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We give numerical estimates of the magnitude of A
using 82= —10' and assuming maximal CI' violation,
i.e., g =-',m. $ is taken to be a constant and its magnitude
is chosen to be 1, 4, and 20. The magnitude of A is
given in Fig. 2 as a function of the charged-pion kinetic

energy in the region of the neutral-pion pole. As can
be seen, the magnitude of A can be relatively large
over a sizable portion of the charged pion spectrum. In
particular, on the basis of the g -pole model ($~3), the
magnitude of A averages out to be =10% over the
region shown. The sign of A, however, remains unde-
termined since the sign of P and p are not known. For
nonmaximal CI' violation, one has to multiply the
asymmetries in Fig. 2 by sin&. For p((1, the resulting
asymmetry as expected, would be quite small.
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The Bethe-Salpeter equation is solved for nucleon-nucleon scattering in the ladder approximation with
pion exchange for the 'S0 and 'Po states with no approximations beyond use of a Gnite mesh. It is found
that solutions exist without the need for any cutoff so long as the coupling constant g~/4~ is between about
—4 and +7 for the 'S0 state and for g /4m less than about +4 for the 'I'0 state. These results are in quali-
tative agreement with the predictions of Mandelstam. It is found that the Pade approximant as applied to
the coefFIcients of the iteration solution provides an efFicient alternative to the method of matrix inversion
for solving the equations for a given mesh.

I. INTRODUCTION

'HK Bethe-Salpeter (BS) equation' for nucleon-
nucleon (X1V) scattering is of physical interest

for several reasons. It is a relativistic generalization of
the Schrodinger equation and sums a limited set of
graphs from field theory depending on the kernel. In
fact, our original motivation"'". ' for considering this
problem was directed toward ending a means of
generating the amplitudes for the individual ladder
graphs. We will consider the ladder series with pion
exchange for the J=0 case in this calculation.

The realistic BS equation' is diKcult to deal with
since it is generally in the form of coupled singular
integral equations. Several authors' have considered
various aspects of the spin-~-on-spin- —, problem. For
the EE case, Gourdin4 took advantage of the four-
dimensional symmetry and expanded the wave function
in hyperspherical harmonics. The result was an infinite

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

$ Present address: Service de Physique Th6orique, CEN-Saclay,
B. P. No. 2, 91 Gif-sur-Yvette, France.' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).' A recent review is N. Nakanishi, Progr. Theoret. Phys.
(Kyoto) Suppl. 43, 1 (1969).' J. Connell, Phys. Rev. 179, 1374 (1969); P. Narayanswamy
and A. Pagnamenta, Nuovo Cimento 53A, 635 (1968); A. R.
Swift and B. W. Lee, Phys. Rev. 131, 1857 (1963).' M, Gonrdin, Nuovo Qrnento 'r, 338 (1958),

set of scalar coupled equations in one continuous
variable which were coupled in the quantum number
associated with the fourth dimension. A solution was
then obtained by taking only the lowest value for the
quantum number. However, the eRect of this approxi-
mation above the elastic threshold is not clear. Ito et uj|.5

and Murota et al. ' have approached this problem some-
what diRerently. They have used the kernel-subtraction
method of Levine et al.7 to reduce the singularity of the
kernel and taken the approximation of neglecting
negative-energy intermediate states. This leads to a
single integral equation in two continuous variables
plus an auxiliary integral equation in one variable.
These equations are solved by matrix inversion with
reasonab/e accuracy. However, the approximation of
neglecting negative-energy states is probably poor since
the pseudoscalar y5 interaction tends to strongly
couple positive- and negative-energy states. Therefore
in this calculation we will employ the methods of
Murota et al. , but we will include all intermediate states.

Fortunately we are not completely ignorant as to
what to expect for solutions to the BS equation.

' H. Ito, M. Mizouchi, T. Murota, T. Nakano, M.-T. Noda,
and F. Tanaka, Progr. Theoret. Phys. (Kyoto) 3'7, 372 (1967).' T. Murota, M.-T. Noda, and F.Tanaka, Pro~. Theoret. Phys.
(Kyoto) 41, 1251 (1969).

7 M. Levine, J. Tjon, and J. Wright, Phys. Rev. Letters 16, 962
(1966).
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Fj:G. i. Schematic representation of the BS equation.

Mandelstam has analyzed the ES scattering problem
for pseudoscalar exchange in the ladder approximation
by examining the large-momentum behavior. He has
reduced the BS equation to differential equations valid
in the region of small r in coordinate space and looked at
the behavior at the origin. On this basis he concludes
that for a given state, unique solutions exist if and only
if the coupling constant g'/4)r (which is about 14 from
NN scattering data) is less than some critical value. In
particular, for the 'So state, g'/4)r(2n. , and for the 'I'o
state, g'/4or(~on. . In a solution with no approximations,
one expects to find a behavior reflecting this limitation.

II. METHOD OF SOLUTION

A. Reduction of BS Equation

The BS equation in the ladder approximation is
shown schematically in Fig. 1 where the energy and
momentum of each line is indicated. For on-shell scat-
tering, pp and pp' will be taken as zero. The equation
to be sol.ved is

4 =G+GS4, (6)

with 6 denoting the interaction and S the two-nucleon
propagator, %(q)%'~((I) =I,I, can be inserted between G
and S. For particle 1,

(E+Itp)pp( ) —p( ) 'q+m
~'4)

(&+co)'—&'(V)

@t(g+q )~o(&)+g((I)~o(&)y(~o(&)

(E+(Ip) ' E'((I)—
(~+co)+&((I)Vp"'

(1)

(&+co)'—&'(c)

Therefore in terms of 0' the Dirac equation becomes

poyo4yo —p y4 —m4'=0,

where pp =E(p) and the adjoint equation is

poppy yp+4'tp y —m%"=0.

The curious appearance of the extra yo is necessitated
by the combining of positive- and negative-energy
solutions.

Writing (l) as

g2 &,(~)&,(2)

4~ (po' —pp)' —(p' —p)' —~'
—

g2 ~ (l)~ (2)

dqodg
-4 (po'-V )'—(p'-q)'-~'-

&+co—&(c) I (1)@t+ (i)

Z+qp+E(q).
=S &))I (&)+)~ (&) (7)

(P+(Ip)gp()) q P(()+mX—
(&+co)'—~'(V)

Taking particle 2 into account in a similar manner, (6)
can be written

(E—(Ip)gp '+q y "+m
X— (&)

(~—vp)' —&'(v)
or

4 =G+G+S,(')S,(')+'pe

0 t7p(t)4'= 4'tyoG%'+VtyoG%'S%'~y p(t)4'.

Here E'(p) =p'+m' and the superscripts refer to
particle 1 or 2.

The Dirac matrices will be taken as the direct product
of two sets of Pauli matrices such that go= p,I,
y5 ——p I, and y=zp„e.

There are four solutions to the free Dirac equation,
two with positive energy and two with negative energy.
We combine these solutions to form a 4X4 matrix with
the positive-energy solutions in the first two columns
and call the result O'. It can be shown that

(r p E(p)+m)"'
!4=! I,I, ip„—

E(p)+m 2E(p)
' S. Mandelstam, Proc. Roy. Soc. (London) A23'?, 496 (j.956).

TABLE I. p-spin states indicating positive or negative
energy for particle 1 then particle 2.

States Notation

Triplet

—(+—0+ —+)
V2

e (even)

Singlet —(+—g —+)
V2

0 (odd)

Here the arguments of the N's are taken from Fig. 1,
yo and 4 indicate the product of two such objects, one
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for each particle, and

1+p, (1))

E+qp E(q)— 2

(1 p (1) 1 (1+p (2)

+-
Sq-q q-2(q) E 2 2 q

—2(—q) ( 2 )
(1 p (2))-

(1O)
E—qp+E(q) 4 2 )

the notation &=%typq&)%' and G=%'typG+, the reduced
equation is symbolically

B. Interaction

The interaction G is

G= (g'/4~) [+'(q) "'7p"'V 2"'+(P)"'
XqIqt( q) (2)yp(2)yp(2)@( P) (2))

x[(qo —Po)' —((1—p)' —p']-'. (»)
S is now independent of angle and spin qr. Introducing Using (2) for @, G is reduced to

G = (g'/4w) {(ip„('))(ip„(2))[F'+FB (e(')+e(2))+B e(')B e(')]
——,'(Sp„(') —ip ('))[F(qr("+22"') A+B.qr")A. qr(')+B. qr(')A qr(')]
——,'(ip„(')+ip "')[—F(qr") —qr")) A+8 qr "&A qr(2) —B (2("A qr")7

Ip"'I—p"'9"'«"' A]}fq[(qp po)' —
(% p—)' —p'] '—(13)

The quantities occurring are

p'q.
F=1+-

[E(p)+m][E(q)+m]

iq, Xp8——
[E(p)+m)LE(q)+m]

p qA=—
E(p)+m, E(q)+m

[E(p)+m][E(q)+mj

4E(P)E(q)

Writing (13) in the compressed form

(14)

in the 0. space, which is the usual spin space. The p spin
is analogous to the 0. spin except that instead of opera-
ting on spin-up and spin-down states, the p spin
operates on positive- and negative-energy states in
exactly the same manner. Singlet and triplet p-spin
states can be formed by the usual combinations of two-
particle states. In Table I the p-spin states are given.
Table II indicates the results of p; acting on these states.

The properties of the X; operators regarding spin
and parity can be determined by observing the sym-
metry in cr('} and 0"' and by noting that o and B are
pseudovectors, A is a vector, and F is a scalar. The
results are recorded in Table III. Odd parity indicates
a parity-nonconserving transition and odd spin indicates
singlet to triplet coupling.

C. Proyagator
G (g /42r) {plX1+p2X2+psXs —p4X4}

xx[(qo —po)' —(q —p)' —']-', (13)

it is seen that p; acts only in the p space while X; acts

TABLE II. Properties of the p; operators.

The propagator S is proportional to I but it does
not conserve p spin. Although S is diagonal in the
representation ++, ,+, +, this is no longer
true for the representation of Table I. For this repre-
sentation the S operator in p-spin space is given as

Result
State of p1

—(e)

Result of p2

1——(0)
v2

1
—.—(o)

v2

zero

1—i+0+ —)
V2

Result of p3

1—(e)
V2

1——(e)
V2

1—(+8-)

zero

Result
of p4

(y Isl+) =[E+q, -E(q)+
X[E qp E(q)+ip]——

(-Isl -)=LE+q.+E(q)-']-
X[E—qp+E(q) —i2]—',

(~lsl p) =(olslo) =2{[E+qp—E(q)+ip] '
x [E qo+E(q)—i2] '—
+LE+qo+E(q) i2]'—

X[E—
qp

—E(q)+ip]—'},
(olsle) =(elslo) =—,'{[E+qp—E(q)+ip] '

x [E qo+E(q) 227— —
—[E+qp+E(q) —ip]—'

X[E—
qp

—E(q)+ip] '}.

(16)
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Operator

X1
Xm
X3
X4

Parity

even
ocIcl
oc1cI
even

Spin

even
even
odct
even

TAsx.z III. Properties of the X; operators. tion y(p, po,n) (n~y~'So+), G(p, po,~,q, qo, p) =(~IGI p),
and S(q,qo,P,y) =(P~S~Y) and labeling the states So+,
'So, 'I'O', 'I'0' as 1, 2, 3, 4, respectively, the equations
are

D. Intermediate-State Analysis
21r2

dq~qo 2 G(p po & q qo p)

Now (11) can be considered taken between appro-
priate states. In particular, we will consider the 'So
state. The desired quantity is ('So+~tf ~'So+), where
the + indicates a positive-energy state. The equation
becomes

( lyl'So+) =( lGI'So+)

dq dq 2 (&lGIP)(PISI&)hi@I'S,+). (17)

Here n, P, and y are appropriate states and P and y are
summed over for the intermediate states. In general,
since the total angular momentum is conserved, there
will be eight intermediate states, four each for 'So and
'Po since there are four possible p spins for each. How-
ever, the character of the interaction will limit this
number. The integration over angle in the homogeneous
term has been carried out by using the addition theorem
which is allowed since S is independent of angle and
spin. In addition the de6nitions of 6 and p have been
shifted so that (o. ~G~ p) =2p psG and (n~p~ p) =2p pop,
which gives the diAerent coeKcient for the homogeneous
term relative to (1).

Possible intermediate states P and y are now to be
determined by the nature of the interaction and the
S operator. Of course, n must take on all the values
that y takes on in order to give a complete set of equa-
tions. Taking n as 'So+, ptXt gives p='So and S gives
y='So, psXs gives nothing; psXs gives p='Po' and
S gives p=sPo' or 'Po'. Finally, p&X4 gives P='So+
and S leads to y = 'So+. Now we must consider o.= So,
I'0', and 'I'0' to see if additional y's are found. The

result is that no other states appear.
This indicates that four coupled equations in two

continuous variables are required. Introducing the nota-

XS(q,qo,P,y)g(q, qo, y), (18)

where p= (E'—m')'~' is the momentum in the center-
of-mass system. Now p(p, 0,1) is essentially the T
matrix describing the desired on-shell 'So+ ~ 'So+
transition.

The input for the calculation is the quantity
G(P,P„n,q, qo, P). These elements are found by taking
matrix elements of the operator G from (15) between
states of either

~

'So) =X, or ~'Po) =p K/p, where K is
written as a Cartesian vector with components

x,= (pp —un)/K2,

x„=i (pp+nn)/V2,

x,= (np+pn)/K2,
and

x, = (np —pn)/v2.

o. and p denote the usual spin up and spin d.own. For ex-

ample, consider G(p, po, l,q, qo, 1). For this, ('So+
~
G

~

'So+)
is required and since it is a +~+ transition, only

p4 will contribute. Therefore

G(p, po, 1,q, qo, 1)

g2 $ 1

d(cos8){—(+ ~p4~+)X,"o~'~ Aofo~ AX,
4+ 2

X2PP't (qo —po)' —(q —p)' —p'5 ') (»)

Carrying out the calculation of the spin part of the
matrix element,

x,to('& Ao&2) Ax,
=x,te&'& AL —A. K5

=x,tr AAx, sA—XA x5—= —A'. (21)

TxnLz IV. Elements of (n(P) ~G~P(g))X2E(P)E(q)X4s/gs.

'Sp+

'So
3+De

3P&o

1S +

EE(p)E(q) m—'3Qo+ P(Q~-
LE(P)E(e)+~''jQo P—qQ~-.

—v2 (mPQO —mqg1)
0

'Sp

—EE(p)E(q)+~'jQo —
P&Q~

PE(P)E (q) m')Q—o+PqQi—
VZ(mpg, —mqg, )

0

Sp'Oe

—VZ(mqgo —mpQ1)

N(mqgp —mpg1)
2(pqg, +m2Q, )

0

3P o

0
0
0

-2~(p)~(q)g
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Therefore since (+~p4~+) =1,

G(p, po, 1,q, qo, 1)

g2 ] 1

= —X—
4x 2

g2 $ 1

= —X—
4m 2

2pqA'1V
d(cos8)

(qo —po) '—q' —p' —ti'+2pq cosO

d(cosg)

(2L&(p)~(q) —~'—Pq co»j/L&(p)+~jL~(q)+~3) (LF(p)+~]L&(q)+~j/4&(p) F(q) )

(Lp'+—q'+t" (Po —qo)'j/—2Pq «se)—

g2

( —L&(p(q) —~'3Qo(s)+PqQi(s) )
4&r 2E(p) Z(q)

Here Q~(s) is the Legendre function of the second kind of order t and the argument is

s =EP'+q'+t" (Po q—o)'j/2—Pq.

Carrying out the calculation of the other matrix elements, the results in Table IV are found.

E. Kernel Subtraction

(22)

(23)

The resulting set of equations is singular due to the presence of S(q,qo, 1,1). From (16) it is apparent that
(+ ~

S
~ +) has poles which lie on either side of the qo integration contour and which coincide when the two particles

are on the mass shell leading to the expected branch cut from unitarity. This difficulty cannot be avoided but it
can be subdued by the kernel subtraction method of Levine et aL This method replaces the original equation with
another in which the effective interaction vanishes at the double pole. p' is dered as

where t is independent of p, po, and n and is fixed by requiring

y'(P, 0,1)=G(P,0,1 P,0,1).
Substituting this into (18),

Z

t&'(P,pop) =G(P,P. ~tP, 0 1) —t dqodq —r, G(p, po, ~,q, qo,P)S(q, qo,P,v)4'(q, qo,v).
2x.2 P v

(25)

(26)

Using (25),
G(p,0,1,p,0,1)

G(P,0,1,P,0,1)+(o/-'~') J'dqdqo 2 G(P 0,1 q, qo,P)S(q, qo, P 7)&'(q qo 7)
(2&)

&'(P Po ) =G(P Po»P 0 1)

G(p, po,~,p 0,1)G(p,0,1,q, qo,p)

G(p, 0,1,p,0,1)

introducing this result into (26), the equation for )t is singular, it is not as singular as that for )P and. it can be
handled using standard methods.

From (16) it is seen that (+~S~+), (—(S( —),
(e(S[e), and (0(S)0) are even in qo, while (0(S[e) is odd.
Since G(P,Po,a,q, qo,8) is dependent on Po and qo only

dqdq Z G(p, po, ,q, qo, t3) through (23), which contains (po —qo)'& it is apparent
that P'(q, qo,n) is even in qo for u=1,2,3 and odd in qo

for 0.=4. Consequently the qo integration can be
changed to the interval (0, oo ).That is, if X is defined as

XS(q,qo, P,&)y'(q, q„&). (2g)

Now when q= p and qp=0 that is, for internal nucleons
on shell, the effective interaction vanishes for P=i
which is the 'So+ state. While the equation for p is still

+(P)Po)o))q)qo&P)

=lLG(pp. wq, qoA)+G(p Po~ q —qo &)j

G(p, po,~,p,0,1)G(p,0,»q, qo,P)

G(p, O, i,p,0,1)
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E( ) ~) in (32) reqThe appearance o 4' ( .
nationion of the auxiliary eq"a
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E(p), n, q, &g4 Pdq d9'4

xs(q, q,p»)~ «'g"'
p/(p p o&) =G(P Po& )P&

-,0,1)

3 and
e introduct

for ~P=12 3

E-E(p).- P' "@ (p E E(p), n) =G(P
K(PP, 4q, q„4)

( 4 q q„4)j, &t' P
1

pG(p po&4&q)qo) ) P

1 &0(2g) can be written

7i

d, p K(p, pu, a&q)qo&p)

p K(p, E E(P—)& o& q' E—E(q), P)

34)) p )y)(q E—E(g)) 'Y) '

xs(g, qo» v)& (g g"~ (30)

6.
~

1
~

e hase shift, the scattering amp I-

th f h btue i ~ q ~ . p g
devoted to solving or s
used to hnd P. The result is

XSR(g&

t't te a complete set of eq

p Wick RotgtioII

9» can now e carried. ont ch g
h solved for 'P P' P." '

'
hi s and «nr 'n

~

twp varla

e Wick rotation . t gration by a 9
o led equations, fpur I

ing the go g
tour. Of course, »ngu ar

~ one variable.
ar in these equation s are

rotation of the go o ""'
d for. The propagators

All quantities whlc p
. Thiscanbededucedby

encountered ust be accou te o .
sider forin the ath o '

P
f th rotation. Cons&

nrelyrea»rpnr y
t to po and qo

rel imagina
Fpr

can have poles ln P

tr with resPec
' t

example

(31) real while S(q) g & '
alexceptforn=4& w

' j—'LE —
go (q + ' '

conseq«nce, 4'(g q'
o riate factoring ont

The erst
ry. Therefore y p

strictly real.

are shown in FigThe poles in the go p ane
+ .

and the second
pf i where it occur,

actor gives a ppie Rt go
ie. Therefore the po in thet g =E—E(q)+" "

d f E(q)&E («
phase Shift

facto~ a o

'll be encountereupp er half-plane wi
' t d contpur rotation

~ "
by the in ica eequivalently if q&p) y

l when (30) is ~'cE(g). Conseq«n y . ,thanadditionalrotated, it e
th oles. The result »

s tp asim
contribution from the p

~'(p, 'p. , ) =G(p, p..',p, ,,n 01)
00

+ — dg
'r o

00

~ ~

dg4 P K(P,1pq, Q, g, zg4, P)

Xs(q, iq&,p,y) &t)'(q,i qc,y)

G'(P, 0 1,P 0 1)

G(p,0,1,p,0,1)—I
where a erh fter Wick rotation,

(35)

dq Z K(P, ip4, ~, q, E E(q), P)—

XS~(g, E E(q), P, v)e—(q,X g q, —,, ', E—E(q), y), (32)

ere ~ is twice the residue at thewhere S~(g, E E(g), P,y) istwsce —e
pole. In particular,

S~ q, E—E(q), 1, 1)=1/PE(q) —E,
2 2) =0.0,

Sg(g, E—E(q), 3, 3)=Ss(q,

and

00I=-
K o

00

d dq4 Q G(P,0, 1,q,iq4, P
0

X S(g,iq4, p,y)P'(q, i q4, y)

7l o

dqZG(P, 0 1, q E—E(g) P)

(36)E E(q), P, v)@'(q,—E—E(g)».Xso(q,

d thus to extract the
1 1 tb

nitar cut an u
tangent o ef the phase shift, a principa
taken. The result is

E G'(p, 0,1,p,0,1)

2p G(p,0,1,p,0,1) PI—(37)
. M 1124 (1954).

A230,'0N. Kemmer and A. Salam, Proc. oy.
266 (1955). ue. Followingwhere 5' denotes t eh principal value.

S~(g, E—E(q), 3, 4) =S~(q,z q, —,, =S E E(q), 4,3)—
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m-E E-m
I

''
lg

Rotation

I
So

100 MeV

E(q)-E-Ic

o 0

FIG. 2. Poles of the propagator S(g,q0, 1,1) and the path
of the Wick rotation.

Murota et al. ,

n*9x9I
I

I

-15 -IO 0
g/o~

155 IO
I i ) I

'
i I

where

1
~(q) =-

7/ p
2

PI= dq F(q),
&(q)' —&'

dqi Q G(P",0,1,q,iq4,P)S(q,iqi, P,y)

X[E(q) ' —8'jP'(q, iq4, y)

(38)
FIG. 3. 'So tanb as a function of g'/4' for different

mesh sizes n at 100 MeV.

for the twofold integrals, and

q = (1+~)P/2 (43)

for the integration from 0 to p. The q4 integrals are
transformed by

q4= [(1+~)/(1—s)']q4-,

Now

1
+0(P—q)-Z G(P, o, 1, q, & &(q), P)— where

in(„/q, „)
mPv p=1+— (45)

XSs(q, &—&(q).,t p q)L~(q)' —~'] ln(1/6)

Here 6 is the step size for Simpson's rule and p is the
X4 (qy + ~(q)& 7) (39) pion mass. The parameter q4 is chosen according to

~Z(q) —x~+10 if lZ(q) —El+10(„
~(P) =(&/ )G(P 01,p,0,1)4'(P,0,1),

and the principal value is

P'(q) —~(P)3.
&(q)' —&'

(40)

(41)

(4~
p otherwise. (46)

This prescription gives a value of q4 at v = j.—~ which
is independent of q. Units are all taken as MeV and the
parameters 50 in (42) and 10 in (46) are somewhat
arbitrary.

The program for solving for tan 8('So) is now com-
plete. The same procedure can be carried out for the
3Pp case and the result is very similar. In fact, if the
labels 'Sp and 'Ep in Table IV are interchanged and if
Qp and Qi are also interchanged, exactly the 'Eo result
is found. Therefore once the 'Sp case is set up, the
computation of the 'Pp case is achieved simply by
interchanging Qo and Qi.

H. Numerical Procedure

8 0

Po

100 MeV

I ' I

n =15x I

I

n=9x9

q = [(1+u)/(1 —u) j(p+50) (42)

Equations (32) and (34) are solved by first making a
change of variable to change the integration intervals
to (—1, +1) and then using Simpson's rule to reduce
the equations to a set of linear equations which are
solved by matrix inversion. The q variable is changed
to Nby

I

3-15
l I I I I I

-IO -5 0 5 IO 15

FIG. 4. 'E'0 tanb as a function of g /4' for diferent
mesh sizes n at 100 MeV.
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TABLE V. Pade method compared to matrix inversion at 100 MeV for the '50 state.

g'/47r

Li)1$

[10,10]
[15,151
$19,19j
Matrix

lnvel'sion

g'/4'
[1,1$
[5,5j

Llo, ioj
I 15,15j
[19,19]
Matrix

inversion

-3.399 Xio ~

—3353 430 5xio 2

—3.353 430 5X10-2
—3.353 430 5X10-~
—3.353 430 5X10 '
—3.353 430 5X10-2

—1074 Xio '
-1.276 X1O-l
—2 7244X10 '
—2 726 178 SX10 '
—2.726 178 7X10-l
—2.726 178 9X10-l

—3.372 Xio '
—3.310037Sxio '
—3.310037 Sx10~
—3.310037 SX10-&
—3.310037 8X10 '

—1.048X10 '
3.252X 10-~

—5.127X10-~
—3.5605X10-3
—3.560 75xio '

—8351 Xio '
—6.019 X10-2
—5.943 681 1X10 '
—5.943 681 ix 10-2
—5.943 681 1X10 '
—5.943 6810X10 '

—1.204 X 10-l
1.266 X10 l

—2.090 Xio-l
—1.662 56X10 '
—1.662 23X10-'
—1.662 619 SX10-l

10

15X»

—8.293 Xio 2

—5.515 Xio-~
—5.494 922 9X10-~
—5.494 922 9X10-2
—5 494922 9X10 '

—1.171X10-l
4.421X10 l

1.974X10-l
2.067 06X10 '
2.06694X 10-l

The integrands vanish for g=o and q= ao and also
for q4

——~. Consequently an m-point mesh is effectively
an (22 —2)-point mesh for g and e6'ectively an (22 —1)-
point mesh for q4.

The matrix-inversion appr'oach to solving the equa-
tions is adequate but it is rather slow. This is chiefiy
because they must be solved for a single value of g2/42r.

A possible alternative has been tried to overcome this
problem. In particular, the equations are iterated using
the desired mesh and the resulting coeKcients of
(g'/42r)" in the series for tan8 are found by expanding
(37) appropriately. This series in then used to form the
Pade approximant. "The [X,1V] Pade approximant is
of the form

and the quantities A„and 8 are determined by re-

quiring that the series expansion of PE,Njhas exactly
the same erst 21V+1 coeKcients as the perturbation
expansion. It is found that by using a suitably large
value of X, which depends on g2/42r, the value of the

[X,cV] Pade approximant converges to the value of
tan 8 found by matrix inversion for the same mesh. On
this rather empirical basis, it is concluded that this use
of the Pade method is an eKcient alternative to the
matrix-inversion method of solving this set of linear
equations for a given mesh. No other signi6cance is
attached to this result because the higher-order terms
from the perturbation expansion are severely mesh-

dependent. Consequently nothing can be said concern-

ing the ability of the Pade method to sum the actual

pel tuI'batlon seI'les.

TABLE VI. Pade method compared to matrix inversion at 100 MeV for the 'Po state.

g'/4m

D»j
t'5,5j

Lio, ioj
L15,15j
$19 19j
Matrix

inversion
gm/4~

t i,ij
L5,5j

L10,10j
I 15,15j
L19,19/
Matrix

inversion

4.518X10-2

4.547 716 3X10-~

4.547 7163X10-~

4.547 7163X10-~

4.547 716 3X10-2

4.547 716 3X10-~

2.203X10-l
—2.2962X io ~

—2.293 194 7X10 l

—2.293 194 7xio ~

—2.293 194 7X10-&

—2.293 194 SX10 '

4.519Xio 2

4.544 057 4X 10-2

4.544057 4X 10-~

4.544 057 4X 10-~

4.544 057 4X10

2.206X 10-l
1.584X 10-~

1.583 325 OX10 '
1.583 325 OX 10-l
1.583 325 OX io-»

9.613X10 2

9.977 077 9xio '
9.977 078 OX10 2

9.977 078 OX10 '
9.977 078 OX 10-2

9.977 078 OX 1O-2

3.871X10-~

3.1106X10 '
3.112 177 3X10-'
3.112 177 3X10 '
3.112 177 3X10 '
3.112 177 3X10-l

9.617X10-2

9.922 209 4X 10-~

9922209 2X10 ~

9.922 209 2X 10-~

9.922 209 2X 10-»

3.879X10-l
4.2017X10 '
4.198 34X 10-~

4.198316 1X10-~

4.198316ixio ~

"The I'ade Approximurltiri, Theoretical I'hysics, edited by G. A. Baker, Jr. and J. L. Gammel (Academic, New York, 1970).
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Eneigy
(MeV)

5
10
25
50

100
150
200
250

Positions of hrst poles, ~SO

—4.2
40—3.4
302
302—3.2
303
33

+8.2
+77
+6.9
+6.7
+6,8
+72

Position of
6rst pole, 'Eo

+6.7
+5.8
+4 7
+4.1
+3.9
+3.8
+3.8
+38

TABLE VII. Values of g'/4n- for the 6rst pole in tanb
for a mesh of 9&9.

0.2

O

0.0

l ' l

I
t
l

I
I

/

/
5 MeV(~lO)

III. RESULTS

l

4

The assertion that the Pade method leads to the same
solution as the matrix-inversion method is demonstrated
by Tables V a.nd VI. For the larger coupling constants,
the convergence of the Pade method is slower but the
desired accuracy is always achieved. The computa. tion
was done using a nucleon mass of 938 MeV and a pion
mass of 138 MeV.

Tables V and VI show that the solution for larger
coupling constants is not independent of the mesh. This
is demonstrated more clearly in Fig. 3 and 4.

From Fig. 3 and. 4 it is seen that beyond a particular
value of g'/44r where the erst pole appears, the solutions
become mesh dependent and the density of poles in this
region increases with mesh size. The position of the 6rst
pole is somewhat energy dependent and it is given in
Table VII.

There is a range of coupling constants for which the
solution appears to be substantially independent of the
mesh and these solutions are shown in Figs. 5 and 6.

The iteration procedure gives the coefficients of
(g'/44r)" in the series expansion of tan8 and so provides
the amplitudes of the various-order ladder graphs.
However the use of a finite mesh give increa. singly
limited accuracy for increasing orders. The coeKcients
found by this method are given in Table VIII. The 6rst
three codBcients have been calculated by independent
direct evaluation of the amplitudes from the corre-
sponding Feynman graphs and found to agree with the

FrG. 6. 'Po tanb as a function of g'/4w for diferent
laboratory energies E.

0.00—
I 4 4 I 4 I I I 444 I 4 i 44l

-G.ol—

-0.02—

-0.04—

0.00 —
q =Pe

I I I I I I

iteration results. The coefficients have also been found
by using a finite-diGerence method on the solution by
matrix inversion.

For comparison with Murota et al. , the dependence
of 4t4'(q, iq4, 1) on q and q4 is shown in Fig 7. A.lthough p'
is still large at the last plotted values of q arid q4, this
has no effect on the solution of the equations because

0.0

l ' / l

Illll
/
I

l
i0),/

/
//

/
50 MeV/

t

I

0.0 I
— q-„ l60

-0,02—

-0.03—

-0.04—

-0.05—
q= IS66

l

-2 0 2 4 6
g'lee

IO l00

q

I I I I I I I I

lOGO

Fxo. 5. Se tanB as a function of gm/4F for different
laboratory energies E.

Fio. 7. p'(q, iq4, 1) as a function of q and q4 for the 'So
state at 100 MeV for a mesh of 9&9 at g'/4g =1.
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TABLE VIII. CoefEcients A„of tanb= P A„(g~/4&)" at 100 MeV.

Order e 9X9 mesh
Sp coe%cients

15X15 mesh
'Pp coeKcients

9X9 mesh 15X15 mesh

1
2
3

5
6

—4.2628X10 '
+1.0828X 10-2
—2.2641X10 '
+6.8932X10 4

—2.0946X10 4

+6.5968X10 '

—42628X10 2

1.1256X10 '
—2.2272X10 3

6.4615X10-4
—1.9332Xio 4

6.1115X10 5

4.2628X 10-2
2.4103X10-3
3.5151X10 4

6.6687 X10 ~

1.5416X10 '
3.8214X10 6

4.2628X10 '
2.4199X10-3
3.1944X10 4

5.6520X 10-~
1.2319X10 5

3.0878X 10-6

the interaction and the nucleon propagators fall off
very fast at infinity.

Although all results presented in this section have
been found using the complete set of equations, it is
also found that very similar results are obtained if the
contribution of the 'Eo' intermediate state is neglected.
This is in agreement with the result of Noda" and is
shown by Fig. 8.

IV. CONCLUSIONS

0.4-
I ) I j,f

I

0
0 MeV

00

-0.2'
2

g /4~

N=3¹t
4 6 8

FIG. 8. 'Sp tanb at 100 MeV for a 15X15 mesh for the full solu-
tion, X=4; for the solution neglecting the 'Pp' intermediate state,
%=3; and for the positive-energy intermediate state only, E= i.

"M.-T, Noda (private communication).

We have shown that it is possible to solve the Bethe-
Salpeter equation for nucleon-nucleon scattering in the
ladder approximation with pion exchange without
introducing any cutoff so long as the coupling constant
g'/4s does not exceed some critical value. The cutoff
dependence is tested by use of different meshes in
solving the equations.

Numerically it is found that for our meshes the 'So
equations have a solution only if the coupling constant
g'/4s is confined between about —4 and about +7.
The 'Po equations have a solution only if g'/4r is less
than about +4. These critical values are mild functions
of the energy as indicated in Table VII. Mandelstam's
arguments indicate that the equations will have a
unique solution if and only if the coupling constant is

——',s(g'/kr(2s. for the 'So state and if —2s'(g'/
4x(~~ for the 'Po state. These results are independent
of energy. Our results are in qualitative agreement with
Mandelstam's predictions and do not contradict them
in that solutions are always found within these limits.
In order to test these predictions accurately, it wouM be
necessary to use much finer meshes. Unfortunately the
enormous computer storage requirement limits the
practical mesh size.

We have found empirically an efFicient alternative to
matrix inversion for solution of these equations. By
iteration of the equations to obtain the coefFicients of
(g'/4r)" in the power series for tanb, the Pade approxi-
mant to tan8 can be formed. It is found that for the
same mesh the Pade method reproduces the solution by
matrix inversion to any desired accuracy by choice of a
sufFiciently high approximant. Thus by using the
Pade method, the coefIicients need only be found once
to obtain the solution, although the order of the
approximant required depends upon g'/4x. This con-
trasts with the matrix-inversion method which must
be repeated for each value of g'/4~.

No effort has been made to extend this calculation
beyond the pion-production threshold. At the threshold
the interaction develops a singularity and the equations
can no longer be easily broken down into purely real
and imaginary parts.

This method can be extended to the J/0 cases, but
it becomes more complicated due to the increase in the
number of intermediate states. For the J=i case, one
must deal with the 'S~, 'D~, 3E~, and 'E'i states, and
upon an analysis similar to that in Sec. II, it is found
that eight intermediate states are possible. However,
once the J= j. problems are conquered, all other cases
are completely analogous.

The original goal of this program was the production
of the amplitudes of the ladder graphs and this has been
achieved with an accuracy of about 20% up through
the five-pion-exchange graph.
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