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A field-theoretic model of soft, neutral-meson production is used to bracket recent deep-inelastic electron-

proton scattering data.

I. INTRODUCTION

ECENT experiments' have tended to confirm
Bjorken’s scaling prediction? suggesting that the
structure functions Wy, of inelastic electron-proton
scattering® are dependent upon the combination x=c™!
=¢q?/2mv and appear to yield a very small ratio for the
quantity R=c¢/or. In particular, as « decreases from
the elastic region (x=1), »WW, rises to a maximum at
x~0.2, and thereafter apparently decreases only slightly
down to the minimum measured x~0.025. Various
theoretical explanations*—® have been proposed to obtain
a W, which exhibits scaling and is more or less constant
for very small x. It is the purpose of these remarks to
describe the predictions which follow from a simplified
version of the soft, virtual, neutral vector meson
(SVNVM) field-theoretic model previously applied to
the nucleon electromagnetic form factors and elastic pp
scattering,” and in a qualitative way, to =p elastic and
charge-exchange scattering.®
The ideas underlying this treatment are that (i)
neutral vector mesons (NVM’s) are copiously produced
in the inelastic e-p channels, and (ii) they can be
described by a simple generalization of the ‘“soft-
photon” methods, conserving energy and momentum
exactly in all processes, while approximating the nucleon
emission operators by those applicable to the case of
soft mesons. We do not attempt to compute the emis-
sion probabilities directly, but infer them via unitarity
from the off-shell Compton amplitudes, the latter
calculated by summing over SVNVM exchanges be-
tween the proton legs of the simplest “hard” (i.e.,
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nonsoft) amplitude, as in Fig. 1. It is not yet known if
(1) is true, nor if large numbers of neutral mesons other
than p° or w are produced ; in the context of Refs. 7 and 8
it was useful to deal with vector mesons, and we con-
tinue to do so here, even though there is no compelling
reason why multiple soft-x® production cannot be in-
cluded. Assumption (ii) is a natural approximation in
any eikonal-type calculation where the proton shares in
a very large collision energy, and is not appreciably
deflected by the emission of relatively soft quanta. It
should be noted that the addition of SVNVM exchanges
between the proton legs of the graph of Fig. 1 represents
a generalization of recent eikonal models? in the sense
that all virtual particles are soft except the internal
nucleon, which is very hard, as befits the essential
constituent of a far-off-shell Compton amplitude.

The present calculation was suggested by those of
Refs. 4 and 5, and a comparison with the content of
these papers may be worthwhile. The computation of
Ref. 4 sums the large w dependence of the set of rainbow
(ladder) graphs, each approximated in an infinite mo-
mentum frame by an upper cutoff to the virtual-meson
transverse momentum. The forms which result are very
suggestive of a soft, or eikonal, approach, producing for
small x the behavior yW,~ax®, with ¢ and b constants;
the choice 5~0 then yields a crude description of the
data. The Regge model of Ref. 5 suggests that apart
from an unknown background term, vWe~B(¢?) (m/v)—<,
where o and 3 are ¢=0 trajectory and residue functions,
respectively; in order to obtain dependence on the
variable x only, 8(¢%) must have a similar power be-

T~

F1c. 1. s-channel Born approximation used as the ‘hard”
part of the Compton amplitude.
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F16. 2. Curves of Eq. (14) superimposed on the data [presented by R. Taylor in Proceedings of the 1969 Conference on Electron
and Photon Interactions at High Energies, Daresbury, England (unpublished)], as described in the text. Plots (a) and (b) have been

made assuming R=0; (c) and (d) use R= .

havior, while a roughly constant dependence for small x
can be achieved if a~1.

In contrast, the SVNVM model of this paper does not
require an ad hoc upper cutoff to the virtual momenta,
does not single out an infinite-momentum frame, and
does include properly weighted contributions from all
ladder and crossed graphs. It takes advantage of the
other possibility associated with Regge behavior, pro-
ducing a function with 8~constant, a~1, and an ex-
plicit background term which scales. One finds an ex-
pression for »W, which separates into two distinct
parts: a Regge-like term proportional to (#/v)?, where
p is a small positive parameter, together with a back-
ground term of form

where m is the proton mass and mg denotes the internal
nucleon state, as pictured in Fig. 1. It is the first term
which produces a constant (or more precisely, weakly
dependent upon m/v) limiting behavior as x vanishes,
while for moderate values of w<2»/m, the second term
effectively scales and provides the approach to that
limit. For w>>2y/m we do not obtain scaling, which
property depends crucially upon the sequence in which
the limits »/m-—w and w-—w are taken. Our final

formula, Eq. (14), which owes its simplicity in part to
several technical approximations, is a function of three
parameters which may be partially inferred from the
work of Refs. 7 and 8, and provides a moderately good
fit to the existing data in the deep inelastic region,
Fig. 2. It will be interesting to see, experimentally, if and
how »W; decreases for very small values of #/» and/or
in the deep inelastic region; as indicated in the text,
corrections to (14) are dependent upon possibly differ-
ent masses and coupling constants of the SVNVM
exchanged, and on the resonant structure of the yp
channel. '

II. DERIVATION

The simplest Born approximation to the Compton
amplitude is given by

M, = —(21r)—4/dx e“"x/du AL

Xa(p")s(y —w)ySe(w—u)yud(u—x)u(p), (1)

10 We neglect the graph with a 0 pole in the ¢ channel, since it
vanishes for =0, and omit the crossed graph of Fig. 1, which
cannot contribute to ImT,. Equation (1) and subsequent expres-
sions may be understood to be averaged over nucleon spins.
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where ¢, ¢ and p, p’ represent the initial and final
photon and proton momenta, respectively. The model in
which all possible SVNVM’s are exchanged between
proton legs of these graphs is obtained by replacing the
factors 86(x—u)- - -6(w—1y) of (1) by the combination

) )
exp( —i—A c——)
64, 64,

XGex P (Faw| A1)« - -Gan® (1,2 | A2) ar—som0, (2)
where
) )
— A,
LY

644
> f f A ——
= ————A (21— 32) ———d¥z1d¥22,
=) 54,00 T A, @)

and only the 8,,A, part of the NVM propagator has been
retained. The Ggy denote once-amputated, mass shell,
Bloch-Nordsieck Green’s functions, corresponding to
the propagation of a very heavy nucleon in a fictitious,
external ¢c-number potential 4,(z). These Green’s func-
tions may be given by Eqgs. (9) of Ref. 7,

/dx €?*Gpn ® (u,%| 4)

m.s.

=gipru exp[ig/ dEP#Au(“_EP):I , (3a)
0

/dy e " ¥GpN ) (Fw| 4)

m.s.

=g’ expl:igf dk Pu’Aﬂ(w'*‘P,E):l’ (3b)
0

where m.s. means “mass shell”; and since they are not
more complicated than the exponential of a linear form
in A,, the functional differentiation operation of (2)
may be carried through immediately, with the result

Mu=—0b(g+p—¢' =) / d'z [expT(z) ]

Xﬂ(PI)VuSc(_Z)'YVM(P)ei<p+q)‘z; (4)
where
2

F(z)=—1

ot

eik~z

/ dvk
X .
k2tu2—ie (k- p—ie)(k-p'—ie)

We shall require these quantities in the forward direc-
tion only, with ¢g=¢’, p=p’. The function of (5) has been
discussed in some detail in Ref. 8, where an argument is
made to the effect that, at very high scattering energies,
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the w?%? dependence of F((u/m)z-p,u’?) may be ne-
glected. A similar situation exists here, in the limit of
very large v/m and away from the elastic region: If one
introduces parametric representations for the (u/m)z-p
and u?%? dependence of &, integrates exactly over
J'd*z, and then passes to the limit m/» — 0, for <1,
under the remaining parametric integrals, one finds the
same result that follows by simply neglecting the u?s?
dependence of &. This “restriction to the light cone”
comes about because — (p-+¢)? is very large in the deep
inelastic region, and ¢ is the 4-momentum conjugate
to z. While not introducing any infrared divergence, this
approximation does shrink to zero the gap which must
exist! between the elastic peak and the onset of the
inelastic continuum in the functions Wy,s, and is the
first of two main reasons why the calculation cannot be
trusted in the immediate vicinity of the elastic peak.
The only reason for introducing the approximation of
neglecting the u?* dependence of & at this stage is that
the calculation is then simplified considerably.

The structure functions are themselves defined by
W1,e=(1/7) ImT 1,2, where T'1,2 denote the ¢*>0 con-
tinuation of the Compton amplitudes,

an=5(Q+1§_q’_Pl)Tw ) Tuv=5wT1+ (PMP'/m2)T2

plus terms proportional to g, and/or ¢,. Current con-
servation may be preserved while continuing to space-
like values of ¢* by simply dropping the g, and/or ¢,
terms, replacing 8,, by 8,7 =68,—qug,/¢* and p, by
2.T=p.—q.(q-p)/¢; this is equivalent to adding into
the original form terms proportional to ¢, and/or ¢, so
that the properties .7, =¢,Ts»=0 are maintained. The
function S,(—z) should denote the complete, renor-
malized proton propagator, which we later approximate
in terms of a sum over the proton pole and all (narrow-
width) resonances of the v channel. No structure has
been introduced to represent the proton’s electro-
magnetic vertices, which are of course more complicated
than those of a simple v,. Hence when we calculate the
structure functions there will always be present a ‘“point
charge” contribution incorrectly overestimating the
complete elastic form factors, as well as an overestimate
of the functions in the continuum near x=1. The model
can be extended to correct this imbalance, but it is a
somewhat ticklish matter, which will be deferred to a
separate attempt!?; here, we follow the simplest path of
dropping such purely elastic terms and expecting the
model to be relevant only in the deep inelastic region.
Introducing a convenient representation for

F((u/m)z- p,0)=5((u/m)z-p),
expF((u/m)z- p)

1 oo +o0
= — / d\ expF(\) / da e-iergiowimizp
I/ gV .

11 We are indebted to D. R. Yennie for this remark.
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one obtains the expressions for T :

1
Taslasp)= - / a expF(N) / da e T3, (g8, (6)

™
where 71,2 denotes the “hard” part of each amplitude,
T4 (q,p8) = (v+mé—mr)D(s5,§) 7, (M
Ty (Q;PE) = ZSMD(S‘,E)—l ) (8)

with g=1+4au/m and D(s,§) =mr*+ (¢+£p)2. Equa-
tions (7) and (8) should properly be summed over all
resonance contributions mgr2>m, with appropriate
weighting factors; we return to this point below.

With the aid of the integrals

1 +00 ~+o0
L f N expF() / da e {1; £ D(s,E)"
27!' —0 —0

7

) w
= d%[{l;nR—V/m}

2mPnr Jo
Xexp[ﬂ’()\) —iAr(nR—- L 1):]
m
+{1; —nz—v/m}

Xexp[ﬂ’*@) ~m<m+ z +1)]} . ©)
m

expressions for T2 may be obtained from (6)-(8).
Here, r=m/u and the quantity 9z is given by
m [+ @-+mp? ]2 and enters in the combinations
X =ngtv/m. {The variable Xz ranges be-
tween the deep inelastic limiting value of (v/m)
XL(A+mr/»?)12—17, and the quasi-elastic value of 1,
where the missing mass equals the resonance mass.} In
principle it is necessary to sum over any arbitrarily large
mg in this channel; but if the relative coupling, or
weighting, of such dependence decreases as the reso-
nance mass increases, the terms with mz2> v may give
little contribution. Without any justification other than
simplicity, we here neglect all such dependence, taking
mgr=m inside 7; thus we write Xp®@=X® with
XO~N2/m, XO~gx+m/2v in the large v/m, »*/¢*
limit, and replace the summation over all resonant
states by a multiplicative factor 2, which may be ex-
pected to be of the order of three (by a comparison of
the strength of the experimental elastic and quasi-
elastic peaks), and whose numerical value is later ad-
justed to fit the data. Since T, contains a numerator
factor of mz, one might expect this approximation to be
rather drastic for W,.

The function §(\) may be represented by ImF(\)
=1rpe and the parametric statement

* 2dz
ReF(\) = —p/ cos(z\) ,
o 2241
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where p=g?/4n®. One then finds

v [
vWo= —
/)

X{X O cos[ N1 =X +-3mpe ]
— X cos[AANA+X D) +irpe ]}

d\ exp[ReF(\)]

(10)
and

> )
2mW'1= —
mun Jo

X{(my—mg) cosIrAN1—XO)1rpe ]
— (my~+mg) cosLAA+X D) +drpe]}. (11)

These integrals are not quite trivial. They both contain
the badly overestimated elastic peak contribution, pro-
portional to §(X—1), which can be seen arising from
the oscillations of the X dependence as A\ becomes
very large. We remove these terms by subtracting from
the X dependence of (10) and (11) their values at
p=0:

d\ exp[ReF(\)]

124

yWo— Z/ d\ exp[ReF(\)]
0

T
XX sin(Mr—+3mp e ) sin(rX @)
—cos(\r+3mp e) cos(r X )]

—}———117—2/ AN X O {exp[ReF(N\)]
Tmn Jo

Xcos[v(1=X ) irpe]

—cos[M(1—=X)T}, (12)

with a similar expression for mW; In the limit of
m/v<1, the two terms of (12) exhibit qualitatively
different behavior. If X~ 2y/m, only small values of
that term’s integration variable A can be important, and
itis permissible to make the replacements ReF(A\)~ p In},
singmwp~sin(3rpe~4-Nr), and cosimp~cosGmrper+)\r);
the resulting integral can then be evaluated and yields

sinmp m\?
p r(1+p)<~—> .

T 2y

(13)

The second term of (12), on the other hand, must vanish
linearly as X~ x—+m/2» becomes small. In the small-x
portion of the deep-inelastic limit, this term is of order
m/v, so that the entire contribution to »W, is due to
(13). Experimentally, the rough constancy of the very
deep inelastic measurements requires a small p, and it is
reassuring to observe that treating the SVNVM ex-
changes as p° exchange suggests a value of p< 1/7. The
corresponding contribution due to soft-pion exchange,
with a much larger value of , would not even be seen at
large v/m. If 0.2< $<0.3, a doubling of » will just result
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in a diminution of (13) by a factor ~0.8, a numerical
variation not incompatible with the accuracy of the
present data. For such small p, we will replace (13) by
p(m/2rv)?. Note that it would be wrong (by at least a
factor of 2) to replace this quantity by just p, its leading
term in a perturbation expansion in powers of p, since
the validity of such an expansion would require
p<<[n2rv/m)

Because the parameter p is small, the contribution of
(13) is effectively (at present energies) a constant, and
hence the fact that it does not scale is irrelevant. The
property of scaling is exhibited by the X term of (12),
which is essentially a function of x only for 1>x>m/2v;
this term describes the approach to the deep inelastic
limit. Numerical evaluation of the integral is a rather
delicate affair because great care is necessary in com-
bining the oscillatory factors of the integrand, while
simultaneously performing a numerical integration to
obtain ReF(\). Rather, we have here employed a
perturbation expansion, in powers of p, to carry out the
integrals of the X dependence in closed form. There is
no reason to suspect the perturbation expansion of this
term, and, in fact, the corrections of order p* have been
computed and appear to change the answer below only
slightly. In this way one finds for the entire expression
(12) the approximate form

ngzpz{<ﬁ>p+f<x<->>] ,

2y
J(@)=—3s(1—2)[1/r*+(1—2)*]". (14)

In Fig. 2 we have superimposed on the existing data our
curves of (14) for »/m=35 (the upper curve of each pair)
and for v/m=10 (the lower member of each pair) using
the parameters 7=1.3, p=0.26, £ =4.3 (dashed curves),
and r=1, p=0.2, £=3.5 (solid curves). The first set of
v, p values is what one would expect from a model of
soft p° mesons only, while the second set of v,p values
has been chosen to give a slightly better fit at large w.
In both cases, the accurately known data (plotted as-
suming R=0) is bracketed by the curves of (14), as in
Figs. (2a) and (2b).

It may be noted that, as »/m increases, our expression
for »W, tends to go negative; this tendency is enhanced
for small g, and in the limit u — 0 and/or m/» — 0 (14)
is negative for all w> 1. Since »W» must be positive, the
approximations which have been made in passing to
(14) are at fault. In the elastic region, the replacement
of F((u/m)z,p.u’2) by F((u/m)z,p,0) removes the gap
between x=1 and the onset of the inelastic continuum
[which should occur at x=1—pu(u+2m)/2mv] and does
not, for finite », treat the small-u limit properly. In the
large-w deep-inelastic region, however, the value of u
should be irrelevant, and a calculational procedure
which treats both terms of (12) in the same way should
yield a positive answer. If we suppose, for example, that
# is extremely small, so that a perturbation expansion of

FRIED AND T. K. GAISSER 3

both terms of (12) is permissible, the curly bracket of
(14) will be replaced by the combination f(X©)
+ f(—X), which, for large »/m and in the worst case
of u=0, is positive for all w>2. Further, a more refined
calculation should include the higher-resonance quasi-
elastic peaks, neglected above, which move out of the
deep-inelastic continuum as » increases, and tend to
maintain the positivity of the cross section. In the light
of these remarks it is perhaps fortunate to find that the
curves corresponding to the crude approximations of
(14) do actually resemble and bracket the deep-
inelastic data.

An analogous calculation can be carried through for
le,

mr
2mW y>2pZ {r(rX('*‘))—l—p(l_l_ _>

mn

+(1-ﬁ‘f><x<—>>—1f<x<—>>} , (19)

my
which may then be used to compute
R=(Ws/W1)(1++*/¢)—1.

In the limit m/v» — 0, x70, a comparison of (14) and
(15) yields yWa~2mxW1, or R~¢/+?, the same value
found in Ref. 4, and in agreement with experiment.
However, the derivation here is open to question be-
cause of the tendency for both »W, and mWW; to become
negative for extremely large ». At smaller values of »,
(15) is simply not adequate since, for mr=m, it
produces negative values for mIW, over most of the
inelastic region, and a more accurate evaluation is
required.

III. SUMMARY

Of the various simplifying assumptions employed in
this calculation, probably the most severe is the
overestimate of the elastic region, which is unavoidable
if no attempt is made to use the correct form factors;
this difficulty is closely related to questions of normal-
ization (low-energy theorems) and will be treated sepa-
rately.’* If, in the deep-inelastic region, the tendency
of the data points to drop as x decreases persists, the
model will need further refinement, probably in the
direction of taking the resonance sum into account in a
more accurate way. A good numerical evaluation of the
relatively simple expression (12) would be welcome.
Nevertheless, in spite of the crudeness of the computa-
tion, it is gratifying to be able to employ SVNVM
exchange to produce a model of W which qualitatively
agrees with the deep-inelastic data.
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We determine the fifth-interaction coupling from large-angle high-energy nucleon-nucleon scattering,
and extract the D/F value for baryon matrix elements of a current-current product from hyperon decays.
Assuming symmetric-nonet conserved vector current, we predict the baryon octet D/F value. The result fits
observations to within 30%. The actual baryon masses fix sing =~ 3~ for the eighth-component admixture

in the fifth-interaction current.

INTRODUCTION

EVERAL authors'™ have suggested that at least
part of SU(3) symmetry breaking may be due to
the “fifth interaction” described by the Hamiltonian®

HY(x)=gv*ju" (%) ju¥ (%) , )

juV(x) =C08¢ juo(x)'l‘Sin‘b jus(x) . (2)

Since no external weak probe (such as the photon or a
lepton pair) coupling to 7,V(x) is known, it is quite
difficult to verify the existence of this interaction.
However, a particular feature of the interaction—the
fact that in the nomenclature of the complex J plane
it corresponds to a fixed pole—suggests a possible
approach to its isolation. In the elastic scattering of
particles with which j, couples, the Born term generated

where

* Research sponsored by the U. S. Air Force Office of Scientific
Research, Office of Aerospace Research, under AFOSR Grant
No. EOOAR-68-0010, through the European Office of Aerospace
Research.

1 M. Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin,
New York, 1969), p. 297.

2Y. Ne’eman, Physics 1, 203 (1965).

3 Reference 1, p. 282.

4Y. Ne’eman, Algebraic Theory of Particle Physics (Benjamin,
New York, 1967), pp. 103-105; Phys. Rev. 172, 1818 (1968).

5 Originally a 7,V (¥)B*(x) interaction was suggested. It is very
likely, however, that # 5, the mass of the boson B, is large, so that
we can use the effective local form of Eq. (1). [Some lower
bounds on mp have been established by D. Beder, R. Dashen, and
S. Frautschi, Phys. Rev. 136B, 1777 (1964)]. In principle, a large
but finite mp would be indicated if at very large ¢ an additional
faf.clgor I(:gr)m’/ (t—mp» P would be needed on the right-hand side
of Eq. (3).

by Hy should be dominant for sufficiently large s and ¢.
Here the usual Regge contributions, decaying ex-
ponentially in ¢, are quite negligible. In this region one
expects for p-p scattering

aG s

lim  —(5,)~Gup'(1), (— large> 3)
50—t ]y t
where Gup is the proton’s measured magnetic form
factor.$

The indication that experimental data may approach
the limit of Eq. (3) caused Abarbanel, Drell, and
Gilman’ to suggest that a currentXcurrent interaction
might be responsible. It has been conjectured by one
of us®* that this interaction is identical with the
“fifth interaction” HY of Eq. (1). In this paper we base
ourselves on this hypothesis, as well as on the value of
gv* as determined by Abarbanel et al., and on Suzuki
and Sugawara’s® analysis of nonleptonic decays, to
compute the mass splittings of baryons.

PROCEDURE

The Born term, derived from an effective jXj
Hamiltonian, was written by Abarbanel et al. as
follows:

Tun"=2G* () (p Yy uu(po)i(p1 )y u(ps).

4
¢T. T. Wuand C. N. Yang, Phys. Rev. 137B, 708 (1965).
"H. D. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
177, 2458 (1969). .
8 M. Suzuki, Phys. Rev. Letters 15, 986 (1965); H. Sugawara,
ibid. 15, 870 (1965).



