explained in the text.

Current Standard
smoothness Model 2B hard-pion

flap 0 7678 BeV Fp 0 1106 BeVp X 0

F (Ai —+ px) (BeV) 0.1541 0.1295
0.1623 small 0.1579
0.1696 0.1894

F(Ai ~ xp) (MeV) 0.19 0.31 0.028
a(m+x ) (nb) 2.46 2.46 2.46
0(Ai+x ) (nb) 1.86 2.85 8.41

~p=0.765 BeV, F,=0.1404 BeV, X=O

F (A i —+ per) (BeV) 0.299 0.0764
0.315 0.0467
0.329 0.0229

r(A &) (Mev) 0.28 0.28
(+ ) (nb) 2.55 2.55

0 (A i+~-) (nb) 2.92 6.92

5$p 0 763 BeV Fp 0 1015 BeV, ) =0.84

F (A i ~ pm) (BeV) 0.348 0.634 0.0672
0.352 0.550 0.0811
0.352 0.463 0.0964

F (A y) (MeV) 0.058 0.019 .0.069
~(~+~-) (nb) 0.20 0.20 0.20
0(A1+~ ) (nb) 5.87 11.1 4.40

Mp 0 7666 BeV Fp 0, 1238 BeV X 0

r(A1~ pm) (BeV) 0.209
0.220 small
0.230
0.23 0.31
2.50 2.50
2.28 4.20

0.0573
0.0688
0.0814
0.24
2.55
7.65

0.0958
0.1162
0.1378
0.095
2.50
8.01

r(A &) (Mev)
o(m+m ) (nb)

(A + ) (nb)

reaction (6.7). The latter measurement is feasible at
ADQNK, and will certainly be carried out at DESY.23

The methods and models of this paper can be gen-
eralized to higher-point functions and to a U(3) )& U(3)
current algebra. We shall report on these problems in
a future publication.

23 It is a pleasure to thank T. Walsh for illuminating conversa-
tions on the experimental possibilities.
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