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0 mesons are studied in connection with equal-time commutators and soft-meson extrapolations whereby
values of interesting quantities including SU(3) )&SU(3)-violating parameters are found.

I. INTRODUCTION

"UCH attention has been devoted recently to the
~ study of the properties of the low-lying mesonic

states with J~ equal to 0+, 1+, trying to predict, e.g.,
their masses, widths, and weak. -coupling constants.

In this paper we shall be concerned with the pro-
perties exhibited by the m, E, and ~ mesons. In our
approach we shall use SU(3)XSU(3) charge algebra
and the well-defined 0- terms obtained through a sym-
metry-breaking Lagrangian transforming as a (3.3*)
+(3*,3) representation of SU(3)&4,'SU(3).' The con-
sequences of the use of higher commutators are found
and related to the usual assumptions.

We shall discuss the saturation of commutators and
the structure of matrix elements in the hard-meson
spirit. Only one particle plus the corresponding Z-graph
intermediate states will be considered; furthermore,
the form factors will be "once subtracted, "' i.e., we
give up the simplest pole-dominance hypothesis for
matrix elements of current divergences.

The pole-dominance hypothesis has been used
systematically in Refs. 3 and 4, for instance. How-
ever, using the experimentally measurable parameter
P= f~/V2f f+(0) =1.23&0.03,5 pole dominance for
every divergence (PD) gives, for the t4 mass (ttt„)
and width (I'), the values ttt„= 1.107+5 «4 "'BeV and
I'=1.143+0.331 "'BeV. These values can be compared
with the experimental values found by Trippe et ul. ,'
m„=1.1—1.2 BeV and I'=400 MeV, and by Crennell
et at. ,

' m„=1.160 BeV and I' =90%30MeV.
The disagreement between PD and experiment

appears clearly and justifies a treatment in the more
general framework mentioned above.

The work is divided into six sections as follows. In
Sec. II we explain the method in detail, showing the
role played by higher commutators. Section III is
devoted to elaborate general formulas and discusses
constraints and limiting cases. In Sec. IV our formulas

*On leave of absence from the Departamento de F|sica Teorica,
Vniversidad de Zaragoza, Spain, and GIFT (Secci6n de Zaragoza).

'M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. L. Glashow
and S. Weinberg, Phys. Rev. Letters 20, 224 (1968); M. Gell-
Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'75, 2195 (1968).

'See, for instance, S. G. Brown and G. B. West, Phys. Rev.
168, 1605 (1968); P. P. Srivastava, Nucl. Phys. B15, 461 (1970).' L. Schulke, Nucl. Phys. B14, 619 (1969).

Y. V. Lee, Nuovo pimento 64, 474 (1969).
'N. Brene as quoted by L. K. Pande, Phys. Rev. Letters 23,

353 (1969).'T. G. Trippe et al. , Phys. Letters 283, 203 (1968).' D. J. Crennell et al. , Phys. Letters 22, 487 (1969).
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are compared with experiment and the best fitting
parameters selected. In Sec. V the connection with
another work is drawn, and finally in Sec. VI we sum-
marize the conclusions.

II. METHOD

Ke use the equal-time commutators'

[p 4 p4+i5] xp 4+i5

[p 4+i5 p4—i5]—p 4

[P 5 F 4+45] 1P4+i5

(2.1)

(2.2)

(2 3)

and the 0 terms given by Gell-Mann, Oakes, and
Renner (GMOR) '

[F5',D'+"]= —4C[1/(K2 —-', C)]D54+", (2.4)

[Ps""»""]= a [C/(~2+C)]D5' (2.3)

[F5' D5'+"]= [( 2 tsC)/—3C]D—'+'. (2.6)

The whole procedure can be described in three steps.
(A) The equal-time commutation relations (KTCR)

are sandwiched between the vacuum and the cor-
responding m, E, ~ one-particle states taken at rest
(p=0). Thus, only 0~ objects play a role, and we can
select and study them without worrying about 1+
parameters. The procedure is advantageous because we
can verify better if a determinate set of hypotheses
works or not.

No other commutators similar to the above are useful
if we do not want to enter into the 7fI-7ft' mixing problem.

(B) The next step consists in introducing a complete
set of intermediate states in the commutator and then
truncating the sum rule, retaining only one particle
plus the corresponding Z graph.

From a technical point of view, what we are doing is
to retain only those intermediate states which permit
us to relate the appearing matrix elements to known
parameters. This procedure may seem somewhat
arbitrary. Similar saturations were done by the pioneers

8 The notation used is the following: The charges I4' are normal-
ized so that fF',F~'/=if'~~F~, fF',F5~j=if;;IF/, with f;,I, as
defined by Gell-Mann (Ref. 1). Weak-coupling constants are
defined through (0~A„'[a(q))=iq„f„where f = fa, and
(0~ V„5~b(q))=fsq„, with f5= f5 In particular, we h—ave.

&0llr'+" ls & f, &0[A."="IIC &=/»,
&0IA'+" lw &=f- &0IA'l~'&=f-'

with f =42 f 0. The notation for matrix elements of current
divergences is (a( D (d) = —id 54(t), (a ( D55 (d) =d4~ (t), with
t=(P —pd)'. We shall use f o=94 MeV.
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working on the charge-algebra method, ' but afterwards
the whole procedure was justified through the reformula-
tion of the problem from a dispersive point of view"
and the use of Regge asymptotic theory.

We think that a similar justification can be used
here by employing the dispersive soft-pion-corrections
method introduced in an elegant way by Fubini and
Furlan" and afterwards applied to vertex functions. ""
By means of a straightforward extension of this form-
alism to the soft kaon, orie obtains dispersive equations
whose convergence is known by arguments given by
Bjorken. Saturating these equations with the nearby
poles, we have obtained the same results as those of the
saturation procedure above.

(C) The third step consists in using the so-called
"once-subtracted dispersion relations" (quadratic
smoothness) for the divergences of the matrix elements
appearing in the equations. We shall use

G H"(t ns—')—
d~'" x (t)=ni'f

t —m'
(2.7)

G—H (t ni ')—
d.— x-(() m 2f, (2.8)

t —m2

G Hx(t mx2)— —
d"x " (t) = mx'fx— (2.9)

where G is the coupling constant controlling the
K ~ E7l decay and H»" are the parameters measuring
the breaking of pole dominance. The ~ width is given by

I' =$(p/m ')G'/4 . x (2.10)

where p stands for the pion momentum in the x rest
frame. The above assumption (C) can be related to the
characteristics of higher commutators. Let us consider
the equal-time commutators PD,De], (D„De], and
ED-Ds]

In any 6eld-theoretical model where the meson 6elds
are proportional to current divergences, the above ob-
jects vanish for nWP (canonical commutation relations).
If we repeat the Ansotze (A) and (B) for the correspond-
ing once-integrated commutators, interesting results
can be drawn about matrix elements of current diverg-
ences. From [D,D~] we obtain no equations but
identities whenever our once-subtracted assumptions
are used. Reversing the argumentation, we have proved
that the use of PD",Dp] =0 commutators implies
quadratic smoothness. Although this is a simple con-
sequence of the usual manipulations, it seems never to
have been written explicitly.

9 S. Fubini and G. Furlan, Physics 1, 229 (1967).
o See, for instance, G. Furlan, Brandeis University reports,

1967 (unpublished).' S. Fubini and G. Furlan, Ann. Phys. (N. V.) 48, 322 (1968)."M. Ademollo, G. Denardo, and G. Furlan, Nuovo Cimento
47A, 1 (1968)."S.P. de Alwis and S. A. Nutbrown, Nuovo Cimento 58B,
876 (1968).

From [D,De] commutators we obtain, respectively,
the equations H "+H~=0, H"+Hx =0, and H +Hx =0
for the same index choice in Kqs. (2.1), (2.2), and (2.3).
Therefore the values H"=H~=H"=0 are obtained
when the three equations are used simultaneously.

From the PD,De] commutators we obtain, respec-
tively, H"=0, H =0, and H~=O, again for the same
index choice as in Kqs. (2.1), (2.2), and (2.3).

We have shown how higher canonical commutators
impose constraints on the kind of smoothness to be
chosen. Fourth-order smoothness arises naturally in the
general approach of Ward identities considered by
Gerstein, Schnitzer, and Weinberg, " but in fact
quadratic smoothness has been used in applications.
We have proved in our context that quadratic smooth-
ness is equivalent to the use of canonical commutators
[D,D~] =0. Higher commutators imply PD and there-
fore must be rejected, at least as far as our simple
saturation procedure is concerned.

III. APPLICATIONS

fx'+2f "—f ' f 2+fx2 2f p2

f+(o)=, h+(o) =

f 2+2f p2 fx2
g+(o) =

4 .f.'
(3 7)

The f+(0) expression is the well-known Glashow-
Weinberg formula' obtained independently by several
people. ' Our procedure is similar to that of Dahmen,
Rothe, and Schulke.

' I. S. Gerstein, H. J. Schnitzer, and S. steinberg, Phys. Rev.
175, 1873 (1968); I. S. Gerstein and H. J. Schnitzer, ibid. 185,
1876 (1968).

"H. D. Dahmen, K. D. Rothe, and L. Schiilke, Nucl. Phys.
B/, 472 (1968); Riazuddin, A. Q. Sarker, and Fayyazuddin, ibid.
B6, 515 (1968); P. P. Srivastava, ibid. B7, 224 (1968).

Applying (A), (B), and (C) assumptions to the
KTCR (2.1), (2.2), and (2.3), we find, respectively,

fx=2f-'f+(0)+2f.&+(0) (3 1)

2f '=2fxf+(0)+2f„gp(0), (3.2)

f„=2f,'g~(0)+2 fxh+(0), (3.3)

where f~(t), g+(t), and h~(t) are form factors de6ned by

&x'(p) I ~.'+"(0)
I
& (&))

=f+(~)(&+p).+f-(t)(&—p). , (3 4)

(pro(p)) A 4+'s(0))„—(p))
=iLg+(t)(k+p)„+g (t)(k —p)„], (3.5)

(x-(p) i A „'(0) i
E-(k) )

=iL& (t)(&+A).+I-(t)(&—p).] (3 6)

From (3.1), (3.2), and (3.3) we get the f+(0), g+(0),
and h+(0) values
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It is easy to check that a more complicated structure
for matrix elements of current divergences would not
lead to the Glashow-Weinberg formula (3.7), which is
therefore a result of quadratic smoothness. PD ap-
proximations are equivalent to HER=II =H"=0 (in
fact, two of them give the third one) and then we get
the following results:

v2f+(0) =1 [exact SU(3) valuej,

X=)+1,

m„=(m I —m. )/P. —1),
2f,—'G = (mK' m. '—)/(& 1),—

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

We see that everything can be expressed as a func-
tion of the measurable quantity P. Therefore, PD gives
very definite predictions to be checked by experiments.
Using the P value' P = 1.23+0.03, we obtain

X =1.23+0.03, $ =0.23&0.03,
esg=1 &07+0064 ' 5 BeV,
I"=1 143+O.33j-o 2" BeV.

(3.13)

—,'C m/isf/r, (3.14)
W2 —-', C

mx'
If%

l

m„s—m. s

G (
m.'f.fx — +m.'fxf. l

&"+
m. 2—nz 2

As pointed out in the Introduction, PD gives an in-
correct value for I' as compared with the experimental
results. ' '

Let us now apply our assumptions to the 0. commuta-
tors (2.4) and (2.5) [the equation arising from (2.6)
is not independent]. The resulting equations are

G m. '
m, sf, m. f,f,.l

~-"+"
"m„s—m ' E m„' —mrrs

We have obtained Eqs. (3.1), (3.2), and (3.3) [or,
equivalently, (3.7)j and (3.16) and (3.17) as the basic
relations. Therefore, we have only two theoretical rela-
tions plus an experimental value involving the un-
knowns G, X, $, C, and m„'.

By searching the experimental ns, I' bounds, one can
find zones for X, $, and C. This point will be discussed
in Sec. IV.

Solving our equations for two unknowns as a func-
tion of the rest, we obtain

2f aG

—F'/'+m '(P —Xs)+mrcs(1 —P)+m„s(Xs—1)

(3.18)

3Fi/s+m, 'P+3m/r 9 '—3m. '
C= —v2, (3.19)

2m—,'P+6 m/Xr's+3m, s

g 1/s m sf g i/s —m sf
VZ+C -42y-,'C

Z„t/s =m„'f„
%3C

(3.20)

and Eq. (19) of Glashow-Weinberg,

m sf g -i/2 —mxsfxgx 1/2 m sf g --1/2 (3 21)

turns out to be an identity.
Their Eq. (20),

where Y=X(m, s,mrr'hs m 'p) and p=1+gs(] —2/p)
The symbol X(a,f/, c) means g'+b'+c' 2/rf/ —2f/c —2/rc-
The sign in front of I"12has been chosen to obtain the
correct expression in the PD limit.

We now proceed to compare our formu/a with the
pioneering Glashow-Weinberg work. ' It is easy to find
the values of their "renormalization constants" Z,
Z~, and Z„as a function of the C parameter used by
GMOR by realizing that they are essentially I or e
expectation values between vacuum and one-particle
states. Thus we obtain"

=-,'C m„'f 0 (3.15).
K2+C f g i/s fxgxi/s f g—i/s (3.22)

Subtracting (3.14) and (3.15), we obtain

m„.'f„'
= —ssC mrrsf/r+ssC m 'f 0.

~aC ~2+C
(3.16)

is the same as Eq. (3.16) above. 'r

So we see that our procedure includes the original
Glashow-Weinberg formulas. In this context PD means
Z =Z~ =Z„, giving, for the C parameter, the value

Equation (3.14) can be written. in a more convenient
wa

h, (0)
5$/c

f+(o)
G = (m. '—m/rs)

1 m. 'f/i
3C

v2 ——,'C f.f.o

2m~2K —2m 2

C= —W2 (3.23)
2m/r9, +m '

'6 We are using the contrary sign convention for f, as used by
Glasho~ and Weznberg (Ref. 1).

» Glashovr and Weinberg obtain the numerical results A2= j..17,
@=0.34, V2f+(0)=0.85, m, &0.670 BeV, using both Weinberg
sum rules. We think that the second Weinberg sum rule must be

(3.1&) avoided and in such a case the difhculties arising with the rn,
bound disappear.
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As for the original GMOR expression for C,

2m~ —25k~
C= —42

2m''+m ' (3.24)

formula for C:

2m''(Z' —P) —2m. '(P —1)
C= —V2

2m''(X' P—)+m '(P 1)
(3.28)

we can check, as wiH be described more clearly later,
that our general formula (3.19) agrees with (3.24) in
the sense that the predicted C parameters are of the
same order, C= —1.2, but we must remark that formula
(3.24) cannot be incorporated as another equation.
T11c approxlmatlolls glvIIlg (3.24) arc Z =Z/I aIld

f =fx (see GMOR'), i.e., f„Z„'/'=0 and therefore
f„=0 It i.s obvious that we are disregarding this
eventuality. Is

Returning to the general case, we shall now exhibit
some bounds that naturally arise in the model.

If we assume C to be negative and smaller in modulus
than v2, we immediately obtain the conditions Z '"f
&0 and ZxI/'fx&0. From the relation f fx&0 sug-
gested by 5U(3) we obtain the bound first written by
Glashow-%einberg' ":

2mx9, '(X' —&' —1)+m 'L1 —(X'—P)'j
el 2= —— (3.29)

2t2{/2 —t2 —1)

2m/r'P —2m '
C=—v2

2m''p+m ' (3.30)

the C formula has been obtained by Fuchs and Kuo. 22

(c) Pote dominance for D54+" matrix elements, i.e.,B~=0.The corresponding formulas are

mx'L(P —1)'—X'1+2m '(@+X'—1)
(3.31)

2/2($2 g2 1)

(0) Pole dominance for matrix elements of D5', i e.
II =0. The m„and C formulas are

mrc'(X'+1 —P) —2m. '
C= —K2

mx'(l '+1—P)+4m. 2

m &
I m-f- mxfx—l /I f.l, (3.32)

Ally two of tllc above colldltloIls (a) (c) ale equivalent
to PD.

The rest of the conditions considered correspond. to
the equality of renormalization constants. We have

(d) Z =Zx. The m„and C formulas are

ma'XP. —1)—m '(X—1)
m.2=

K

$2
(3.33)

2m''(X' —P) —2m. '(P —1)
C= —~2 . (3.34)

2m''(X' —P)+m. '(P —1)

(e) Z =Z„. The formulas are

md%. '—m '($11)
SSK (3.35)

~(~+1)

where the equal sign arises when Z '/'/Zx'/ 2m /mx
From the condition P&0 and the experimental rela-
tion p&1, wc obtain the X bound A'&1/(2/p —1).
If tllc Quinn B]olkcn2e condrtron %2f+(0)& 1 holds)
vre obtain X&P, which is a better bound than the
former one. An obvious condition must be, of course,
~K&~Z+~~

We shaH now discuss particular conditions, less
restrictive than PD, in order to check their implica-
tions with experiment. It is noteworthy that whenever
a condition of the set written down is considered, the
ambiguities arising in the general C and 6 formulas
disappear.

Some of the following particular cases have already
been used by other authors in a related framework.

(a) Pote dominance for D4+" matrix elements, ie.
H"=0. This condition has been used first by Chang
and Leung" in the equivalent form

f 2+f 2 2f f (Z I/2/Z I/2) —f 2 (3 2(i)

We have found that this equation can be expressed in
a convenient way by writing the corresponding m„
formula

2mx9. '—2m, '(t+1)
C= —V2

2mx9. '+m '($+1)

(f) Zz. =Z„.The formulas are

(3.36)

mx'(X' —p) —pm. 2(1—1/p)
SSK2= (3.27) m. '+mx9 (g—X)

te 2=
K (3.37)

For the sake of completeness, we also write down the

'8 Such a procedure has been used by Fayyazuddin and Riazud-
din, Phys. Rev. D 1, 317 (1970).

'9The same condition arises from the necessary constraint
F&0.

'o H. R. Quinn and J. D. Bjorken, Phys. Rev. 1'Tl, 1660 (1968)."L. N. Chang and Y. C. Leung, Phys. Rev. Letters 21, 122
(1968).

2mx9. ($—X)+2m '
C= —K2

2mx9($ —X) —m ' (3.38)

Of course any two of the above conditions (d)—(f) are
equivalent to PD.

~ N. H. Puchs and T. K. Kuo, Nuovo Cimento 6%A, 382 I'1969).
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TABLE I. Scalar-meson parameters and symmetry-breaking parameters are displayed, with P fixed at the. value 1.23
and P running from 1.16 to 1.23.

1.16
1.17

1.18

1.19

1.20

1.21

1.22

1.23

0.397
0.378

0.358

0.337

0.314

0.289

0.261

0,230

mg
maxima

1.103
1.171

1.250

1.344

1.458

1.601

1,790

2.054

v2 j+ (0)

0.943
0.951

0.959

0.967

0.975

0.983

0.991

1.100
1.150
1.100
1.200
1.150
1.100
1.200
1.150
1.100
1.200
1.150
1.100
1.200
1.150
1.100
1.200
1.150
1.100
1.200
1.150
1.100

—1.010
—1,075—1.143
—1.120—1.164—1.192
—1.187—1.208—1.224
—1.225—1.236—1.246
—1.250—1.258—1.264
—1.269—1.274—1.278
—1.284—1.287

1.290

0.479
0.587
0.452
0.746
0.599
0.485
0.798
0.654
0.529
0.897
G.740
0.602
1.048
0.866
0.705
1.276
1.056
0.861
1.646
1.363
1.111

3.629
2.721
2.140
2.350
1.977
1.744
1.802
1.629
1.489
1.504
1.404
1.323
1.304
1.2402
1.190
1.157
1.118
1.084
1.043
1.019
0.967

(ga 1/2

E~

.7.032
5.733
3.975
4.950
3.721
2.953
3.397
2.786
2.322
2.563
2.183
1.871-

1.999
1.742
1.521
1.574
1.394
1.233
1.229
1.102
0.985

(up)

—0.920
—0.838—0.708
—0.766—0.665—0.585
—0.612—0.544—0.485
—0.494—0.444—0.398
—0.393—0.355—0.320
—0.304—0.276—0.25G
—0.224—0.204—0.186

IV. NUMERICAL VALUES

Our formulas have been explored maintaining a 6xed
p value and moving X in the inierval allowed by the
above-mentioned bounds. For some given values of P
and X, everything is determined whenever m„ is known.
In Table I the numerical values of the parameters are
shown using the mean value p = 1.23 and three different
m, values, i.e., 1.1, 1.15, and 1.2 BeV. As an output, the
values of C, I', (Zx/Z )'~', (Z„/Z )'~', (us)/(up), and

f~(0) have been considered. (u8 0) represents the
vacuum expectation value of N8, 0. Several features can
be extracted from an analysis including p from 1.20
to 1.29.

(a) The x width is a very sensitive quantity as a func-
tion of X in the X,„zone Lin general, for 'n&X;„, there
is a minimum that is not displayed in the table; i.e.,
I'=I'(X) is a function decreasing as X increases in a
reduced zone near X threshoM and afterwards steadily
increasing up to X, j.

(b) I' changes by 30-50/~ when m„ is varied from 1.1
to 1.2, the most important efkct being in the X zone.

(c) C values are approximately —1.2, similar to the
GMOR value.

(d) %2f+(0) values lie very near to 1 (~5% error)
as compared with 0.85 obtained using both Weinberg
sum rules.

(e) No narrow peak can be reached.
(f) When the sign in front of Y'" in (3.18) and (3.19)

is reversed, it is impossible to get F values within the
bounds allowed by both experiments. Taking the central
6g«e p = 1.23, and m„= 1.1 BeV, we see that the best I'
value, I' =452 MeV, is obtained for A. = 1.17, For
P = 1.26, I' values =400 MeV are not yet accessible, but

with p=1.20 we again obtain that region if we select
X=1.15. If m„ increases, p must decrease in order to
obtain the width =400 MeV.

We see that the model is compatible with the en-
hancement of Trippe et ul. ,

' although more precise ex-
perimental data are needed in order to choose a well-
defined set of theoretical parameters.

Concerning the conditions listed at the end of Sec. II,
it turns out that they select solutions I'=I'(X) which
are very steep (with an exception to be discussed below).
In fact, when the experimental m, bounds are taken into
account, only X lying closely to X, =P are acceptable
(note X =P plus whatever condition considered in
Sec. II give PD) and we cannot find a x width =400
MeV.

The exception quoted above is the condition (a)
first used by Chang and Leung. " When we choose
P =1.2, there is a zone where the values are compatible
with experiment. For instance; for X=1.14, m„ is
1.115 BeV and 7=400 MeV, It is the zone discussed
above in the general case.

V. COMMENTS

We shall briefly comment in this section on some re-
lated work, relating it to the general, discussion above.

Schulke' (our work was motivated in part from read-
ing his paper) works with the charge-charge com-
mutators picking the same intermediate states as ours
and using pole dominance everywhere, thus obtaining
PD results. Lee' also works in the context of GMOR
commutators and obtains the PD model results in-
voking asymptotic symmetry for the Fourier trans-
forms of (0( T(u, (x)u, (0)) (0) and (0~ T(e;(x)w, (0)))0).
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Asymptotic symmetry now implies that Z =Z~=Z„.
Thus Schiilke arrives at PD through the condition
H"=H~=H =0, while Lee does so from Z =Z~=Z".

Cleymans" uses the formulas (19) and (20) of
Glashow and %einberg and Ands the x width in the
compatible zone with the experiment of Trippe et al. e

using, instead of Weinberg's sum rules, a pair of rela-
tions from a model introduced by Sugawara. %e think
that the procedure is not meaningful because at least
thc first Weinbcrg sum rule is included in the formalism
and so must be taken into account.

Chang and Leung" introduce the pole-dominance
hypothesis of the divergence of the strangeness-chang-
ing vector current. %e have shown that the experimental
data support this conjecture. However, we do not agree
with their numerical manipulations because it turns out
that ..their values do not obey Glashow-%einberg
bounds: This dlscI'cpRncy ls CRuscd by thc numerical
approximations carried out in the formula for m„.

Auvil and Deshpande'4 have worked using the ap-
proximations Z~=Z~=Z". However, in a later work"
they give up these assumptions and find numerical
results analogous to ours.

In the application of the Fubini-Furlan method to
vcrtcx functions) pole-domlnRnce Rpproxlmatlons have
always been used when numerical results have been
obtained. So do Ademollo, Dcnardo, and Furlan"
and de Alwis and Nutbrown)" who use pole dominance
for D4+'5. McKay, McKisic, and %ada26 use in fact,
what we have called PD. Denardo, Napolitano, and
Sohani'r employ the higher commutators pD, D~j=0,
obtaining a formula for A. as a function of m„, which
corresponds to our (3.11).

Finally, we shall comment on seveial reports. Pande'8
has obtained a formula for C similar to ours working
with phenomenological Lagrangians. Rodenberg and
Zerwas29 study two-, three-, and four-point functions
in the context of the Fubini-Furlan dispersive methods,
in fact, they include PD in their formulas. McKisic'0
has also employed the Fubini-Furlan method assuming
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VI. CONCLUSIONS

In this article we have discussed the properties of
scalar and pseudoscalar mesons, emphasizing the role
plRyed by thc K meson» OuI' starting poiIlt hRs bccn
that the hypothesis of pole dominance of matrix ele-
ments of any current divergences (PD), when combined
with the usual saturation hypothesis of matrix elements
of commutators, is not supported by experiment. %e
have shown that the most convenient framework to
describe the actual situation are the hard-meson
techniques, speci6cally the quadratic smoothness (the
so-called once-subtracted dispersion relations). This
particular form of smoothness arises naturally when our
saturation insets is applied to the canonical equal-
time commutators [D,D~j=0.

%'c have discussed the connections with the Fubini-
Furlan soft-pion methods, checking that our direct
procedure, when applied to charge-charge and 0 com-
mutators, is equivalent to the corresponding results
derived from the application of the Fubini-Furlan
method extended to soft kaons. This finding sup-
ports our procedure and also shows the connection
between Fubini-Furlan extrapolations Rnd hard-meson
techniques.

As for the experimental situation, we have checked
that our procedure is consistent with the broad reson-
ance of Trippe et ul. 6 rather than with the peak of
Crennell et a1.~ Furthermore, we have shown that the
pole-dominance model for matrix elements of the
divergence of strangeness-changing vector current is
also consistent with experiment. Values for relevant
parameters including the SU(3)XSU(3)-violating pa-
rameter C and the Xt3 form factor f+(0) are obtained.
This shows a system with a Lagrangian quasi-invariant
under SU(2)XSU(2), with a vacuum state breaking
both SU(2) XSU(2) and SU(3) and. giving quasi-
SU(3) limit values for the charge associated with
strangeness-changing vector current.
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