
of Ref. 8. Obviously the additional restriction of setting
X = j. would make the X' values still larger. In particular
the p+cutsr model would give a Xl value even larger
than 257. Thus the conspiracy n1odel is also shown to be
favored by the data over the weak-cut model of Ref. 8.

In conclusion we 6nd that Veneziano-type residues
do improve the agreement of the cut model consider-
ably. However, the data still favor the p+p' conspiracy
model over the various cut models. We would also like
to point out that integrating numerically we are able
to use any kind of amplitudes. In particular we could
have used a suitable Veneziano formula instead of Eqs.
(1)—(4). However, in the region where we are using these

SRichard C. Arnold and Maurice L. Slackmon, Phys. Rev.
jN, 2082 (1968).

formulas it would make very little difference whether
we used Eqs. (1)—(4) or a full Veneziano amplitude.

Pote added I'I proof. Recently an article' has con-
sidered the same reaction with a different pole-cut model
using a pair of complex-conjugate poles. Although no X'

values are given, the 6ts appear to be as good as the
best fit with the absorptive-cut model. However, Ii
free parameters were needed as opposed to four free
parameters in the present calculations.
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The distribution functions for the "inclusive" production of E specified particles plus anything else are
treated from a J-plane point of view. The variables relevant to the exhibition of the asymptotic behavior of
these distributions are chosen during a group-theoretic discussion of the matrix elements involved. After the
variables are located in this fashion, a crossed-channel partial-wave analysis is.carried out to exploit the
So(1,3) symmetry of the production cross sections, and in the context of this partial-wave structure the
multi-Regge asymptotics are presented. Such features as pionization and limiting fragmentation are treated,
as are certain phenomena involving the approach to limiting distributions, including the rate of approach
and speci6c dependences on certain variables related to longitudinal momenta. Single- and double-particle
production is treated in detail, and then a set of numerical estimates is made for proton-proton collisions with
incident lab momenta of about 200—500 GeV/g to give an indication where many of the phenomenological
results might be tested. A mathematical appendix is provided for those interested in group theory.

I. INTRODUCTION

~ ~HE study of the momentum distribution of se-
lected secondary particles in hadron collisions

characterized by a+& &(1V detected o—bjects)+(any-
thing else) offers the opportunity to probe the detailed
structure of hadronic wave functions and provides the
hadronic model buiwer with a source for determining
various parameters of the model as well as a direct
challenge to the fundamental features of the model itself.
The multiphcity of models is easily as great as that of
ploduccd particles and onc would like to establish at
least a common kinematical framework in which we
might examine the individual candidates.

The first task of the present paper is to analyze the
differential cross sections for the "indusive" produc-
tion' of E particles from a group-theoretical point of

~ Research sponsored by the U. S. Atomic Energy Commission
under Contract No. AT {30-1}-4159.

f Alfred P. Sloan Foundation Research Fellow.' This name was introduced by R. P. Feynman in his lecture
contained in High Energy Colbsions, edited by C. N. Pang et u3.
(Gordon and Breach, New York, 1969), p. 237.

view, in order to identify variables which may prove
useful in the consideration of various dynamical con-
structs. Essentially we take advantage of the observa-
tion that when the undetected particles are summed
ovel IIl the process a+fl ~ 1+2+ +IV+anythlng,
the differential cross section is related to a piece (but
only a piece) of the forward absorptive part of a
(2+%)-to-(2+X) amplitude. The appropriate sym-
metry to be exploited in a group-theoretical analysis is
then that of the little group of the respective null mo-
mentum transfers, namely, 50(1,3), between particles
with the same label.

The variables we choose for parametrizing the various
momenta, and (by construction) the various little-group
elements on which the transition matrix element de-
pends, are not the usual boost in the s direction followed

by a three-dimensional rotation; for, although they
would be adequate, they do not bring out very clearly
many of the interesting features of the secondary dis-
tribution. Instead we use a set of parameters strongly
suggested by gIid intiIDately related to those introduced
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by DeTar and Wilson. ' This choice labels each momen-
tum in the problem by

Pa =R.(p~)B.(8~)B,(PI,)(m1„0,0,0)

=mq(coshPq cosh8q, sinhP~ cosy q, sinhP~ sinpq,

coshPL sinh8q), (2)

a
b

FIG. 1. Pictorial representation of the
amplitude for the collision of hadrons
a+b producing 1V detected particles
plus an undetected X.

' C. DeTar, Phys. Rev. D 3, 128 (1971); K. Wilson, Cornell
Report No. CLNS-131, 1970 (unpublished).' M. Toiler, Nuovo Cimento 3'7, 631 (1965);N. Bali, G. F. Chew,
and A. Pignotti, Phys. Rev. 163, 1572 (1967).

4 Using SO(1,2) symmetry and usual Regge theory, A. Mueller
has discussed the one-particle distribution I Phys. Rev. D 2,
2963 (1970)g.' The review article by D. Amati et al. )Nuovo Cimento 26,
896 (1962)J contains most of the modern ideas on single-particle
spectra and a thorough discussion of multiperipheral models.' J. Benecke et al. , Phys. Rev. 188, 2159 (1969).' Yash Pal and B. Peters, Kgl. Danskc Pidenskab. Selskab,
Mat. -Fys. Medd. 33, No. 15 (1964).

where B„(8) is a boost through 8 along the n axis and
R,(p) is a rotation about the s axis by y. We call 8& the
longitudinal boost angle (following DeTar) and desig-
nate Pq the transverse boost angle. This group-theoreti-
cal decoupling of the longitudinal and transverse
kinematic degrees of freedom is strongly supported by
the apparent dynamic decoupling exhibited by experi-
ments. The usefulness of the parametrization is seen as
we find that much information derives from the relative
position of the particles in a plot of Oq's.

The group theory, having proved a medium in which
a variable selection is easily made, is next exploited to
make a multiple crossed-channel partial-wave analysis
in the spirit of Toiler and Bali, Chew, and Pignotti.
This is done with the approaching complex J-plane
analysis fully in mind and also with a view toward the
relation of the partial-wave amplitudes thus defined to
dynamical equations for their determination.

Next we turn to a discussion of the asymptotic be-
havior of the inclusive differential cross sections within
the framework of Regge-pole phenomenology. 4 Specihc-
ally, we use the rather well-established fact of power
behavior in invariant energies and the relation of the
powers to singularities in the appropriate complex J
planes. The connection of the singularities that appear
here with those in two to two collisions are motivated
by and (hopefully) generalized from the multiperipheral
model. '

%e then look in more detail at the one- and two-
particle distributions and give a discussion of such
limiting phenomena as "fragmentation" ' and "pioniza-
tion" ~ and also of various results encountered on the
way to the limit. A numerical example of proton-proton

collisions at p~,b=200—500 GeU/c is worked out to give
some orientation toward the possibility of experi-
mentally testing the ideas here.

For a certain amount of colnpleteness, and possibly
some general interest, bits of the group theory lurking
behind the partial-wave analysis are contained in the
Appendix.

Readers wishing to skip the discussions of group
theory and to go directly to the results can do so by
beginning with Secs. II A and II C and then proceeding
to the discussion of single-particle distributions in Sec.
IV, leaving out the multiperipheral arguments. Section
V contains the two-particle production phenomenology.
Of possible interest to the experimenter are the numeri-
cal estimates in Sec. VI.

II. KINEMATICAL CONSIDERATIONS

A. Differential Cross Section

Ke concentrate on the differential cross section for
the collision of two hadrons a and b with momenta p
and pb, respectively, which yields n detected hadrons of
momenta pr, p2, . . . , p~ and anything else, which we
refer to as X. Such a process is depicted in Fig. 1. The
matrix element for this production is written in the
usual Lehmann-Symanzik-Zimmermann (LSZ) reduced
form8

"(2 )'b'(P +2 P P. P)——
j=1

(2Er 2E~)"'

X d'y2 d'y~ exp(i P P,"y,) E., E,„

X(X out
~ (Jg(0)$2(y2) pp(yN))+ ~

a, b in), (3)

where

d3p
= II ~(p.,p~,p~, ,p~), (4)

i=1 m'EJM~

A(z, y, s) = (x+y —s) ' —4',
8%e use many of the conventions given by S. D. Drell and

J. D. Bjorken, Relativistic Quantlym Fields (McGraw-Hill,
New York, 1964), Chap. 16.

where E, is the energy of particle j, px is the momentum
of X, E„ is the Klein-Gordon or Dirac or other ap-
propriate invariant wave operator which accompanies
the Geld tb;(y), and J&(0) is the source density for par-
ticle 1:Eg&(y) =J&(y). Spin and isospin wave functions
have been omitted, but can be added as needed.

From this amplitude the differential cross section in
the barycentric frame of a and b is readily deduced to be

5'I'(s m, ' mg')da (a+b &1+2+ —+.Ã/X)



AS YM P TOT I C BE HA V I OR OF PARTI CLE D I STRI B UT I ONS ~ 2229

and the dynamics is contained in

+t (p ~ ~p 4p 4 ~
~ p&)

Pa

)i 0 l Ji gFl ~ Jlg

PN Pb

) l gFNFb J(

d4yl d4y~d'sp d's~
2(16~')~

Xexp( —i Q p; y, ) K„, K»»
Pa Pp

X (2E,2E»)'~~(ab in
~ (J&(y&) ~ ~ P»T(yN))

+(Z,(0) y» (z»))+ ~
ab in)

X(2Ea2E») "2Kra' ' 'Ks~ ~ (6)

5K is a Lorentz covariant whose nature would be ex-
plicit if the spin indices it might carry were indicated.
For the most part we average over all spins in which
instance 5K is a Lorentz invariant depending on 3E inde-
pendent scalars formed out of the N+2 momenta p, p»,

9
p&r t p&.

B. Group-Theoretic Analysis

Fxo. 2. Picture of the
inclusive differential cross sec-
tion for a+b~ 1+2+; +N
+X. This shows it to be a
piece of the absorptive part
of an (N+2)-to-(1V+2) pro-
cess. b

The counting of independent invariants is easy from Fig. 1.
It is a connected (N+3)-point function with the mass of X not
specified. Thus we find 3($+3)—10+1=3N variables.' The technique of crossed-channel partial-wave analysis is
reviewed by J. Boyce et al. , Trieste Report No. IC/67/9, 1967
(unpublished), and is exploited in a multi-Regge context by
A. Mueller and I. Muzinich, Ann. Phys. (N. Y.) 5'7, 20 (1970);
5'7, 500 (1970); and by M. Ciafaloni, C. Detar, and M. N.
Misheloft, Phys. Rev. 188, 2522 (1969).

The differential cross section consists of one piece of
the absorptive part of the (N+2)-to-(N+2) forward
scattering amplitude as indicated in Fig. 2. (This piece
is reminiscent of the so-called s graphs much studied in
current-algebra contexts. ) Although it is only a piece of
the forward absorptive amplitude, it is useful to con-
tinue the kinematical discussion as one would for the
whole amplitude. We thus exhibit in Fig. 3 the kind of
kinematic tree graph which is valuable in the group-
theoretical analysis to follow.

Between each line labeled by momentum p, is a
wiggly line "carrying" null momentum transfer. This
kind of momentum transfer encountered in a 2-to-2
amplitude is the usual signal for a crossed-channel
partial-wave analysis based on the little group for null
momentum, namely, SO(1,3)."In the two-particle case
we consider the scattering amplitude as a function of
the elements of the little-group transformation which
takes us from one of the vectors involved in the scatter-
ing to the other.

so

and

U„=B.(8~)

Ua=~*(—8a)

p =m(cosh8~, 0,0,sinh8„)

q =p(cosh8„0, 0,—sinh8, ),

(10)

with the constraint

m sinhe„= p, sinh0q.

The little-group element U, 'U~ is simply B,(8„+8,),
and the function on the little group a(U, 'U„) is a
function of 8=8„+Hq only.

We expect a(8) to grow as 8 increases since the invari-
ant energy s=(p+q)' is given by

s =m'+p'+2m' cosh(8~+8, )
=m'+»»'+2m' cosh8, (13)

FrG. 3. Tree graph for the kinematics and group-theoretical
discussion of the inclusive production a+9 ~ 1+- ~ ~ +N+X.
The lines are ordered by their longitudinal boost angles in the
barycentric system of a and b with increasing values to the right:
81&82& ~ ~ 8~. Also shown are the SO(1,3) group transformations
which take one from rest frame F;+I to rest frame F;.

As a preparation for the development to come, we

recall the treatment of the 2-to-2 absorptive amplitude.
We have in mind the process where a particle with mo-
mentum q and mass p scatters forward on an object of
momentum p and mass m. If we consider each of the
momenta to be reached by Lorene transformations U„
or U, from some standard vectors p, or q„

p= U„p, and q= U,q„
then by using the I.orentz invariance of A(p, q), we can
write

A(p, q) =A(U„p. , U,q,) =A(U, 'U p„q,)
=a(Ua 'Un) (g)

That is, one can consider it as a function of the SO(1,3)
element U, 'U„. Generally one has to be careful to pick
sets of standard vectors and appropriate U, 's and U„'s
so that Uq U„or its analog is in a nice form, but since
the full Lorentz group is involved here one may choose
both p, and q, to be the rest vectors (m, 0,0,0) and

(p 000)
It is convenient to carry out the remainder of the

analysis in the barycentric system, where we imagine p
travels along the positive s axis at a velocity tanh8„
and q travels along the negative s axis with tanh8q.
The Lorentz transformations are then
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and power behaviors like s, n&0, are commonplace.
This means that one may not perform the usual partial-
wave analysis" and expand a(e) in harmonic functions
on SO(1,3), since that certainly requires n negative.
Therefore the expansion is carried out by making a
Laplace transform using the second kind of functions on
the Lorentz group. ""The lowest Laplace harmonic on
the Lorentz group is

—2e—&c+'&'/(n+1) sinh8—= eppp""(8), (14)

where n is the Casimir invariant of SO(1,3) that directly
corresponds to what we ordinarily call angular momen-
tum. The extra indices are explained shortly. The par-
tial-wave amplitude is then defined as

frame, picking up variables as we go along. The end of
the excursion on each occasion is the rest frame F„
which also happens to be the laboratory frame. To take

p to F, is trivial. To take piF' to its value in F, we

note

p c.m. —pipiFI '—
U p Fa (20)

since U, takes F to the c.m. system. Thus we write

p Fa (P —1P)p'F 1 —
g

PaF 1p
F1 (2 1)

defining the transformation g~ ~' which takes us across
the leftmost wiggly line in Fig. 3. Next we bring the
momentum of particle 2 into F, in two steps by visiting
F~ as an intermediate stop. We note

dg(sinhe)'eppp'"(0) a(8), (15)
p c.m. —P' p Fc —P p Fa

gFaF1p Fl —UgFaFIgF'1Fcp Fc (22)
so that

and the absorptive part is regained for 0&0, the physical
region, by integrating a„with the ordinary lowest har-
monic on the principal series of SO(1,3)"

U -1U g Fa&ig +1I"I

and using the result (21),

g+1F2 —U —1 U

(23)

(24)
sinh(n+1) 8

(n+1) sinhe
=dpcp "(0) ~ (16)

The integration is along a path to the right of any singu-
larities in a„ in the n plane, so if a(0) -+ e ' for large 0

(i.e., s ), choose Rec) Ren and one finds

dt's

L (I+1) ]dppp (8)a„.
2~i

The problem in the X-particle inclusive production is
to locate the appropriate transformations correspond-
ing to U, 'U„ in the case just treated. To do this, we
proceed along the lines indicated by Bali et al. ' and
attach to each particle a standard frame where it is at
rest. For particle a, ca11 this frame F; for particle 1,
Fj, etc., until one reaches particle b. In frame F,. we
denote any momentum by a superscript F; ~ Thus, for
example,

p, Fi=(m, ,0,0,0), j=a, 1, . . . , E, b. (18)

Also we denote the Lorentz transformation which
brings the momentum p; from its rest frame F, to the
barycentric (or c.m. ) frame of a and fi by U,.

p.c.m. —P.pFy.
We describe the inclusive production cross section as

a Lorentz-transformation tour from rest frame to rest

"The functions of the second kind are discussed in M. Toiler
and A. Sciarrino, ]. Math. Phys. 8, 1252 (1967), in Ref. 10,
and by N. W. MacFayden, Carnegie-Mellon report, 1969 (un-
published)."The Laplace transforms of power growth functions in $0(1,3)
are discussed by S. Nussinov and J. Rosner, J. Math. Phys. '7,
1670 (1966), and H. D. I. Abarbanel and L. M. Saunders, Phys.
Rev. D 2, 711 (1970). Both groups use them to make partial-
wave analyses of Bethe-Salpeter equations for the absorptive
amplitudes.

By a series of such journeys, we make our way from
any rest frame F,+& to F; and eventually to the lab
frame F,. One quickly discovers that the transforma-
tion which takes us from F;+j to F, is

gF;F;y1 U,—1U.2+ (25)

These Lorentz transformations g are the little-group
elements on which our function 5R depends. The num-
ber of variables involved in the 1V+1 steps from fi left-
wards to a can be counted as follows: In the c.m. system,
choose the momenta of u and b to lie along the s axis.
Specifying the magnitude of the relative momentum
requires one boost in the s direction. V, and Ug thus
depend on one variable. Particle 1 usually needs three
variables to label its on-shell four-momentum but we
define the x-s plane in the c.m. system via it, so two
suffice for U&. Our coordinate system being fully
specified, we need three more variables for each of the
transformations V2, U3, . . . , U~, bringing us up to our
full complement of 3X.

To complete the account, we take away from our 5R,
Eq. (6), the spinors which carry the usual helicity in-
formation and arrive at the c.m. 3f function

~ ~ -' . (p: pi™, p~™,pp™). (26)

The spin labels s; designate the finite-dimensional repre-
sentation of the Lorentz group according to which the
fields p, (x) were chosen to transform. The c.m. 3/I func-
tion is recovered from its value in F, to which all our
transformations g carry us, by its Lorentz covariance
properties

&"-'c(p.™,,p p™)
D"'."I U-jD ' "LU.j "D;"'LU.j

8gI' SQ

~flf:-"(p'" pi', .,p p') (2&)
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The D,, ., 't U,] are finite-dimensional representation
matrices of the I orentz group. Finally we define a func-
tion on the various little-group transformations g fol-
lowing Ref. 3:

J (gE~» g&i&a g&X&b)

D.„,'[Ui 'U,]
XDsbs2' [U2 Ua] ' 'Dsbsb' [~ b Uc]

XM...i "'b Lp~ ',pi", ,pb '], (28)

The convenience of these variables for discussing s;j is
immediate:

s;; =m,'+m/+2m, m, (coshP, coshP, cosh(8, —8,)
—sinhP, sinhP, cos(y; —&p,)) . (34)

In physical scatterings most events have small trans-
verse boost angles, while the longitudinal momentum

m; cosh/, sinh8, can become quite large.
The order of the particles in the tree graph of Fig. 3

can now be given some meaning. In the c.m. frame we
choose particle a to move along the negative s axis with
velocity tanh8„so

where the definition is motivated by noting that the
product of transformations from Ii I, to F, is p, =m (cosh8„0, 0, —sinh8, ), ' (35)

g&N&1g&1&2. . .g&Ie—1&k= U —1Ua

and thus its longitudinal boost angle is —8,. We choose
b to move along the positive z axis with 8b,

It is this function on the little-group elements which we
consider in detail for the multi-crossed-channel partial-
wave analysis to come.

Pb ——mb(cosh8b, 0,0,sinh8b),

m, sinh0 =my sinho~.

(3tb)

(37)

C. Parametxization of Momenta

One conventionally labels timelike four-momenta by
a boost in the z direction B,(g,) followed by a three-
dimensional rotation R, (n, )R„(tP,) to orient the nio-
mentum. The resulting four-vector

Qj=5$j(cosh'&si hngj cosQj sinlPj~

sinhg; sinn; sintP;, sinhg; costP;) (30)

is, of course, a fine representation. What we are con-
cerned with, however, are particles whose s-boost angles
are quite far apart, since it is this distance which is
a measure of the invariant energy between them. The
other variables are connected to the transverse mo-
Inentum and never are required, experimentally at
least, to be large. For two vectors Q, and Q, labeled as
in (30), the invariant energy

s,,= (Q;+Q;) ' =m;2+m/+2m, m;

X(coshrl; cosh'; —sinhg; sinhg; cosO~;;), (31)

with 0+;j the angle between the three vectors, does not
bring out directly the difference p;—gj. This fact makes
it awkward, though certainly possible to discuss s;j that
are large in terms of the g's.

What we suggest here is a small step from DeTar
and Wilson. ' Instead of using a three-dimensional rota-
tion to specify transverse momenta, we use a boost in
the transverse direction, in particular, 8,.

We therefore give our vectors p; in any coordinate
system by an x boost through the transverse boost angle

P, followed by a z boost through the longitudinal boost
angle Oj and orientation by a s rotation by pj.'

The 8j of the produced particles are constrained to lie
essentially between —8 and 8&. To see this, we examine
the momentum conservation restriction

m, e '+mbebb =Q m; coshP, e'~'+Px, +P», (39)

and
N

m, e'+mbe bb=g m, c soPh, be"+Pxo —Pxb (40)

For large incident energy s,

s=m '+mb'+2m mb cosh(8, +8b),

any individual 0; is bounded by

—8,+ln(m;/m, ) (8,(8b+in(mb/m, ) . (42)

We therefore order' the particles in Fig. 3 by their 8
values and choose increasing 0 to the right 8~&82.&
&6

Now the little group elements g~&~~+', on which the
function 5R depends, can be written

gx "=U. 'Ui=R. (vi)&*(8i+8.)&*(Pi),

g ~ i+'=U 'U+i 8( P)8 (8+i———8.)—
(43)

XR,(v,+i—y~)&*(%+i), (44)

'U =B ( P)8,(8b 8)R,( —~~). (45—)

Each s boost conveniently appears with a positive
argument.

pa+pi =pi+p2+ ' '+pN+px y

by looking at the 0&3 components in the c.m. system:

pi=R*(v»)&.(8i)&.(Pi)(~~ 0 0 0) = U~pi" III. PARTIAL-WAVE ANALYSIS
=m, (cosh8; coshP, , sinhP; cosy;, sinhP, sing, , We have already indicated how one treats the 2-to-2

sinh8, coshI8;). (33) absorptive part with power growth in doing a crossed-
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channel partial-wave expansion. For the (Ã+2)-
particle case, technical complications arise because in-
termediate particles along the chain cannot always be
oriented along the s axis as we could do in Eq. (11).
This brings to our attention what I call "phases";
namely, the subgroup representation matrices required
to describe the &p;, P; orientation of each p;. (In the case
of the ordinary helicity expansion these really are
phases. ) In making the partial-wave analysis, we are
interested in locating those generahzed angular momen-
tum variables which are conjugate to the 0, 's and look-
ing for Regge poles in their complex planes.

I et us label the two Casimir invariants of the
I orentz group by jo and e, '3 where in any representa-
tion jo is the minimum O(3) angular momentum and in
a 6nite-dimensional representation e is the maximum
O(3) angular momentum. In Naimark's notation,
n=c —i and j()——ko, in Toiler's notation, ' jo——3f and
e =X—I. It is by now wc11 known that n is the appropri-
ate object for considering a complex "angular mo-
mentum, "and poles in the e plane are expected to occur
Rt thc posltlons of thc obscI'vcd powcI's of s ln foI'wRrd
2-to-2 scattering. The components of a vector in any
(jo,e) representation can be given by the values of eI,
the eigenvalue of J„and by diagonalizing the O(3)
angular momentum J,'+J„'+J„'or its O(1,2) counter-
part E '+E„'—J,', where E;is the generator of a boost
along the i axis. Since we are interested in the phases
associated wltll R,(y) RIld B (p), wc clloosc 'tile 1Rttel.
Thus the labels s, on the 3I function (26) are imagined
to correspond to (i) a resultant m; for the p; coming into
and leaving the appropriate position on the tree of Fig.
3 and (ii) a resultant eigenvalue l; for the O(1,2)
"angular momentum" in a Qnite-dimensional space
spanned by the product incoming and outgoing wave
func tloIlS.

A 6nal point ls IIlRdc bcfolc wI'ltlng down thc pRl tlal-
wRvc expRIlsloll fol tlIC little-gloup function (28):
Since the experimental behavior in the P; is rapidly de-
creasing for large P;, a fairly ordinary treatment of the
O(1,2) phases is in order. "However, to handle growth
in 8;+I—g; we need the generalizations of the functions
of the second kind appearing in Eq. (14). These are
treated. in the Appendix and also in the work reported
in Refs. 10 and I1.Ke expect, then, to meet the phases
e'm" associated with E,(oIo}, the transverse boost
"phases" Il '(p) associated with B,(p) and the second-
kind functions on the Lorentz group eI I ""(8) associ-

'8 M. A. Naimark, Jinear Representation, " of the Lorene GrouP
(Pergamon, New York, 1954).

'4 A certain amount of algebra is involved in the explicit con-
struction which backs up these statements. It is found in a
forthcoming paper on the diagonalization of forward-absorptive-
part equations by I. M. Saunders and me. I only hope at this
point that the reader is assured that it can be done.

"V. Bargmann, Ann. Math. 48, 568 (1947); M. Andrews and
J. Gunson, J. Math. Phys. 5, 1391 (1964).An extensive and lucid
treatment is given by N. Ja. Vilenkin, in Special Functions and
the Theory of Grolp Representations (American Mathematical.
Society, Providence, R. I., 1968), Vol. 22, Chap. VI.

ated with B„(8).The partial-wave amplitude is defIned
bv pro]ection wltll thc coo s Rs 111 Eq. (15), RIld tile
amplitude is recovered for positive 8 by integration with
the fIrst-kind representation functions dI I &'"(8).

To be precise, we define for a function fI, I (B,(8))
the partial amplitude

fI Poo&

(sinh8)'d8eI„! ""(8)fI, I (B.(8)), (46)

and. then recover the function for 8&0 as

8- fI-, I - (B.(8))

—Ljo' —(e+1)'jIlI I o'o"(8)fI I
oo"

c—toe

go(} 2Xf

ds
.Ljo' —(e.+1)'j

CQ—'Coo

XLjoo' —(co+1)'] dp(l, eI) dp(l', m')

Xd, , ' - (8,+8.)d ...'(P,)

I journo, joOnO, lm, I'm'd, I'( P )XJ 4, 71'PQI, EQ

xdI oI,'oo"'(8o 8I), (49)—

where Rec lies to the right of any singularities of P'o" in
the n plane. To discover where such singularities are, it
is useful to note that for large 6 "

eI I ""(8)—+ exp( —8(e+2+ ~m —jo)], (48)

so that when f(B,(8)) is bounded by e ~, f&'" is analytic
in thee plane to the right of Rea —~m —jo .The asymp-
totic behavior of dI I.o'o"(8) is ~exp8(e —oe+jo~).

To expand the little-group function (28), we proceed.
step by step down the chain of Fig. 3, picking up phases
associated with spin labels and orientations of each
momentum and e&0" functions associated with longi-
tudinal boosts from rest kame to rest frame. The
formulas are, to say the least, rather long and usually
not tenibly instructive, so we write only those for %=0
(2-to-2 absorptive part) and X=1 (single-particle pro-
duction). For E=O the formula is identical to (46) with
the identifIcations 8=8,+8o and l=l„eI=m, and

m =mg. Thc lcstllctlon thRt m„=my ls just,
hejicity conservation in the forward scattering. If all
particles are spinless or a spin-averaged amplitude is
involved, /=m=l'=m'=0 and jo——0. The expansion for
8&0 is then exactly that given in Eqs. (14)—(17). For
E= j we have one intermediate partic1C and desire the
expansion of fI, „I, , I, ,(g~ ~',g~'~o), which is (setting
yI =0, RS We IIIRy)

fI.-., I,-, , I...(B.(8.+8.)B.(PI),B.( PI)B*(8o 8I))— —



ASYMPTOTIC BEHAVIOR OF PARTI CLE D ISTRI BUTIONS ~

where the integral da(l, m) is over the principal and dis-
crete series of 0(1,2), as described in Vilenkin, Ib and the
c„c~ lie to the right of all singularities in the n„n~
plane.

It is apparent how there is a notational explosion for
%=2, . . . . Fortunately, as we shall see in the next
sections, essentially all of the J-plane physics can be
extracted without writing the whole partial-wave ex-
pansion each time. To complete this section, we write
for completeness the de6nition of the partial amplitude
lll (49):

dl I(slnhfl) df 2(slnhf 2) Slnhlpldlpi

X»nhrp2d&2d . '(Ipl)*d ~,'(Ip.)

l IÃa~~~(t I)el' I
rob~~ b($2)

Xf,. .., , ...(~.(f )~.(e),Il.(~)~.(f.)). (5o)

Certain simplifications occur when everything is spin-
less; for example, helicity conservation at the central
vertex requires m =vs'.

IV. SINGLE-PARTICLE DISTRIBUTIOÃS
AND REGGE BEHAVIOR

At this point we consider the asymptotic behavior of
5R for large s or 8. The form of the partial-wave expan-
sion in (49) has been constructed to suggest that when
8 ~s large 8+8~ or 0—8~, or both of them, also become
large; then one might imagine that in the n and n~
planes one would encounter certain Regge poles which
would in the usual manner govern the leading asymp-
totic behavior of 5R. It is important, however, to pause

- a moment and ask what basis such an n-plane hypothesis
has. Since it is clear from the construction of BR as
depicted in Fig. 2 that 5K is not the absorptive part of
a 3-to-3 amplitude but only a part of one, it is not
enough to conjecture a Regge behavior for 5E on the
basis of such behavior for the whole 3-to-3 absorptive
part "

Lacking a general reason for the correctness of Regge
behavior, I am forced to turn to the multiperipheral
model since it is the strong point in the theoretical
arguments for Regge asymptotics in 2-to-2 reactions.
In that model, as formulated by Amati et gL, ' there are
three contributions to 5R: one in which the produced
particle comes from the end near u, one in which it comes
from the middle of the chain, and one from the end near
b. If we consider single particles of mass m~ being pro-
duced from the sides of the multiperipheral chain of
mass p with a strength g, then the BR of (52) is given by

162r2 5K(8+81, 8 —81, pl)

g2 5"2(s,m2, m2)ob. r(a+6)

Having completed a long preliminary discussion, we
turn to physics. In order to simplify the discussion and
bring out the ideas involved in, especially, the imposi-
tion of Regge behavior, we discuss the inclusive produc-
tion of a single spinless particle when spinless hadrons
collide. The differential cross section is given by (4) as

d2o(a+b b 1+X)

d8ld(coSllpl )

M(81+8m, 8b 81, pi), (—51)
2m, me sinh(8, +8e)

where we have noted that Iran', cannot depend on the
azimuth of pg and that

r (s,mI2, 2,mb )=22m me sinh(8, +8e),

with s given by (41). When m =me m, as it i——s con-
venient to choose for purposes of discussion, 0 =8~=8
and we write (51) as

d2o(a+b b 1+X)
d8id(coshPI')

3R(8+81, 8—81,Pl) . (52)
2m' sinh20

d'q A(P., —q) 8'(q+Pb —Pl)
(u' —q')'

+ d'q b'(P. Pl q) —-A—(q,Pe)
(a2 q2) 2

+ d qld q2A(p~, —ql) —6 (ql —pl —q2)
(~2 q 2)2

X A(q2, pb), (53)
(a2 q 2)2

which is illustrated term by term in Fig. 4. The quantity
A(p, k) is the 2-to-2 absorptive part —off shell —for the
collision p+b —+ p+b. It satisfies a multiperipheral
equation of the standard ladder variety and is related
to the total cross section via

A(p, k) =a»2((p+b)2 p'b')rr«.

Concentrate for a moment on the last term of (53),
which is the contribution from Fig. 4(c). If we do the
integration in frame Pj and parametrize the qq and q2
Intermediate Intcglatlolls bv the usual Uo, =Eg(lpr)

"Mueller (Ref. 4) also treats this point in some detail but
does not'make explicit reference to the multiperipheral model.
His Eq. (5.2) is the type of structure such models immediately
yield but could be more general.
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FIG. 4. Contributions to single-particle production
multiperipheral model of Amati et a/. , Ref. 5. (a} and
fragmentation pictures while (c} gives pionization.

in the
(b} are

which enters (51). Suppose first that gi is close to —8„
which physically means that the produced particle is
running along the negative s axis in the c.m. system
and is, in some loose sense, associated with particle a.
The invariant energy (P,+Pi)' does not then become
large as s (or equivalently 0,+go) increases. However,
Ob —0~ becomes large and a single asymptotic expansion
is appropriate with the behavior governed by singulari-
ties in nb. As is clear either from the multiperipheral
arguments [see Fig. 4(b)7 or the tree-graph picture of
Fig. 3, the leading singularity can always be the vacuum
trajectory (or the Pomeranchukon) with no=np 1
and the next leading singularity will lie as usual at
no n——.p= —'o Th.us, if we hold Pi fixed and 0,+gi fixed
and "small" and let Ob —0~ become large, our function
5R behaves as'~

XB,(»&)B (r;) operating on a standard. vector, we can
write for each of the A(p, &7)'s in (53) a partial-wave
representation as above:

A(P., —vi)

dn—[—(&i.+1)'7 d&i(1,0)doo&o""(8 +gi)
ca—soo 2' Z

XP&(coshpi)d&oo'"'(»i)&&"'(p ',&fi') (54)

and a similar expression for A(&7„p,).
We now can write the expression for 5R in terms of

BlZ&F"'"'=foo«, oo'"I '"'
,
""coming from Eq. (49) and

read off the partial amplitude arising via Fig. 4(c):

(P gl )dioo (&&1)

JcC)) &a~Q — de de
(&&&'-gi')

On(8, +gi, go —gi, &gi) ~ e P &so '»R p(8,+gi, Pi)
+eaP &oo-h&Rp, (0 +gi P ) (56)

where the residues at the poles in the nb plane have been
combined with the various l integrals appearing in Eq.
(49) to yield functions of the fixed variables 8,+8i and
Pi which refer to the Regge pole encountered. Before
we proceed, we should point out the logical possibility
that, say, Rp(8, +gi, Pi) vanishes and that Rp really
governs the leading behavior of 5R. This is unlikely and
does not happen in any known multiperipheral model
but we certainly have no general argument forbidding
it. Therefore, if we assume EI and EI are nonzero, we
can extract from (56) the leading asymptotic behavior
of d'o (n+b -+ 1+X)/dgid(coshP&o) and the approach to
that behavior.

Large s means that both 0 and Ob are large and the
c.m. constraint (37) requires

doo& "'(»o)&i "(Vo ~Po )
Xb'(qi —Pi —qo) . (55)

(&
'—Vo')

in the limit, so
m, e'a =mbe'b (57)

The Regge singularities appearing in n, and nb which
govern the asymptotic behavior of the forward two-
body absorptive part now make their role in determining
5R quite explicit, namely, 3R has its large 0 +0& or
8b —0& dependence also determined by the two-body
singularities in the n and nb planes.

It may well be that the identiication of pole or cut
positions in n, and nb with the familiar trajectories
(at / =0) of two-body scattering goes beyond the multi-
peripheral argument given here. In any case we accept
as a working hypothesis that whenever longitudinal
boost angles are large, Regge asymptotic behavior with
the usual singularity structure sets in. Some of the con-
sequences of this idea have been given by Mueller'
and DeTar, ' and we repeat them while pointing out
others.

We turn our attention, then, back to the

on(g ~
g ) =on(0.+g„e,—e„p,)

6'&'(s m ' mo') =mo'e"'=m 'e". (58)

From (51) we have in the large-energy limit 8,+gi, Pi
. 6xed,

d'o(a+b~ 1+X) (m )npe"~& p '&

&m.)dgid (coshPio) ma 2

Xe p&'-+"&Rp(0, +gi,p,)

pm q.p e"&" -'&

+I —I

""""'R (0+0 8).
«mo) ma 2

For o.~=1, namely, di8raction scattering, and 0,~ =-,',
we write (59) as a function of s, 0,+8i, and Pi by ab-

"Since the asymptotic behavior of d&~p&0"(8) is e8&" ~ +~0~&,

the leading behavior comes when w and jo are set equal to zero.
The first correction to this is one whole power of s and does not
interfere with the argument of taking the correction to the
Pomeranchukon to be the P' since the latter is only down by one-
half power of s.



AS YM PTOTI C BE HA V I OR OF PARTI /LE D I STRI 8 UTIONS . 2235

sorbing a few constants:

d'a((b+b~ 1+X)~fp(8.+81,Pi)
dgid(coshP12)

+s "'jp (g.+81,P)). (60)

In the limit as s —+oo, 8,+81, Pi fixed, we see that the
differential cross section becomes some unknown func-
tion, in general assumed to be nonzero, of the fixed
variables. This limit is approached as s 'l" in traditional
Regge fashion. The existence of such a limit was
hypothesized by Benecke et ul. ' and Feynman' and
has been discussed more or less in the above manner by
DeTar~ and Mueller. 4 By noting that the longitudinal
momentum of Pi is 8821 coshP1 sinhg and gs 888 e', one
easily sees that 8,+81 is related to ln(p), „,/Qs) and
the transverse momentum

~
P«b„b ~

= sinhP1, so that
the limiting distribution can be regarded as a function
of Feynman's 2:=2p),a2/gs and pi. At this stage of the
argument, there is no apparent reason why the limiting
function should factor into fi(pi) f (x), as is occasionally
supposed, "but it could happen. "The limiting behavior
when 8j =eb and the produced particle runs along with
the "fragment" from particle b is so similar to the case
just discussed that I leave it to the reader to switch the
a's and b's.

Instead we turn to the more interesting alternative
where, as s —boo, 81 and Pi are held fixed and 8 +81
and 0~—0~ both become large. This is a double Regge
limit and singularities in both the n and ny planes come
into play. If we call the contribution to 5R of the residue
in n at n, and nq at nq, 8 .„the leading contributions
to the double asymptotic limit described are

~(g +gi gb gi Pi) ~ OaP(Ha+81)cap(Hb —81)gpp(P()
+Oap(Ha+81)+ap (Hb 81)gpp, (p-i)

+cap'(Ha+8»+ap(8b —8»RP p(pi) . (61)

With this form for 5R, the differential cross section be-
haves as

d'o ((8+6 +1+X)—~ O(aP 1) (Ha+8 b)fpp(P1-)
dgi(f(coshP1 )

+O (ap—1)
8 aO

(aP —1)8be (a P aP ')8bfPp, (pi)—
+o(ap —1)Hao(ap —1)Hbo—(ap-ap )8&fp, p(pi) (62)

Again, if (Hp 1and fpp(——P1) are nonzero, a limiting dis-
tribution is approached, although the rate of approach is
only as s&(:~~+~p'~ '=s '~', which is slower than the ap-
proach to the fragmentation limit. In the limit the
leading term is a function of Pi, or the transverse mo-

' .N. F. Bali et al. , Phys. Rev. Letters 25, 557 (1970).
'9 Actually, on the basis of their experiments with 19.2-GeV/c

protons, J. V. Allaby et al. )CERN Report No. 70-12 (unpub-
lished) g argue that factorization of this type indeed does not occur.
Since these energies are likely to be considered pretty low when
the National Accelerator Laboratory begins operating, one
should probably reserve judgment on this matter.

-(f2o(p+ p —b 28++X)
Si/4

dgid(coshP1 )

(f2o(P+P ~2r +X)
dgid(coshP1')

-b g(Pi) cosh28i, (64)

with an unknown g(P1).
This really completes the discussion of single-particle

distributions in Regge theory, although there may be
many interesting phenomena, especially with spinning
particles, which have not been treated. Before we con-
tinue into two-particle production, however, we note in
general that within a Regge framework alone nothing
can be said about the very interesting functions of
transverse boost angle which appear in, say, (64). These
objects thus play a role similar to the usual residues of
Regge poles which have an unknown functional de-
pendence on invariant momentum transfers or external
masses. Having determined the longitudinal dynamics
from J-plane ideas, we are still lef t to cope with the very
interesting transverse dynamics.

V. TWO-PARTICLE INCLUSIVE PRODUCTION

The two-particle inclusive differential cross section is
a function of six variables which our group-theoretic
analysis tells us to choose as 8,+81, 82 —81, gb —82, Pi, P2,
and cp2. As defined in Eq. (4), we then have for
do(a+b —b 1+2+X)

dbo((b+f) —b 1+2+X)
d y2dgid82d(coshP1 )d(coshP2 )

BR(ga+81) 82 81) gb 821 ply p21 (8'2)

(65)
42rHN 88bb sinh(8, +gb)

'0 This particular result, and some of the ideas before it, have
been presented in a short version of the present paper in Phys.
Letters (to be published}.

mentum, only. This is called the pionization limit by
DeTar' and Mueller4 who also discuss it.

An amusing feature of (62) is that on the way to the
limit, which itself is predicted to be independent of s and
8~, both the s and 8~ dependence are precisely specified.
In particular, suppose (8 and b are the same (as in pp
collisions); then fpp. =fp'p since both trajectories
carry isospin zero and the behavior of (62) is

d'o((i+a —b 1+X)
(p)+ "'g(p) o hlg, (63)

dgid(coshP1 )
—1since o.'g —Ag

An immediate application of this observation is that
in the production of different members of an isomulti-
plet (let us imagine p+p —b Hr++X for concreteness),
the difference between the two distributions vanishes as
s —+oogi, Pi fixed, since the leading I=1 trajectory is
below the leading I=0 trajectory. Since (2(0) =-', for the

p trajectory, one is led to expect"
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There are five diRerent regions that are of interest in
an asymptotic analysis. We treat the pionization-
fragmentation limit first. In this limit, 0~+0, is finite
while 82, Pi, P2, and y& are held fixed as 8, and Hi, be-
come large. This is the case in which particle 1 runs
along with the fragment of a while particle 2 has a small
velocity in the c.m. system. In this limit, 0b —0„. and
02—0~ become large and we have a double Regge expan-
sion. The leading two terms of this expansion are of the
form

d'0 (a+b +1+—2+X)

dy2dgidgid(coshPi )d(coshPg )

~g(~) i) 0)a+&i)fp(Hi+8 Pi P2 &p2)

+~ "'e' """f»(Hi+8. , pi, p2, v 2)

+s "'e '-~ .~"If~ ~(Hi+8. , pi, p, , q,). (66)

In this formula the f ~ are related to the residues of the
Pomeranchukon and P' poles in the complex n planes
conjugate to 02 —0& and 0b —0&, respectively. The ap-
proach to this limit is also rather slow. The f in gen-
eral is expected to depend on all the indicated variables;
however, the leading behavior arises from the expansion
of disci ""(82—gi) which has m=0 as noted in Ref. 17.
Therefore, the e' &' accompanying this O(1,3) function
is 1 in the coefficient of the leading term and no p2 de-
pendence will occur. The dependence of f then also
factors as

f..(Hi+8.& Pi, P2p p2) =g (81+Haa Pl)))ia'(Pi) ~ (67)

We come back to this factorization shortly.
In the second limit, the double fragmentation limit,

Pi, P&, and pi are fixed and one considers both Hi+8,
and 0b —02 finite while 0j—02=0 +0b becomes large.
Particle 1 is going with the fragment of a and particle 2
with the fragment of b. This is a single Regge limit
whose leading contributions to do- are

fI(Hi+8„gi,—Hq, Pi, Pi, yi)e& ~ ')i~+~»

+fr (Hi+8. , Hi —H., Pi, Pi v~)&'"' ""+"' (6g)

The approach to this limit is as s '~' in normal single
Regge fashion.

Again because of the requirement for the leading be-
havior to have m=0 in the magnetic quantum number
sum involving e' &', one can expect that f in (68) will
be independent of p& and factor into f(Hi+8„Pi)
Xg(g~-gi, P,)."

The third limit we consider here is a double pioniza-
tion limit where Pi, P&, and pi are held fixed, as is
02 —0~, while 0~+0, and 0b —02 become large. One carries
out a by now standard double Regge limit to discover

"This fact was stressed to me by A. Mueller {private com-
munication).

that da. (a+f) —+ 1+2+X) behaves as

gp&(g& gi p p & )e(~a—i)(e~+Hb)e —~z(&~—ei)

+gp'+(8$ gi Pi Pi Ipg)e' ~ ') "+&
—$ (a p—a p ) (HI+02) e

—( p+n p ) /& (g2—81)Xe
+gPP'(82 Hly pip p2) &p2)~

Xe ( P—~P') «1+0»e—~(~P+~P')(~2—0».

There are a number of comments to be made about Eq.
(69). First, in the leading term involving gi p we ex-
cluded the exp{—[np(gi —Hi)]) even though there is
multiplying it an unknown 02—0& dependence in gy p.
One can consider the function gpp as having its major
0&—0 dependence coming from any /ozv-energy reso-
nance structure in. the invariant energy (p,+p,)',
since 02—0~ is not large. However, if two particles like
E+p or n+n+., w.here there is no known resonance at low
energies, have been produced, g~p can be expected to
be a quite smooth function of 02 —0&, while the depend-
ence e (~2 ~» for 0,~ ——1 makes its presence known quite
dramatically. It would be very amusing to look for such
an eRect as one moved away from the region where
02=0~ into the region where 02&0~ but 02—0~ is not
large. In any case, the leading behavior in (69) is in-
dependent of the combination Hi+82 no matter how
strong the dependence of gp~ on 02 —0~ might be. Even
this would be interesting to see.

The approach to the limit is a double Regge approach
behaving as s 'i' and governed by the I" intercept at
1=0. In general, the double Regge limit behaves as
s&( p+ p') ', for reasons which are discussed in Sec. VII.

Since 0&—02 is now kept finite, there is no reason why
the cp~ dependence should disappear and, further, no
reason for a factorization of the residue functions. In
fact, if there are resonances in (pi+pi)', the depend-
ences of the coordinates of particle 2 on those of par-
ticle 1 would be quite strong. As 02—0& becomes large,
however, and proceeds through a region where pe-
ripheral, then Regge, exchanges are, important, the
dependence on q 2 could become insignificant, as pointed
out by Treiman and Vang22 some years ago.

The fourth limit to consider I call the Regge pioniza-
tion limit. Here Pi, Pi, and p2 are held fixed while all
three of 0,+0&, 02 —0&, 0b —02 become large. One may
reach this case from the previous one, and I do not
write down a detailed expression for do. but only note
two striking features: (1) The Hi —Hi dependence which
was remarked upon after Eq. (69) goes away and da.

becomes, in the leading asymptotic term, independent
of 0& and 02. This was noted by DeTar' who calls a limit
such as the one we are now talking about a "strong-
ordering limit. " (2) The approach to the Regge pioniza-
tion limit is very slow because the terms coming from I'
and I" interference yield an s '" behavior.

Finally there is the single Regge two-particle frag-
mentation limit where both particles 1 and 2 run near

"S.B. Treiman and C. ¹ Yang, Phys. Rev. I.etters 8, 140
{1962).
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the fragment of a. In this case we hold Pi, P2, and p2 fixed
as well as 8,+Hi and Hi —Hi', that is, both Hi and 82 are
"near" —8,. As Hq —82 becomes large, we 6nd for do

hi (8.+Hi, 82 —Hi, pi, p2, v 2)~'~""+'"
+hi (8.+Hi, 82 —Hi, pi, p2, v )~" '""+'" (70)

so that this limit is approached as s 'l'. No factoriza-
tion is expected here.

Before concluding this section on limits, a few re-
marks are in order. (1) In each case considered, when
one takes o.~——1, the do. has a nonzero limit if the residue
(single or multiple) of the leading pole does not vanish.
Since after Kq. (56) we see no reason why it should
vanish, and we shall assume that it does not. (2) One
may carry out a multiperipheral-model analysis of the
two-particle production cross section in order to justify,
as we did for one particle production, the identi6cation
we have blithely made of the singularities in the multiple
n planes with the familiar two-body singularities.

(3) With regard to the possibility of factorization as
discussed after (66), one should note again that it is
a phenomenon associated with the leading behavior in
the SO(1,3) expansion. In general, the infinite sum over
magnetic quantum numbers associated with e' ~'

leads to nonfactorization. The physical reason for this is
not hard to discern. Lorentz invariance requires 5R to
depend on q 2

—q j only and not q 2 and q ~ separately
(remembering that we set pi=0 ).Thus, independence
of q 2 and the subsequent factorization of 5R means that
no angular information had been carried between the
two pieces of the diagram. This, of course, occurs when
a spin-zero object is exchanged, " but the Pomer-
anchukon is composed of an inhnite number of ordinary
spin objects, so the y2 could be quite complicated in
general and a factorization would not occur. However,
we have here the knowledge that the leading behavior
comes from the piece of the Pomeranchukon with
jo=m=0, that is, from special pieces of the ordinary

j=0, 1, 2, . . . , angular momenta composing the
Pomeranchukon. These clearly cannot carry any
azimuthal information, so the dependence on y2 must
vanish.

(4) The factorization at the Pomeranchukon pole
makes it quite interesting to examine various correla-
tion lengths along the multiperipheral chain as sug-
gested by Wilson, 2 A particularly interesting correlation
is that of two particles emitted from the central region
of the chain. This would be observed in the transition
from the double pionization regime to the Regge pioniza-
tion hmit as 8&—Hq becomes large. Unfortunately, the
numerical work of Sec. VI shows the total energy to be
unacceptably large since Regge pionization is only
reached as s 'f .

One may, however, examine the behavior of the cor-
relation function'3

"The variable cp2 has been integrated out since the presumed
factorization makes gg(a+b~ I+2+X} independent of it in
the leading terms.

d'0 (a+6 -+ 1+2+X) 1

dHid(coshPi )d82d(coshP2 ) o'got(G+b)

d'0 (a+5 +—1+X) d'o (a+b &—2+X)X— (71)
dHid(cosllPi ) d82d(coshP2')

as Hi —Hi varies, in two more accessible regions: (1) the
single Regge limit of double fragmentation, which can
be studied at present accelerator energies, and (2) the
double Regge limit of pionization fragmentation dis-
cussed by Wilson, which can probably be examined at
the National Accelerator Laboratory. In each case one
looks for the dependence on 8;—Hi in (71) as Hi+8„
Hq —82, Pi, and P2 are held 6xed. One should. find, if the
above analysis holds,

& ~ p ~"e' ~'&X(function of fixed variables). (72)

The "correlation length" in 8 space is then

(np np) —'=2,

VI. SOME NUMERICAL OBSERVATIONS

For general orientation with respect to the phenomena
discussed in Secs. IV and V, we briefly consider some
numerical criteria for observing those eGects. For
simplicity of discussion, I concentrate on single inclusive
production of pions in proton-proton collisions: p+p ~
ir+X. In this case, 8,=8q=H, m, =mq ——m~, andmi ——m;

s =2m, '(1+cosh28) =2m„'+2tm „Ez, (73)

where the energy of the projectile in the lab is

EI,=m~ cosh28.

Ke take as examples the two values 8=3.0 and 3.5 or
EL,=190 and 515 GeV, respectively, since these bracket
the NAL energies. Because 1n(m /m„) =2, the bounds
on 8y ale ln fact

—8—2&Hi&8+2, (75)

so that the "overAow" of Hq can be a very large percent-
age of 8 at these "low" energies. If we had considered
proton production, there would have been no overAow.

Now when should we expect to see the fragmentation
limit as in Eq. (60)? It is easy enough to arrange for
Hi+8 to be small; i.e., Hi= —8 by choosing backward
events in the c.m. system, and at the same time 8—Oj

=28 will be large. The question is really whether, when
20=6 or 7, the next term in the asymptotic expansion
of (60) due to the P' will be small. If we suppose that the
quantities fi and fi. are more or less the same order of
magnitude, then' the relative size of the two terms is
e ', which is 5% for 8=3 and 3% for 8=3.5. In fact,
s 'I2 is a rapid enough decrease that we may ask when
the 8' term is 15/~, say, of the leading Pomeranchukon
term. The 8 required is = 1.9, leading to a lab energy of
the projectile proton of 21. GeV. So one can well expect
limiting fragmentation, or in general all our single Eegge
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limits to occur egectiiiely in the range of present particle
accelerators. This is entirely consistent with the observa-
tions of Bali et al. '8

The pionization limit is, unfortunately, harder to
reach for two reasons: (1) Small longitudinal momenta
will be needed, and (2) it is only reached as s 't'. For
this limit we require 8+ei and 8—ei to be large. To con-
tinue the discussion, I choose "large" to be a value of
any combination of longitudinal boost angles such that
exp(angles) =10. This means that the angles are equal
to 2.5. On this basis when 8=3.0, we must have

and for 8=3.5.
ie, i

&o.s,

f
8, [

&1.o.

(76)

(77)

Since ei is related to the c.m. longitudinal momentum pi
and the magnitude of the transverse momentum pr by

si nh e=ip /i( m'+pr')'", (78)

we have to look for pi small or pr large. There are not
very many events with pr sizeable, so let us estimate an
average "large" pr to be =2m„=300 MeV/c. Then for
8=3.5, El, 500 GeV, we need

) P, ~

&3OO Mev/c,

and for 0=3.0, EL, 200 GeV, we need

~ pi~ &120 MeV/c.

(79)

(80)

These are, it can hardly be denied, small momenta.
However, the account is not complete since we ask
when the second term in the pionization asymptotic ex-
pansion, Eq. (62), is small relative to the erst term.
Again boldly taking the size of the residues to be about
the same, the relative size of the Pomeranchukon and
I" terms is governed by e &' which is still about 20% at
El. 500 GeV. I do not venture a guess concerning
whether this is too large a background to be acceptable.

At this point I leave to the patient reader the op-
portunity for numerically examining the five two-
particle distribution alternatives. We now turn to the
conclusion.

VII. CONCLUSIONS AND OBSERVATIONS

The discussion of inclusive production in this paper
was in a real sense a formalization of and generalization
from lessons learned in multiperipheral or multi-Regge
models. ' 4 ' The initial effort was devoted to choosing
variables, which we found could be done in a manner
quite similar to the discussion given in Ref. 3. The
biggest help in the subsequent analysis came from the
parametrization of momenta as

m;(coshp; coshe, , sinhp, cosy;, sinhp, sincp;,

cosh/; sinh8, ) (81)

and the effective separation thereby achieved between
dynamics in longitudinal boost angles 0; and transverse

boost angles P;. It is difficult to pretend that there is
something unique about this choice; however, it is
rather convenient and reasonably suggestive from
a symmetry viewpoint.

It can correctly be asked whether the same variables
can be found in a simpler fashion. For example, con-
sider the fragmentation limit in single-particle produc-
tion from a straightforward multi-Regge point of view.
One begins by choosing as variables s =(pi+p, )',
si, =(pi+pi, )' and considers s~~ while, if particle 1

goes with particle b's fragment, s —+ ~, but sb is fixed.
In the c.m. frame for a =9 with mass m and each having
energy E, we write

and

so

p, =(E 0 0 —(E'—m')'")

pi, =(E, 0, 0, +(E' m'—)'"),

pl= (El,pT costi, pr sin%'i, p/)

s=

s, = m'+mr'+2 LEE i+pi(E' —m')"'j

(82)

(83)

(85)

(86)

Sb —m'+mi'+2[EE, p, (E'—m')'"—j (87. )

A Regge theorist expects do(a+b —+ 1+X) to behave
as (s,~/s) f(s,si,), and is now faced with the problem of
what to hold fixed. In order for s ~~ as s~~ but
for s~ to remain finite, it is easy to see that one holds

pr fixed (that is pi) and pi must grow as E or faster.
If it grows just as E, pi/E=2pi/Qs, which is Feynman's
x, is finite and one is inclined, but not compelled, to
hold pr and x fixed. After such reasoning, it can be
argued that since s =s for +=1, the Pomeranchukon
do with pr and x held fixed has a nontrivial limit. The
argument becomes slightly more torturous for two-
particle production or even single-particle pionization.
It is clearly a matter of taste to choose this form of
reasoning over that of Sec. II.

This is also the point to recall two of the basic as-
sumptions that entered our discussion of inclusive dis-
tributions: (1) After we located in Sec. II the appropri-
ate complex "angular momentum" n, it was necessary
to assert that the position of the singularities encoun-
tered in the n plane which govern the asymptotic
behavior of the particle distributions were the selfsame
)=0 Regge intercepts we find in two-body scattering.
An attempt was made to justify this on the basis of the
multiperipheral model, but it could be wrong. (2) In
every case where we discussed an asymptotic limit,
we took the coefficient of the leading behavior in the
expansion to be nonzero and also estimated the size of
the correction term by the apparent next leading be-
havior. This is, of course, a quite common practice and
in the discussion of single-particle distributions the
results of Ref. 18 would be difficult to understand if the
assumption were false. Nevertheless, we had to hypothe-
size the existence of the limit.
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Finally it is useful to note that the power of s in the
approach to the various limits can be understood in the
following simple manner. In the case of single Regge
exchange, it is a normal s P' '= s 'l'. For double Regge
exchange, each of the two subenergies is about Qs in
scaled units, so the correction term in the asymptotic
expansion is of order (Qs)I(gs)"'/s=s "4. Similarly,
multi-Regge pionization region where %+1 Reggeons
are exchanged to produce particles 1, 2, . . ., E, the
limit is approached only as s ""~+'&which is very slow
indeed, as the numerical example of Sec. VI reveals.
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APPENDIX

In this appendix'4 we indicate the role played by
functions of the second kind in the group theory above
and provide the source of relations such as (46) and (47).
Qur treatment is modeled on the discussion by Uilenkin"
of SL(2,R) as given in his Chap. 7. Many of the actual
results quoted are found in a more group-theoretic con-
text in Refs. 10 and 11.Their presentation is certainly
more pedestrian and really aimed at the Laplace inver-
sion formulas. Hopefully the repetition in our own
language makes the present paper more complete.

We begin with the Gelfand representation of SL(2,C),
the covering group of the homogeneous Lorentz. group,
SO(1,3). In this representation, ~' one associates with
each element of SL(2,C)

F+io (1 nI)—
2Z'

g@
sinh8d8(sinh-, '8) '"

2'
Xe""+'"~d;„I(8)f;,„(s=e'e coth-', 8), (A7)

a subgroup containing R, (q&) and B,(P) is simple, while
opelRtlolls wltll longltudlnai boosts B (8) bring forth
the appropriate functions of the second kind. Since
R, and B, along with B„form a, SL(2,R) subgroup of
SI.(2,C), what we want to do is diagonalize a noncom-
pact subgroup of SI (2,C).

To do this, we note that the complex s plane on which

f;,„ is de6ned may be projected onto the upper and
lower sheets of a timelike unit hyperboloid in one time
and two space dimensions. The inside of the unit circle

~
s~ &1, maps to the lower sheet with the point

s'=e'& tanh~0
corresponding to

(—cos118,s111118cosf,slnh8 sing) . (A4)

The outside of the unit circle maps to the upper sheet
with

s = t, '& coth-,'0
corresponding to

(cosh8, sinh8 cosg, sinh8 sing) . (A6)

The point of this geometric exercise is that we realize
the operations of the SL(2,R) subgroup on the 1+2
hyperboloid or, equivalently, entirely within or entirely
without the unit circle in the z plane. The B,(x) carries
us from one section of the plane to the other with a
weight which turns out to be proportional to the func-
tion of the second kind.

Therefore we make two projections from f;,„(z);
one for ~s~ &1, which we call F+""(l,nI), and one for

~
z

~
&1, which we call F ""(t,nI):

an operation on functions f;,„( )zof one complex
variable

(T f (s) =(be+a)"'-I(58+8)"~I

Xfo.(( + )/(& +d)) (A2)

where jo ——2(n2 —nl) and n = ~I (nl+n2) —1.As mentioned
in the text, n and. jo are, respectively, the maximum
and minimum O(3) angular momentum in a finite-
dimensional representation of SL(2,C).

Now Uilenkin's idea is essentially to project from

f;,„(z) its component corresponding to the diagonaliza-
tion of some subgroup of operators in SL(2,C). Our
problem here is to adopt the projection properly so that

"Much of the work here was begun with L. M. Saunders in
preparation for the study of Ref. 14."I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized
I'Nectiogs (Academic, New York, 1966), Vol. 5; Ref. 13, Chap. 9.

sinh8d8(cosh~8) '"

or
Ren &Rel & —Ren —I (A9)

{A10)

We recover the function f,,„()byzinverting the SL(2,R)
projection with an integration along the line Re)= —

~

Xe'"+"'~d„,,I(8)f;,„(s=e'~ tanh-,'8). (AS)

In these formulas the reduced signer d function for
SL(2,R) appears" and the invariant measure d$ sinh8d8
on the 1+2 timelike hyperboloid is present. The vari-
ables 1 and nI will be the eigenvalues of E '+K '—I '
and J„respectively; they and & label the components
of the SL(2,C) representation (jo,n) in its decomposition
wltll 1espect to SL(2,R) Rs glvell 111 (A7) RIld (A8).
F~""(l,nI) exist without restriction on nI and with the
requirement that $ lie in a strip in the 3 plane,
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and a sum over any discrete representations that ap-
pear. "The condition for us to do this turns out to be
just (A10). If we denote the measure over the principal
series along Rel= —

~ and sum on discrete series by
d)b((l, m) (its form is given in Ref. 15 and is irrelevant for
what we are doing here), the function f,,„(s) is recovered
by

For a boost along the s axis by X,

B,.(x)f,,„(s)= e "&f-„„(e&s).

(A18)

f;,„(s)=8(~ s
~

—1)(sinh-,'8)—'" P drab(l, m)
For X&0 it is clear that E+ =0, and some straight-
forward algebra reveals

XF ion(l m)e
—im4a) i(8)e &504 K+~(l,m; P,m'; j(),n; B,(x))

+8(1—isi)(cosh-,'8) '" P d«(l, m)
sinh8d8(sinh-', 8/sinh-', 8') '"

X(l„,, '(8)d„;,'(8')e-"x (A20)

XF (l, m)e ' &d;,'(8)e "'& (A11)
with

e& coth-,'8= coth-,'8', (A21)
The real test of the definitions F+)'b"(l,m) comes when

we apply the transformations
K +(l,m; l', m', j(),n; B,(x))

/e ~P(2 0
~.(4) =I

/cosh-,'P sinh-,'P)
B*(~)=l . ,ksinh-,'P coshsP/

(A12)

(A13)
with

eothx

d(cosh8) (cosh-', 8/sinh-', 8i) '"

Xd „'(8)d,,'(8i)e "" (A22)

to them. It is quite easy to see that if we define a repre-
sentation of SI.(2,C) by any element's action on the
f;, (s) in (A7) or (AS) via (A2), then

E,(ll)F '"(l, m)=e™F'"(l,m).

e~ tanh-', 0=coth —', 0~,

E (l,m; l', m'; jp,n; B,(x))
cothx

(A23)

It is necessary to use judiciously the addition theorem
on (l „'(8) given by Vilenkin to show

with

d(cosh8) (cosh-,'8/cosh-, '82) '"

Xd„,,'(8)d, „'(82)e "& (A24)

B (P)F~""(l,m) = P d '( P)F~""'(l,m') .—(A15) e& tanh-', 0= tanh~8g. (A25)

It will perhaps be a relief to the reader to note that for
Thus any element h of the SI-(2,R) subgroup formed 1=m=1)=m'= jb ——0, E becomes
from B„B„,and E, operates on F+ by

~
—(n+1) x

hF )o"(1m) = g D„,„'(li-')F )'o"(l,m'), (A16)
E (0,0; 0,0; O,n; B,(x))=, (A26)

(n+1) sinhx

with D '(h) representation matrix for SI.(2,R).
Now the operation of B,(x) can take us from outside

the unit circle in s to the interior or vice versa; hence
it mixes F+(l,m). Thus, by operating with B,(x) on
F+(l,m) and then reexpressing the resultant f;,„(s)under
the integral in terms of F+ by means of (A11), we
realize a representation of SI.(2,C) by integral opera-
tors. This may be expressed in matrix form

(E, &'F") (l,m) = P P dp(l', m')
b=+ m'= —eo

XZbb(l, m; l', m'; jo,n; g)F b""(l',m'), a =&. (A17)

which begins to establish the connection between the
kernels of the integral representation and the functions
of the second kind.

A few changes of variables reveals that the connec-
tion between our E and the a~" in Ref. 11 is

E(l,m; l; m; j„n,B,'(x))
=2a (p" "+'(x)/[(2l+1)(2l'+1)j'". (A27)

This is quite a useful result since many of the properties
of the a~ ~ are tabulated by Sciarrino and Toiler. In
particular, the asymptotic behavior for large X is given
as

a-« ~' "+'(X)~ exp[ —X(n+2+Im —jol)g (A»)
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lt is this asymptotic behavior, which is nicely de-
creasing for Res positive, that one takes advantage
of when defining the Lorentz Laplace transform of a
function of a longitudinal boost angle 8. %e always
have in mind the connection of an invariant subenergy
s with coshe. A behavior like s leads to e"', so suppose
g(8) is bounded by e '. We then define the partial
amplitude which is analytic in Ren) Ren

~
m —jp~:

glltel2(9)amlll2 ' (~)
g«t, ""=Q (sinh0) 'd0 ———, (A29)

0 8(jp,n; li, m, lp)

where the usual measure (sinh8)'de on the SO(1,3)
hyperboloid has entered, and 8 is a combinatorial co-
e%cient which is specified shortly. By using the asymp-
totic behavior of the a&0 "+' functions, and the connec-
tion between them and the usual representation
functions d"" on Sl.(2,C),"one may show that if we
define gi, ~,

""via (A29), we can recover g(e) for positive
8 by

with

(1i+jo)!(4+jo)!
X

(li- jo)!(lp-jp) '

[n,+2 jo]—i+ o[ 'n 2m—+j o]l
X [—n —1—m]„+„+,[n+1+m](,+„+,

[a],=a(a+1), . . . , (a+q ——',) .

(A31)

(A32)

In the text we defined ei, ~, 'o"(0) as

«, i,""(&)=a ~, ~,""+'(8)/&(jp,n, li,m, lp), (A33)

so our transform pair is (46) and (47).

Is
gi -~ (~) = —[jp' —(n+1)']d»-i2'" "(0)gu»""'

C—%co

(A30)
when we take for m&~ j0.

jpo —(n+1)'
fl( jo,n, li,m, l.) = — (2li+1)(2lp+1)

4(m —jp)!(m+ jp)!
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The smoothness assumptions of the chiral SU(2) +SU(2) hard-pion current-algebra method are examined
in detail. A new model, the current-smoothness model, emerges as a plausible alternative to the standard
hard-pion model of Schnitzer and Weinberg, and others. The two models give satisfactory predictions for the
decay A &

—+ p+m. , but quite different predictions for the decay A &
—+ 2r+y and the colliding-beam reaction

e+e —+ A I+++. Other possible models are also discussed.

I. INTRODUCTION

'HE hard-pion current-algebra method, '' which
consists of the chiral SU(2) XSU(2) current com-

mutation relations proposed by Gell-Mann, ' conserva-
tion of the vector current (CVC), partial conservation
of the axial current (PCAC), together with certain
"smoothness" assumptions, provides a useful phenom-
enological tool for the analysis and correlation of various
strong, electromagnetic, and weak processes. In par-
ticular, it leads to relations between the pion electro-
magnetic form factor, A1-meson decays, ' ' pion-pion
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