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We derive a rigorous bound on the K3 decay form factors f.(9). With &= f_(0)/f, (0) and A,=m,21,’ (0)/.
f+(0), our bound is |&+4 (mx?—ma)Ny/ma2| <8AV2(0)I2/V3mx?| £, (0)|, where I=0.584 and A(0) is
the propagator of the divergence of the strangeness-changing current at zero momentum. If one
further assumes for the Hamiltonian density H (x)=H,(x)+eoSo(¥)+esSs(x), with Ho(x) SU3) XSU(3)
invariant and Sos transforming like members of the (3,3)4(3,3) representation, then one can prove that
A(0) =3es{Ss)o/4, so A(0) is proportional to the product of SU(3) violations in the Hamiltonian times
those in the vacuum, and is hence expected to be very small. We estimate A2~ fr, and our bound implies
[£+12.37,] £0.29. With A, =0.06 as indicated by recent data, we have —1.03 <#< —0.45, which serves to
restrict the ¢ value considerably. We also remark on the relation of this bound to the perturbative theorem

of Dashen and Weinstein.

I. INTRODUCTION

ECENTLY there has been considerable interest

in the K;; decay process as a probe to experi-
mentally test various explicit theoretical models of
SUB)XSU(3)-symmetry breaking. This process is
suitable as a probe of symmetry breaking because it
involves both strange and nonstrange pseudoscalar
mesons and measures a matrix element of the strange-
ness-changing weak current.! The experimental situa-
tion for this decay process has not been completely
resolved,? but experiments in the next several years
should serve to refine the measurements.

The theoretical side of this problem is also in a state of
controversy.® Using standard current-algebra methods,
one can establish the theorem of Callan and Treiman*
and Mathur, Okubo, and Pandit5 (CTMOP), which is
the statement f(mx?-+f_(mx?)=fx/f~ about the
K3 form factors f.(¢) at momentum transfer i=mg? in
an SU2)XSU(2)-symmetric world with a Goldstone
pion. To make contact with experimental numbers,
the theoretical result fi(mg®)4 f—(mx?®)=fx/fx
+0(m,?) based on partial conservation of axial-vector
current (PCAC) and current algebra must be extrapo-
lated to the neighborhood of ¢{=0. Using the resulting
relation, one has, for = f_(0)/f(0),

s=[ fx falme) f-0)
Fe£1 ) £40) df_(ma?)

The K, Dalitz plot in the physical regions m.2<¢
<(mg—m,)? is fitted with a linear form for f,(f)
= [ (OLL+HN(t/m*) ]+0(?), so that fi(mx?)/f.(0)

+0(mz?).

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT (30-1) 4204.

1 M. Gaillard, Nuovo Cimento 61A, 499 (1969).

2L. M. Chounet and M. K. Gaillard, Phys. Letters 32B, 505
(1970); M. K. Gaillard and L. M. Chounet, CERN Report No.
70-14, 1970 (unpublished).

3 M. Bég, Comments Nucl. Particle Phys. 4, 182 (1970).

4 C. Callan and S. Treiman, Phys. Rev. Letters 16, 153 (1966).

5 V. Mathur, S. Okubo, and L. Pandit, Phys. Rev. Letters 16,
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=14(mx*/m,Y)\,. The data also indicate that f_(¢)
is a slowly varying function, so f_(0)/f_(mx?)=~1. We
then have

Ix mi? mx?
~—F T —028—

t~
f=f+(0)

with fx/frf(0)=1.28. The recent value of \,.~0.06
gives in this analysis £~—0.52, which is not in conflict
with the bound we derive in Sec. III. Thus there is no
conflict between our bound, the CTMOP relation, and
experiments, if one accepts the extrapolations assumed
valid above and particularly the value of A,.

Gaillard! was the first to emphasize that the CTMOP
relation depended on the assumed symmetry-breaking
scheme. Brandt and Preparata,® using another value
A=20.03 (in which case the CTMOP relation and the
above analysis implied {~—0.1 in conflict with ex-
periments which suggested £~—1.0), were led to aban-
don the theoretical assumptions on which the CTMOP
relation was based and develop an alternative theory of
symmetry breaking and the use of PCAC.

Also relevant to this discussion is the theorem of
Dashen and Weinstein,” who showed that if the SU(3)
XSU(3) symmetry is realized by an octet of Goldstone
pseudoscalar bosons, then up to terms of second order
in the symmetry breaking, the parameter ¢is determined
in terms of A =m,2f,'(0)/f.(0). In terms of these
parameters, the theorem reads :

E+(mP—m )\ /me*=5(fx/ fa— f+/ f)+O(O?).

This theorem leaves undetermined the magnitude of
the terms O(A?), of higher order in the symmetry break-
ing, and we will comment upon this point in the light
of the bound we derive.

The rigorous bound that we obtain on the K;; decay

>‘+)

Mg’ Ma®

®R. A. Brandt and G. Preparata, Nuovo Cimento Letters 4,
80 (1970).

"R. Dashen and M. Weinstein, Phys. Rev. Letters 22, 1337
(1969). See also C. P. Korthals Altes, Phys. Rev. D 2, 1181
(1970); S. P. de Alwis, ibid. 2, 1346 (1970).
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parameters is
MEE— 1y 811/2(m,r2/mK2)
,E‘f‘ Ar| <
M V3mx®| £+(0)|

where I(m.%/mg?) is an explicit function of the ratio
m.2/mr?=0.075 and has the numerical value I(m,%/
mx?) =0.584 and

Amrﬁ/wﬁ”@,

Al20), (1.1)

¢

where p(f) is the spectral function associated with the
Lehmann representation for (0| [9,V ,4(x),0,V,4(0)]|0),
with V,4(x) a component of the strangeness-changing
vector current.

If we further assume that the Hamiltonian density is

given by®?
H (x) =H o(x)+eoSo(x) +esSs(x)

where So,s(x) are members of the (3,3)+(3,3) repre-
sentation of SU(3) X SU(3) and Ho(x) is SUB)XSU(3)
invariant, then one can show from a Ward identity

A(0) =$es(S5(0))o.

Many estimates of the vacuum expectation value of
Ss(x) suggest that it is small,’ corresponding to the
approximate SU(3) invariance of the vacuum state, and
it is this feature of symmetry breaking that makes the
bound (1.1) rather effective in establishing the numeri-
cal values for £ in terms of A,.

In this same model of symmetry breaking, one has
a sum rule

$4:(0)+244(0)—Ax(0)=A(0),

where A,y x(0) are the Lehmann propagators at zero
momentum for the divergences of axial-vector currents
transforming like 7, 7, and K. An estimate of these
quantities!® and use of the sum rule leads to the esti-
mate AY2(0)~1.006m. f, which, along with an estimate
of f,(0)=0.845, implies from our bound

| e[ (mr2—my?)/m2I\ | <0.29.

If we use the recent value!! of \;=0.06040.021, this
implies
—1.03<£K —045,

which serves to restrict considerably the £ value; in
particular, £=~0 is ruled out. Even allowing for 209,
variation on our estimate for A/2(0) does not radically
alter this bound or destroy its usefulness. Any improve-
ment on this bound tends to drive £ closer to

—[(mg?—m2) /m 2]\ ~—0.74.

8S. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224

1968).
( 9 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2196 (1968).
10 V. S. Mathur and S. Okubo, Phys. Rev. D 1, 3468 (1970).
11 X, Collaboration, Phys. Rev. D 3, 10 (1971).
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In Sec. IT we derive our bound (1.1) and in Sec. III
discuss the numerical evaluation of A(0). In Sec. IV we
discuss possible improvements of the bound and its
relevance for the perturbative theorem of Dashen and

Weinstein.

II. DERIVATION OF BOUND

The K;3 form factors are defined from the matrix
elements of the strangeness-changing current

@) | VE (0) | K+ (k) =3 (kut-pu) f+(2)
Fku—p) O], t=(p—k)?. (2.1)

Of particular interest are the £ and A\, parameters,
defined by
7-0)

A0S 1.0

The matrix element of the divergence of the current,
3d(t) =(x°(p) |19,V , K (0)| K*(R)), is d(1)=(mx’—m,?)
X f4(H)+2f-(t), so that we have the following relation
between the slope of d(¢) at =0 and £ and \:

mrZ—m,?
A ).
M2

Our project is now to establish a bound for d’(0).
To this end, we will make as a principal assumption
the existence of a Lehmann representation for

! 0 ”2
f+'©)m . 2.2)

d’(0) =f+(0)<£+ (2.3)

A= / dtx et (0] (0, V.5 (x)9rV>E7(0))4 [0),
¢*=t. (24)
Hence we have the representation

A(t) =/wf.(i)_d_t_ ,

¢ —t

(2.5)

where p(f)=7"1ImA(f) is obtained from (2.4) and is
given by

p())=(2m)* 2 [{0] 9V, 5*(0) [ n)] %5*(q—pa) 20,

where the positivity is guaranteed by the causality
requirement and positive norms in the Hilbert space.
Each state |n) contributes a positive definite quantity
to p(?).

Our bound is obtained by retaining just the =K
state, so we have

3ld@)|*
p()2 pex(t) =[(t—ma*+mx®)? —dtmg?]H*— |
‘ 16¢(2m)?

12 b= (mx+m)? (2.6)
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where d(f) is the matrix element of the divergence of the
current as defined before, here analytically continued to
12> ty=(mx-+m,)?, the physical threshold. The existence
of the Lehmann representation (2.5) implies p(f) — 0,
t—o and hence from (2.6) we must have d(f) —0,
t— 0. Assuming d(f) to be analytic in the cut ¢ plane
with a cut at t=1{,, we may on this observation write the
unsubtracted dispersion relation

1 r° Imd(¢)dt
0=~ [ ===,
™ Jt t,—t
so that
1 2Imd(dd| 1 = |Imd()|ds
eol=|- [ =< [
wJ 12 wJi 12

Now using (2.6), we have
[Tmd (@) | < ()]
8 112p1/2(7)

< - ’ (28)
V3 [({—mx?+m.?)2—4mig* ]2

12> 1o

and substituting in (2.7) and using the Schwarz integral
inequality we have our bound on |d’(0)],

|d’(0)] < 8AYV2(0) 2 (my2/mk?) /N3mk®.  (2.9)
Here
* o(f)d
and ‘
©  dx
1(8)= —[(e—8t+1) —4a] 2

(1+8)* X

1462 /1

so that with 82=m,2/mx2=0.075, [ =0.584.
Combining (2.9) and (2.3), we have the rigorous

bound
ME2—my>

8A1/2(O)Il/2(m,r2/"t1{2)
‘z+ VIS

N )
Mr?

(2.11)

V3| £+(0) [ m?

which is the result to be proved.

III. ESTIMATE OF A(0)

In order to estimate the quantity A(0) appearing in
the bound, we will assume for the Hamiltonian density®-°

H(x) =H0(x)+6050(x) +6358(x) y (31)

where Ho(x) is SU@)XSU(3) invariant, and Sa(x)
(@=0, 1, ..., 8) transform as members of the (3,3)
+(3,3) representation of SU(3)XSU(3). Introducing
the pseudoscalar densities P%(x), a=0, 1, ..., 8, we
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have on this assumption the equal-time commutation
rules

[F,Ss)=ifS,,
[°F*,S5]=—id**P,,

Fe Pg]=ife8vP
[ ) 5] 7’f v (3.2)
[5Fa,PB]___,Ldaﬂ-yS’y ’

where F¢ and °F¢ (a=1, ..., 8) are the generators of
SU(3)XSU(3) and can be represented as space inte-
grals over the vector and axial-vector charge densities

F“=—i/d3x Vo (x), 5F“=—i/d3x Ao¥(x). (3.3)
From the general result'*'? 9,7 ,%(x) =:[H (x),0*] and

(3.1) and (3.2), one obtains

auV"“(x) = 68fa8BSﬁ(x) )
9,4 ,%(x) = (€odaoptesdasp) Ps(x) .

If we next assume a Lehmann representation of the
form

(O[[4,°(),4,*(¥)]]0)

® 4,0, 1
=/ dtli(g,,.,— “)Pab(l)(t;A)_ "Pnb(o)(t:A)anat']
0 ¢ t

XA(x—y, t)

and a similar representation for the vector current, then
upon taking the divergence 9/dx, of this expression
and setting xo=yo, one has the Ward identities

(3.4)

AabE/ dt par’(t;4) = — (€0doay+ €sdsay)
0

X (Sodoby+ssdsy), (3.5)

VabE/ dt pabo(t, V) = 5838f8a'yf8b'y,
0

where
§g= (Ss>o, So= (So>0

are the vacuum expectation values of the scalar opera-
tors.

Following Mathur and Okubo' by introducing the
parameters

1 €3 1 S8
_— = _ —__2
= =——, y=—%es,

V2 e V2 5o
we then have, from (3.5),
Asz=v(1+a)(1+d), Au=v(1—%a)(1—13b),
Asg=y(1—a—b-+3ab), Vi=(9/4)vab.

2 H. Pagels, University of N. Carolina report, 1967 (un-
published). ‘

% D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967).

(3.6)
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We identify the spectral function which appears
in our bound as p(f) =tpu‘P(t,V), so that A0)=V .
It then follows from (3.6) that

A0) =V 4= (3es/4)(Ss)o,

and thus A(0) is proportional to the SU(3) violations
in the vacuum (Sg)o times the SU(3) violation in the
Hamiltonian es. Several estimates® ! have (Sg)o<K{So)o,
so the vacuum is approximately SU(3) symmetric, and
A(0) is a small quantity serving the purpose of making
our bound effective. However, if (Sg)o=0 exactly,
then A(0)=0 and it follows from the Lehmann repre-
sentation that p(#)=0 and the Johnson-Federbush
theorem,'® that 4,V ,4=0, so we must have exact SU(3)
symmetry in this case. Then, of course, in the case of
exact SU(3) symmetry, a consistent result has f_(£)=0
and £=0, the SU(3)-symmetric result. Hence it is
important to establish more precisely the value of A(0)
and how much it differs from zero.

It has been noted that the pseudoscalar propagators
at zero momentum A,=A3;, Ax=A4, Ay=Ag;, and
A=V satisfy the sum rule

1A +30,—Ax=A,

(3.7

3.8)

as follows from (3.6). Using the pole approximation
for the pseudoscalar propagators, neglect of #-X
mixing, and other approximations, Okubo and Mathur!?
estimate for the parameters in (3.6)

a=-—0.89, b=-0.10, y=5.05m,%f;?,

(3.9)
fi/f2=108, f,/f.=106,
so that from (3.6) and (3.7) we obtain
AV21.006m, f, . (3.10)

The smallness of this parameter, as remarked already,
is due to the fact that it is the product of SU(3) vio-
lations in the vacuum times those in the Hamiltonian,
one or both of which are small compared to the SU(3)-
invariant terms in all determinations of symmetry
breaking. Using other determinations of these parame-
ters, we get estimates for A2 not differing by more
than ~209%, from (3.10). From the sum rule (3.8) we
see that A is a measure of the deviation of the pseudo-
scalar propagators ~m?f? from the Gell-Mann-Okubo
relation, which is another way to see why it is so small.

From the ratio of m;s to K;s, one obtains the ratio
fx/ f-f+(0)=1.28 which, with the estimate (3.9), gives
f.+(0)=0.845. Using this and (3.10), we obtain from our
bound (2.11)

| £4+12.31, | $0.29. (3.11)
It is evident that the £ parameter is sensitive to vari-

4 F, von Hippel and J. Kim, Phys. Rev. D 1, 151 (1970).
15 P, Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).

L.-F. LI AND H. PAGELS 3

ations in A;. Using the recent value!® A\, =0.06, our
bound is
—1.035£5—045,

which would rule out §¢~0.

IV. DISCUSSION AND CONCLUSIONS

Our method of bounding d’(0) in terms of A(0) leads
to a practical bound, so it is of more than purely theo-
retical interest to see if this result can be improved to
force the parameter £ closer to —12.3\,. First we might
remark that we have retained only 7K states in bound-
ing p(t). However, this state is the most important
because its contribution is proportional to (mx%—m.)/
mg?~1; baryon states contribute proportional to
AM/M~0.15 and hence are much smaller. The K
state could also be included but we have no precise or
approximate knowledge of the couplings to bound its
contribution. Hence we would conclude that if improve-
ment is sought, it should be in terms of just the 7K
state. We have not been successful in improving this
bound beyond the simple bound given above.

Of relevance to our bound on d’(0) is the perturbative
theorem of Dashen and Weinstein.” They showed that
if H=H-+MH', where H, is the SU(3)XSU(3)-invari-
ant Hamiltonian, H’ breaks this symmetry, and the
SU@B)XSU(3) symmetry is realized by an octet of
pseudoscalar bosons, then

d'0)=3(/x/ fr—f+/fR)F+ONY).

The question this theorem raises is the validity of
perturbation theory in \, or the largeness of O(\?) rela-
tive to the first term 3(fx/fr— f+/ &) ~O(N).

Our bound on |d’'(0)| is given by (2.9) or |d’(0)]
<3.53A12(0)/mg?~0.29, using our estimate (3.10).
Suppose we completely ignore the terms of O(A2) in
(4.1). Then if we use our estimate (3.9), fx/f,=1.08,
we have from (4.1) that d/(0)=0.08, which lies well
within our bound and would imply f~—12.3\,. What
is usually done, however, in this perturbative treatment,
is to use the value fx/f,=1.28 since fx/f.f.(0)=1.28
and f(0)=14+0(\?) by the Ademollo and Gatto, and
Berhends and Sirlin?” theorem, in which case d’(0)
=0.25, saturating the bound. In view of our bound,
this latter estimation with ¢’(0)=0.25 is probably too
large and we conclude, in the light of these observations,
that any determination of the precise value of d’(0)
obtained from (4.1) should be viewed with caution.

If we assume that only the sign of d’(0) is given cor-
rectly by the first term of (4.1), 3(fx/f-— f=/fx), then
since in all determinations fx/f.=>1, d'(0)>0. If we
assume f1.(0)>0, as is also valid perturbatively, then
the absolute value sign can be removed from our bound

(4.1)

16 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1965).
(1;1610{)' E. Berhends and A. Sirlin, Phys. Rev. Letters 4, 186
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(3.11); hence with &’(0)/f+(0)>0, we have
0< £4+12.31,<0.29,

or, for A, =0.06, —0.74< £< —0.45.

What emerges most generally from this analysis is
that d’(0) is probably a small quantity. This feature then
requires that #~—12.3\, and hence £ is contingent on
the difficultly measured parameter A\;. Before more
definite experimental values of these parameters

DECAY AMPLITUDES 2195
are available and the experimental situation stabilizes,
it is difficult to make theoretical pronouncements on
the character of the symmetry breaking.
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In this paper we make a detailed study of the phenomenon of pionization. We first concentrate on pro-
cesses in which the two incident particles are identical, e.g., proton-proton scattering. By assuming that the
c.m. system has no special significance in high-energy scattering or, more precisely, by assuming that the dis-
tribution of pionization products has a forward-backward symmetry not only in the c.m. system but also in
a class of coordinate systems called the C systems (this assumption will be called the symmetry kypothesis),
we can get rather precise information about the dependence of pionization distribution on the longitudinal
momenta. In particular, the one-particle distribution function is f(p1)@*p/E. These results are then explicitly
verified in the model of quantum electrodynamics. Next, the considerations are extended to processes in
which the two incident particles are different. For such processes, we propose the limiting hypothesis: The
distribution of the pionization products is independent of the momenta of either of the incident particles
in the limit the incident momenta are both infinite. With this hypothesis we can again obtain quantitative
information on the dependence of the pionization distribution on the longitudinal momenta. When applied
to the special case of identical particles, the limiting hypothesis is equivalent to the symmetry hypothesis.
For the more general case where the two incident particles are not identical, it follows from the limiting
hypothesis that the one-particle distribution function is again f(p,)d®p/E, but the results on the multi-
particle distribution functions are slightly weaker than those for identical particles. The limiting hypothesis
is then shown to be valid in various field-theory models. The process of photon-fermion scattering is studied
in particular detail. We also investigate the process of bremsstrahlung and show that it gives no pionization
products. Finally, the above results are examined in the context of scalar electrodynamics, and all of the

qualitative features are found to be the same.

1. INTRODUCTION

BOUT a decade ago, the alternating-gradient

synchrotrons at CERN and BNL came into
operation. During the intervening years, many beauti-
ful and important experiments have been performed at
these accelerators. By now we have a great deal of
information about, among others, hadronic collision
processes, both elastic and inelastic! We should re-

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT (30-1)-4101.

1 Work supported in part by the National Science Foundation
under Grant No. GP-13775.

1A summary of recent experiments may be found in the
Proceedings of the Fourteenth International Conference on High-
Energy Physics, Vienna, 1968, edited by J. Prentki and J. Stein-
berger (CERN, Geneva, 1968).

member, however, that, at 32 BeV for proton-proton
scattering, the kinetic energy of each proton in the c.m.
system is only about 3 BeV. Therefore, at energies
available from these synchrotrons, we are not yet in
the high-energy region where the incident particles
are extreme relativistic. This situation is somewhat
improved by the recent operation of the Serpukhov
accelerator.

In order to learn some physics for higher energies, at
say, 400 BeV, before accelerators are built, we look for
common features between experiments at energies below
35 BeV and those utilizing cosmic rays.2 For example,
a rather striking common feature is the presence of two

2 See, for example, the rapporteur paper of M. Koshiba, in

Proceedings of the Tenth International Conference on Cosmic
Rays, Calgary, Canada, 1967 (unpublished).



