3 POSSIBLE CP VIOLATION IN K*—ogfyy

defined

ar+  dr- ar+  dr-
A=<——— ——>/<——+—> (17)

dE, dE_)/ \dE, dE_
We give numerical estimates of the magnitude of A4
using §;=—10° and assuming maximal CP violation,
i.e., ¢ =3m. £is taken to be a constant and its magnitude
is chosen to be 1, 4, and 20. The magnitude of 4 is
given in Fig. 2 as a function of the charged-pion kinetic
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energy in the region of the neutral-pion pole. As can
be seen, the magnitude of 4 can be relatively large
over a sizable portion of the charged pion spectrum. In
particular, on the basis of the #°-pole model (¢~=3), the
magnitude of 4 averages out to be =109, over the
region shown. The sign of 4, however, remains unde-
termined since the sign of £ and ¢ are not known. For
nonmaximal CP violation, one has to multiply the
asymmetries in Fig. 2 by sing. For ¢<<1, the resulting
asymmetry as expected, would be quite small.
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The Bethe-Salpeter equation is solved for nucleon-nucleon scattering in the ladder approximation with
pion exchange for the 1S, and 3P, states with no approximations beyond use of a finite mesh. It is found
that solutions exist without the need for any cutoff so long as the coupling constant g2/4r is between about
—4 and +7 for the 15, state and for g2/4x less than about -4 for the 8P, state. These results are in quali-
tative agreement with the predictions of Mandelstam. It is found that the Padé approximant as applied to
the coefficients of the iteration solution provides an efficient alternative to the method of matrix inversion

for solving the equations for a given mesh.

I. INTRODUCTION

HE Bethe-Salpeter (BS) equation! for nucleon-

nucleon (VN) scattering is of physical interest
for several reasons. It is a relativistic generalization of
the Schrédinger equation and sums a limited set of
graphs from field theory depending on the kernel. In
fact, our original motivation™for considering this
problem was directed toward finding a means of
generating the amplitudes for the individual ladder
graphs. We will consider the ladder series with pion
exchange for the J=0 case in this calculation.

The realistic BS equation? is difficult to deal with
since it is generally in the form of coupled singular
integral equations. Several authors® have considered
various aspects of the spin-3-on-spin-3 problem. For
the NN case, Gourdin* took advantage of the four-
dimensional symmetry and expanded the wave function
in hyperspherical harmonics. The result was an infinite

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Service de Physique Théorique, CEN-Saclay,
B. P. No. 2, 91 Gif-sur-Yvette, France.

1E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

2 A recent review is N. Nakanishi, Progr. Theoret. Phys.
(Kyoto) Suppl. 43, 1 (1969).

3J. Connell, Phys. Rev. 179, 1374 (1969); P. Narayanswamy
and A. Pagnamenta, Nuovo Cimento 53A, 635 (1968); A. R.
Swift and B. W. Lee, Phys. Rev. 131, 1857 (1963).

4 M, Gourdin, Nyovo Cimento 7, 338 (1958),

set of scalar coupled equations in one continuous
variable which were coupled in the quantum number
associated with the fourth dimension. A solution was
then obtained by taking only the lowest value for the
quantum number. However, the effect of this approxi-
mation above the elastic threshold is not clear. Ito et al.?
and Murota et al.% have approached this problem some-
what differently. They have used the kernel-subtraction
method of Levine et al.” to reduce the singularity of the
kernel and taken the approximation of neglecting
negative-energy intermediate states. This leads to a
single integral equation in two continuous variables
plus an auxiliary integral equation in one variable.
These equations are solved by matrix inversion with
reasonable accuracy. However, the approximation of
neglecting negative-energy states is probably poor since
the pseudoscalar +; interaction tends to strongly
couple positive- and negative-energy states. Therefore
in this calculation we will employ the methods of
Murota ef al., but we will include all intermediate states.

Fortunately we are not completely ignorant as to
what to expect for solutions to the BS equation.

5 H. Ito, M. Mizouchi, T. Murota, T. Nakano, M.-T. Noda,
and F. Tanaka, Progr. Theoret. Phys. (Kyoto) 37, 372 (1967).
6 T. Murota, M.-T. Noda, and F. Tanaka, Progr. Theoret. Phys.
(Kyoto) 41, 1251 (1969).
( 7 M) Levine, J. Tjon, and J. Wright, Phys. Rev. Letters 16, 962
1966).
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Fic. 1. Schematic representation of the BS equation.

Mandelstam® has analyzed the NN scattering problem
for pseudoscalar exchange in the ladder approximation
by examining the large-momentum behavior. He has
reduced the BS equation to differential equations valid
in the region of small 7 in coordinate space and looked at
the behavior at the origin. On this basis he concludes
that for a given state, unique solutions exist if and only
if the coupling constant g?/4r (which is about 14 from
NN scattering data) is less than some critical value. In
particular, for the 1S, state, g?/4r < 2w, and for the 3P,
state, g2/4r<3w. In a solution with no approximations,
one expects to find a behavior reflecting this limitation.

II. METHOD OF SOLUTION
A. Reduction of BS Equation

The BS equation in the ladder approximation is
shown schematically in Fig. 1 where the energy and
momentum of each line is indicated. For on-shell scat-
tering, po and po’ will be taken as zero. The equation
to be solved is

g2 ,),5(1),),5<2)
§=—
dr (po' —po)?—(p'—p)?—u?

i g v5Pys®
o]
4r® dr (po' —q0)*—(p' —qQ)*—u?

[(E+Qo)70‘”—q-¥‘“+m
(E+q0)*—E*(q)
(E=qo)vo®+q-y®@+m
]4» W
(E—q0)*—E*(q)

Here E*(p)=p*+m? and the superscripts refer to
particle 1 or 2.

The Dirac matrices will be taken as the direct product
of two sets of Pauli matrices such that yy=p.[,,
Vs=p.L,, and y=1p,0.

There are four solutions to the free Dirac equation,
two with positive energy and two with negative energy.
We combine these solutions to form a 44 matrix with
the positive-energy solutions in the first two columns
and call the result ¥. It can be shown that

. E(p)+m\1/2
¢-p )( (») m) @

Y
E(p)+m/\ 2E(p)
8 S. Mandelstam, Proc. Roy. Soc. (London) A237, 496 (1956).

‘I’=<I,,I.,—ip

GAMMEL, MENZEL, AND WORTMAN 3

and
Yt =1,1,. (3)

Therefore in terms of ¥ the Dirac equation becomes
povo¥yo—p-y¥—m¥=0, 4)
where po=E(p) and the adjoint equation is
poyoxlf*vo-{—\llfp-?f—m\w:o. (3)

The curious appearance of the extra vy, is necessitated
by the combining of positive- and negative-energy
solutions.
Writing (1) as
¢»=G+GS¢, (6)

with G denoting the interaction and S the two-nucleon
propagator, ¥(q)¥t(q)=1,I, can be inserted between G
and S. For particle 1,

(E+go)vo ¥ —r®-q+m
(E+g0*— ()
Y (E+qo)vo @ +E(g) v ¥y
(E+g0)*—Eg)
(E+90)+E(g)vo®
= Py (D
(E+q0)*—E(g)
1

_ E+q0—E(g) 1,y

1

E+qo+E(q)
ES/)LI)I,,(I)‘I/T’YOU). N

¥i(q)

Taking particle 2 into account in a similar manner, (6)
can be written
$=G+GUS, 1S, OUtyp ©)
or )
Py ¥ = Wiy GV + Ty GUS Ty ¥ . 9)

Here the arguments of the ¥’s are taken from Fig. 1,
vo and ¥ indicate the product of two such objects, one

TaBLE I. p-spin states indicating positive or negative
energy for particle 1 then particle 2.

States Notation
. ++ +
Triplet _— -
1
—(+—-D—+) e (even)
> @
1
Singlet —(+-0©—+) o (odd)
V2
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for each particle, and

1 /1+pz<l>)

S=S S (2>=|:
C LEtqe—E@\ 2

+E—!—qo:-E(q)(l_;z(l)):l[E—gol—E(q)\ 2

1 1—p,®
+ ( :I . (10
E—90+E(‘I) 2 ) (10

S is now independent of angle and spin ¢. Introducing
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the notation ¢=¥1yw¥ and G=T¥y GV, the reduced
equation is symbolically

G= (g2/41r){(ipy“))(ip,,(”)[:F“’-l-FB' (cV+e@)+B-cWB-¢®@]

¢=G+GS¢. (11)
{1+Pz(2) B. Interaction
) The interaction G is
G=(g%/4m)[¥"(q) VyoDys D (p) ®
XU (=) Dyoy, (=) @]
X[(go—po)*—(q—p)*—u*]". (12)
Using (2) for ¥, G is reduced to
—1(ip,® —ip, ) [Fle®W+¢®)-A+B-0cVA-¢®+B-c®A.c]
—1(ip, V4ip, @) [ —F(eV—¢®).- A+B-¢VA-0®—B-¢®A.g]
—L,OLE[0 - A AR N(Go—p0)*—(@—B)—uT. (13)

The quantities occurring are

p-q
= _|.. ,
LCE@p)+mILE(@)+m]
B 1qXp
[Ep)+mILEQ)+m]’
An p .« ’ (14)
E@p)+m  E(Q+m
and
Ve LE(@p)+mILE()+m]
‘ 4E(p)EGQ)
Writing (13) in the compressed form
G=(g%/4m){p1X1+p:X2+psXs—psX 4}
XN[(go—po)*—(q—p)*—p*T", (15)

it is seen that p; acts only in the p space while X; acts

TasLE II. Properties of the p; operators.

Result Result
State  of py Result of p, Result of ps of ps
1 1
+ - ——(0) —(e) +
V2 V2
1 1
-+ —0) -—() -
V2 V2
1
e —(e) z€ero ——(+56-) e
V2
1
0 0 —(+@P-) zero 0
V2

in the o space, which is the usual spin space. The p spin
is analogous to the ¢ spin except that instead of opera-
ting on spin-up and spin-down states, the p spin
operates on positive- and negative-energy states in
exactly the same manner. Singlet and triplet p-spin
states can be formed by the usual combinations of two-
particle states. In Table I the p-spin states are given.
Table IT indicates the results of p; acting on these states.

The properties of the X; operators regarding spin
and parity can be determined by observing the sym-
metry in ¢ and ¢® and by noting that ¢ and B are
pseudovectors, A is a vector, and F is a scalar. The
results are recorded in Table ITI. Odd parity indicates
a parity-nonconserving transition and odd spin indicates
singlet to triplet coupling.

C. Propagator

The propagator S is proportional to I, but it does
not conserve p spin. Although S is diagonal in the
representation +-4,——,+—,—-, this is no longer
true for the representation of Table I. For this repre-
sentation the S operator in p-spin space is given as

(+]S|+)=[E+qo—E(g)+ie] ™,
X[E—qo—E(g)+ie]™,
(=S| =)=[E+qo+E(q)—ie]*
X[E—qo+E(q)—ie]™,
(e|S|e)= (0| S|0) =3{[E+qo—E(q)+ie]™
X[E—qo+E(g)—ie]™
+[E+qo+E(q) —ie]™?
X[E—qo—E(g)+ie]™},
(0| S|e)=(e|S|0)=3{[E+qo—E(q)+ie]*
X[E—qo+E(q)—ie]™*
—[E+qo+E(9)—ie]™!
X[E—qo—E(g)+ie]™}.

(16)
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TastE III. Properties of the X; operators.

Operator Parity Spin
X1 even even
X2 odd even
X3 odd odd
X4 even even

D. Intermediate-State Analysis

Now (11) can be considered taken between appro-
priate states. In particular, we will consider the 1Sp
state. The desired quantity is (1Sot|¢|1Set), where
the + indicates a positive-energy state. The equation
becomes

(a6 ]155") = (@] G11S6%)
—i/dqodqz @IGIOEISI G817
2x? By

Here @, 3, and v are appropriate states and 8 and v are
summed over for the intermediate states. In general,
since the total angular momentum is conserved, there
will be eight intermediate states, four each for 1S, and
3P, since there are four possible p spins for each. How-
ever, the character of the interaction will limit this
number. The integration over angle in the homogeneous
term has been carried out by using the addition theorem
which is allowed since S is independent of angle and
spin. In addition the definitions of G' and ¢ have been
shifted so that (a|G|B) =2papsG and (a|p|B)=2p.psd,
which gives the different coefficient for the homogeneous
term relative to (1).

Possible intermediate states 8 and v are now to be
determined by the nature of the interaction and the
S operator. Of course, o must take on all the values
that v takes on in order to give a complete set of equa-
tions. Taking a as 1Sot, p1 X1 gives 8=1S¢" and .S gives
vy=15¢"; paX2 gives nothing; p3X; gives B=3P,® and
S gives y=3P,® or 3Py° Finally, psX4 gives B=1S¢"
and S leads to y=15,". Now we must consider a=1S;",
3P¢, and 3Py° to see if additional v’s are found. The
result is that no other states appear.

This indicates that four coupled equations in two
continuous variables are required. Introducing the nota-
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tion ¢ (p,po,@) = (a||1Se™), G(p,po,,9,90,8)=(|G|B),
and S(g,90,8,Y) =(8|.S]v) and labeling the states 1S¢*,
1807, 3P¢®% 3P0 as 1, 2, 3, 4, respectively, the equations
are

4’(?;?0:04) = G(P)P(”aiﬁvo7 1)

1
- /dgdqo Z G(P;Po,a:%qﬁ:ﬁ)
2 By

2

XS(%QO,B,’Y)OS(Q,‘ION), (18)
where p= (E2—m?)1/2 is the momentum in the center-
of-mass system. Now ¢($,0,1) is essentially the T
matrix describing the desired on-shell 1SoT— 1S
transition.

The input for the calculation is the quantity
G(pypo,2,9,90,8). These elements are found by taking
matrix elements of the operator G from (15) between
states of either |1So)=X, or |3Pg)=p-X/p, where ¥ is
written as a Cartesian vector with components

Xp= (BB _aa)/\/j ’
Xy =1(88+aa)/V2,
Xz = ((16-}—6(1)/\/2 ’

X, = (aB—Pa)/V2.

« and 8 denote the usual spin up and spin down. For ex-
ample, consider G(p,po,1,9,q0,1). For this, (15ot|G|1S,™)
is required and since it is a 4 — 4 transition, only -
p4 will contribute. Therefore

(19)

and

G(P,Po,l,%QOJ)

2 1 1
_ £ X 5/ d(cost){ —(+|ps| +)Xle @ - Aa® - AX,

4 1

X2pgNL(go—p0)*—(@—p)*—w*]7} . (20)
Carrying out the calculation of the spin part of the
matrix element,

XS . Ae®. AX,
=X,fe®. A[—A-X]

=X,/[—A-AX,—iAXA-x]=—A2 (21)

TasLE IV. Elements of (a(p)|G|B8())X2E(p)E(g) X4wr/g.

X i i5¢
iS¢t —[E@EQ-m10t200r  —[EWE@+mI00—pg0:  —VZ(mgQo—mpQy) 0
S —[E@QE@+m100—pe0:  —[E@DE@—-m 100t 2e0: V2 (mgQu—mpQy) 0
P —VZ(mpQe—mgQs) VZ(mpQo—mgQs) 2(pgQutmQy) 0
3Py 0 0 0 —2E(p)E(9)Qa
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Therefore since (4| p4| +) =1,

G([):PO; 1 4,90, 1)
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g 1 2pgA2N
=—X- / d(cosf)
dr 2/ (qo—p0)?—q*—p*—u>+2pq cosd
2 1 1
= £ X —/ d(cosb)
e 2/,
 CLEDEQ)—m—pg costV LEQ) +mILEG+mIHTE) +mI B+ AED Q)
—{[p*+q*+u?— (po—q0)*1/2pg—cosb}
g2
= 2By LB —m : 22
v Ee O EO =m0+ 00i) (22)
Here Qu(2) is the Legendre function of the second kind of order  and the argument is
z=[p+¢*+u—(po—q0)*]/2pg. (23)

Carrying out the calculation of the other matrix elements, the results in Table IV are found.

E. Kernel Subtraction

The resulting set of equations is singular due to the presence of S(g,qo,1,1). From (16) it is apparent that
(+]S] +) has poles which lie on either side of the g integration contour and which coincide when the two particles
are on the mass shell leading to the expected branch cut from unitarity. This difficulty cannot be avoided but it
can be subdued by the kernel subtraction method of Levine et al. This method replaces the original equation with

another in which the effective interaction vanishes at the double pole. ¢’ is defined as

Substituting this into (18),

Using (25),

¢(P>P0;a) =1¢' (P,PO;O‘) ’ (24)
where ¢ is independent of p, po, and « and is fixed by requiring
¢'($,0,1)=G($,0,1 p,0,1). (25)
i
f¢,(P,P0,Ol) =G(P,P0,a:ﬁ;0,1) - 2_‘21/03‘]0039 BZ G(P,Po,a,q,qo,ﬁ)s(Q;goﬁﬂ)‘ﬁl(q,qoﬂ) . (26)
™ Y
G A’O)]" A’071
(#,0,1,£,0,1) @7

= .
G(ﬁ)O;Lﬁ;O;l)+(i/27rz)qud90 BZ G(ﬁ’o,1’Q790:6)S(Q790:ﬂ,7)¢l(quo:')’)
Y

Introducing this result into (26), the equation for ¢’ is

¢,(P,P0;0‘) = G(P}Plba:ﬁ;o’l)

)
- /dqdqo Z I:G(P,PO,a;q,qo,ﬁ)
4

2m? 8,

G(?,Poia:ﬁ;oa1>G(ﬁa051:9;90yﬁ)]
G($,0,1,$,0,1)
XS(q:q0’ﬂ77)¢,(Q7q°’7)' (28)

Now when g=5 and ¢o=0, that is, for internal nucleons
on shell, the effective interaction vanishes for =1

which is the 1Sot state. While the equation for ¢’ is still -

singular, it is not as singular as that for ¢ and it can be
handled using standard methods.

From (16) it is seen that (4|S|4), (—|S|-),
(e] S|e), and (0].S]o) are even in go, while (0]S]e) is odd.
Since G(p,p0,2,9,90,8) is dependent on po and go only
through (23), which contains (po—go)?, it is apparent
that ¢'(g,g0,2) is even in ¢o for «=1,2,3 and odd in ¢o
for a=4. Consequently the ¢o integration can be
changed to the interval (0, ). That is, if K is defined as

K (p,00,2,9,90,)
=3[G(0,10,%,9,90,8) +G (P, p0,2,0, —g0, B)]
G(p,00,2,$,0,1)G($,0,1,4,40,8)
B G(3,0,1,50,1)

(29)
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for ,3=1,2,3 and

K(P>P0>4>Q7q0’4')
=%[G(P:P0,4;Q;90;4) —'G(P? PO, 4’ a, —qo, 4)] ’

then (28) can be written

¢,(P,P0,0l) =G(P.Po,a,ﬁ,0,1)
7: 0 0
- —_2/ dg/ dqo Z K(P;PU;O‘,%QO)B)
wJo 0 8.y

XS(q,quB:'Y)d)I(q?qu'Y) . (30)

F. Wick Rotation

The Wick rotation®1 can now be carried out chang-
ing the ¢o integration to an 4gs integration by a 90°
rotation of the go contour. Of course, singularities so
encountered must be accounted for. The propagators .S
can have poles in the path of the rotation. Consider for

example

5(9,9071,1) .

=[E+q—E(Q)+ie]'[E—qo—E(g)+ie] ™. (31)
The poles in the ¢ plane are shown in Fig. 2. The first
factor gives a pole at gy=FE(g) —E—ie and the second
factor at go=FE—E(q)+7e. Therefore the pole in the
upper half-plane will be encountered if E(q)<E (or
equivalently if ¢<p) by the indicated contour rotation
at ¢go=E—E(g). Consequently, when (30) is Wick-
rotated, it leads to a similar equation with an additional
contribution from the poles. The result is

d”(?:iﬁba) =G(P:’1:P4:a:ﬁ:0;1>

1 ) 0

+ b—'/‘ dQ/ dq4 Z K(P,im,a,q,i%ﬂ)
2 0 0 By

XS(Q)'L.Q%AB{Y)‘#,(Q;/”.Q%'Y)

1 b4

+_/ dq Z K(?} ip‘l’ a, q, E"E(Q), B)
w™Jo B,y

XSR(Q) E'_E(Q)7 B, 7)¢'(9, E—E(Q); 7) ’ (32)

where Sr(q, E—E(g), B,y) istwice the residue at the
pole. In particular,
SR(Q) E—E((]), 17 1) =1/[E((]) —Ejy
SR(g) E_E(Q)a 37 3) ZSR(gy E—E((]), 4, 4)
=—1/2E, (33)
and
SR(q; E—E(Q)a 3) 4)=SR(9; E_E(Q)y 4: 3)
=—1/2E.

9 G. C. Wick, Phys. Rev. 96, 1124 (1954).
0 N. Kemmer and A. Salam, Proc. Roy. Soc. (London) A230,
266 (1955).
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The appearance of ¢'(q, E—E(q), v) in (32) requires
the introduction of the auxiliary equation

¢I(P: E—E(P)} 04)=G(P, E_E(p)a «a, ﬁ} 0, 1)

1 00 0

+_—/ dq/ d<14z K(P,E—E(P), @, g, iq4y 6)
7 Jo 0 B,y

X S(g,1q4,8,7)9"(9,594,)

1 r#

+- [ % K¢, BB 0,0, B-E @, )
w™Jo B,y

XSr(g, E—E(q), B, V)¢'(g, E—E(g), v). (34)

Now (32) and (34) constitute a complete set of equations
to be solved for ¢'(p,ips,). These consist of eight

“coupled equations, four in two variables and four in

one variable.

All quantities which appear in these equations are
purely real or purely imaginary. This can be deduced by
noting the symmetry with respect to po and ¢o. For
example, K(p,ipse,q,iqs,8) and S(g,iqs,e,) are strictly
real while S(g,igs, 3, 4) is purely imaginary. As a
consequence, ¢’(g,iqs, ) is real except for e =4, where it
is imaginary. Therefore by appropriate factoring out
of ¢ where it occurs, the equations become strictly real.

G. Phase Shift

In order to find the phase shift, the scattering ampli-
tude ¢ is required. The program thus far has been
devoted to solving for ¢’ so that given ¢’, (24) must be
used to find ¢. The result is

G2(ﬁ)0?1)ﬁ’071)

¢(ﬁ)0:1) = N ’ (35)
G(p,O,l,p,O,l) -1
where after Wick rotation,
1 00 00 .
I=— / dqf dq4 Z G(P,O,l,q,’iQ4,6)
w2 0 0 B,y
XS(g,ig4,ﬁ,v)¢'(q,iq4,7)
1 b4
+- [ @S 60,10, 85,0
wJo ;%%
XSR(Q} E—'E(Q), :37 7)4’,(9’ E_E(Q); 7) (36)

I contains the unitary cut and thus to extract the
tangent of the phase shift, a principal value must be
taken. The result is

E Gz(ﬁ70)1?ﬁ70)1)
tang= —

A - ) 37)
2P G(p1071’p7071) —CI

where ® denotes the principal value. Following
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E-E(q) +ie

% -
E(q)-E-ie

Fi1c. 2. Poles of the propagator S(g,q0,1,1) and the path
of the Wick rotation.
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or- [
0

/ dq4 ﬂZ: G(ﬁ7071)Q7iq4’B)S(Q7iq4>ﬁ’7)
0 Y

F(q), (38)

dg—
E(q)*—E?
where

1
F(g)=—

w2

X[E(g)*—E*]¢'(,i94,7)

1

™ B,y
XSR(% E—'E(Q): 57 ‘Y)EE(‘])2—E2]

X¢'(q, E=E(9),v). (39)

Now
F(ﬁ) = (E/W)G(ﬁ70717?6’071)(#/(?670)1) ) (40)

and the principal value is
1= [l -r @] @
®I= ——[F(g)— .
. q Rg)'— B2 q 2

The program for solving for tan §(1So) is now com-
plete. The same procedure can be carried out for the
3P, case and the result is very similar. In fact, if the
labels 1Sy and 3P, in Table IV are interchanged and if
Qo and Q; are also interchanged, exactly the 3P, result
is found. Therefore once the 1S, case is set up, the
computation of the 3P, case is achieved simply by

interchanging Qo and Q.

H. Numerical Procedure

Equations (32) and (34) are solved by first making a
change of variable to change the integration intervals
to (—1, +1) and then using Simpson’s rule to reduce
the equations to a set of linear equations which are
solved by matrix inversion. The ¢ variable is changed
to # by

g=[(1+u)/(1—u)](H+50) (42)

BETHE-SALPETER SOLUTION- .-
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Fic. 3. 1S, tand as a function of g2/4r for different
mesh sizes # at 100 MeV.
for the twofold integrals, and
g=(1+u)p/2
for the integration from 0 to p. The ¢4 integrals are
transformed by

(43)

qe=[(1+2v)/(1—v)*]gsm, (44)
where .
_ n(u/qam) ‘ (45)
In(1/4)

Here A is the step size for Simpson’s rule and u is the
pion mass. The parameter ¢s» is chosen according to

|E(q)—E|+10 if |E(g)—E[+10<u
dam u otherwise. (46)

This prescription gives a value of ¢4 at v=1—A which
is independent of g. Units are all taken as MeV and the
parameters 50 in (42) and 10 in (46) are somewhat

arbitrary.
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F16. 4. 3P, tané as a function of g2/4r for different
mesh sizes z at 100 MeV.
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TasBLE V. Padé method compared to matrix inversion at 100 MeV for the 15, state.

Mesh 9X9 15X15 9X9 15X 15
g /4 4
[1,1] —3.399 X102 —3.372 X102 —8.351 X107 —8.293 X102
[5,5] —3.353 430510 —3.310037 81072 —6.019 X102 —5.515 X102
[10,10] —3.353 430 5102 —3.310 037 8 X102 —5.943 681 1X10™2 —5.494 922 910
[15,15] —3.353 430 5102 —3.310037 8 X102 —5.943 681 1 X102 —5.494 922 9102
[19,19] —3.353 43051072 —3.310 037 8102 —5.943 681 1X10™2 —5.494 922 9102
. Matr_ix —3.353 430 51072 cee —5.943 681 0X 102 oo
inversion
g%/4r 10
[1,1] —1.074 X107 —1.048X 107t —1.204 X107 —1.171 X107
[5,5] —1.276 X107 3.252X1072 1.266 X107 4.421 X107
[10,10] —2.7244Xx10 —5.127X1073 —2.090 X101 1.974X 1071
[15,15] —2.726 178 8 X101 —3.5605X 1073 —1.662 56 X101 2.067 061071
[19,19] —2.726 178 7X 101 —3.560 75X 1073 —1.662 23101 2.06694 10!
Matrix —2.726 178 9X101 oo —1.662 619 81071 oo

inversion

The integrands vanish for ¢=0 and ¢=o and also
for g4= . Consequently an #z-point mesh is effectively
an (n—2)-point mesh for ¢ and effectively an (z—1)-
point mesh for ¢s.

The matrix-inversion approach to solving the equa-
tions is adequate but it is rather slow. This is chiefly
because they must be solved for a single value of g?/4x.
A possible alternative has been tried to overcome this
problem. In particular, the equations are iterated using
the desired mesh and the resulting coefficients of
(g%/4m)" in the series for tand are found by expanding
(37) appropriately. This series in then used to form the
Padé approximant.!! The [V,N] Padé approximant is
of the form

[V N)=3 (g—)A 5 (—gf)mfzm, (a7)

n=1 \41 m=0 \41r

and the quantities 4, and B,, are determined by re-
quiring that the series expansion of [V,N] has exactly
the same first 2N+41 coefficients as the perturbation
expansion. It is found that by using a suitably large
value of N, which depends on g?/4w, the value of the
[N,N] Padé approximant converges to the value of
tan & found by matrix inversion for the same mesh. On
this rather empirical basis, it is concluded that this use
of the Padé method is an efficient alternative to the
matrix-inversion method of solving this set of linear
equations for a given mesh. No other significance is
attached to this result because the higher-order terms
from the perturbation expansion are severely mesh-
dependent. Consequently nothing can be said concern-
ing the ability of the Padé method to sum the actual
perturbation series.

TaBLE VI. Padé method compared to matrix inversion at 100 MeV for the 3P, state.

Mesh 9X9 15X 15 9X9 15X15

&/4r 2

[1,1] 4.518% 102 4519102 9.613 X102 9.617X1072

[5,5] 4.547 716 3X1072 4.544 057 41072 9.977 077 9X1072 9.922 209 4102
[10,10] 4.547 716 31072 4.544 057 4X10™2 9.977 078 03 10~2 9.022 209 2X 10~
[15,15] 4.547 716 31072 4.544 057 4102 9.977 078 0X 1072 9.922 209 2102
[19,19] 4.547 716 3102 4,544 057 4102 9.977 078 0102 9.922 209 2102

Matrix 4.547 716 3102 “es 9.977 078 0102 e
mversion

§%/4m 6

[1,1] 2.203X10 2.206XX10* 3.871X1071 3.879X107!

[5,5] —2.2962X 10! 1.584 1071 3.1106X 107! 4.2017 X107
[10,10] —2.293 194 7X 107! 1.583 325 01071 3.112 177 310! 4.198 34101
[15,15] —2.293 194 7X10! 1.583 3250 10! 3.112 177 31071 4,198 316 110!
[19,197] —2.293 194 7X 107! 1.583 3250 107! 3112177 310! 4.198 316 1 X101
Matrix —2.293 194 810! cee 3.112177 31071 v

inversion

1L The Padé A pproximant in Theoretical Physics, edited by G. A. Baker, Jr. and J. L. Gammel (Academic, New York, 1970).



TasBLE VII Values of g2/4x for the first pole in tand
for a mesh of 9X9.

BETHE-SALPETER

Energy Position of
(MeV) Positions of first poles, 1S first pole, 3P,
5 —4.2 +8.2 +6.7
10 —4.0 +7.7 +35.8
25 —-34 +6.9 +4.7
50 —3.2 +6.7 +4.1
100 -3.2 +6.8 +3.9
150 —3.2 +7.2 +3.8
200 -3.3 cen +3.8
250 -3.3 +3.8

III. RESULTS

The assertion that the Padé method leads to the same
solution as the matrix-inversion method is demonstrated
by Tables V and VI. For the larger coupling constants,
the convergence of the Padé method is slower but the
desired accuracy is always achieved. The computation
was done using a nucleon mass of 938 MeV and a pion
mass of 138 MeV.

Tables V and VI show that the solution for larger
coupling constants is not independent of the mesh. This
is demonstrated more clearly in Fig. 3 and 4.

From Fig. 3 and 4 it is seen that beyond a particular
value of g?/4r where the first pole appears, the solutions
become mesh dependent and the density of poles in this
region increases with mesh size. The position of the first
pole is somewhat energy dependent and it is given in
Table VII.

There is a range of coupling constants for which the
solution appears to be substantially independent of the
mesh and these solutions are shown in Figs. 5 and 6.

The iteration procedure gives the coefficients of
(g2/47)™ in the series expansion of tand and so provides
the amplitudes of the various-order ladder graphs.
However the use of a finite mesh give increasingly
limited accuracy for increasing orders. The coefficients
found by this method are given in Table VIII. The first
three coefficients have been calculated by independent
direct evaluation of the amplitudes from the corre-
sponding Feynman graphs and found to agree with the
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F16. 5. 1S tané as a function of g2/4x for different
laboratory energies E.
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iteration results. The coefficients have also been found
by using a finite-difference method on the solution by
matrix inversion.

For comparison with Murota et al., the dependence
of ¢'(g,iq4,1) on g and ¢4 is shown in Fig. 7. Although ¢’
is still large at the last plotted values of ¢ and g4, this
has no effect on the solution of the equations because
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F1c. 7. ¢'(g,5¢4,1) as a function of ¢ and g4 for the 15,
state at 100 MeV for a mesh of 9X9 at g?/4r=1.
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TaBLE VIII. Coefficients 4, of tané=3 An(g?/4r)" at 100 MeV.
1S coefficients 3Py coefficients
Order n 9X9 mesh 15X 15 mesh 9X9 mesh 15X 15 mesh
1 —4.2628 1072 —4.2628 X102 4.2628X 1072 4.2628 X107
2 +1.0828 <1072 1.1256< 102 2.4103X1073 24199107
3 —2.2641X1073 —2.2272X1073 3.5151X 10 3.1944 10
4 +6.8932X 10~ 6.4615X10™* 6.6687X 1078 5.6520107®
5 —2.0946 10 —1.9332 10 1.5416X 1078 1.2319X 1075
6 +6.5968 X 10~8 6.1115X1078 3.8214X107¢ 3.0878 108

the interaction and the nucleon propagators fall off
very fast at infinity.

Although all results presented in this section have
been found using the complete set of equations, it is
also found that very similar results are obtained if the
contribution of the 3P, intermediate state is neglected.
This is in agreement with the result of Noda!? and is
shown by Fig. 8.

IV. CONCLUSIONS

We have shown that it is possible to solve the Bethe-
Salpeter equation for nucleon-nucleon scattering in the
ladder approximation with pion exchange without
introducing any cutoff so long as the coupling constant
g%/4mr does not exceed some critical value. The cutoff
dependence is tested by use of different meshes in
solving the equations.

Numerically it is found that for our meshes the 15,
equations have a solution only if the coupling constant
g%/4m is confined between about —4 and about +7.
The 3P, equations have a solution only if g2/4r is less
than about 4. These critical values are mild functions
of the energy as indicated in Table VII. Mandelstam’s
arguments indicate that the equations will have a
unique solution if and only if the coupling constant is
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F16. 8. 15, tand at 100 MeV for a 15X 15 mesh for the full solu-
tion, N =4; for the solution neglecting the 3P, intermediate state,
N=3; and for the positive-energy intermediate state only, N=1.

12 M.-T. Noda (private communication).

—ir<g?/4r<2m for the 1S, state and if —2wr<g¥
47 < %7 for the ®P state. These results are independent
of energy. Our results are in qualitative agreement with
Mandelstam’s predictions and do not contradict them
in that solutions are always found within these limits.
In order to test these predictions accurately, it would be
necessary to use much finer meshes. Unfortunately the
enormous computer storage requirement limits the
practical mesh size.

We have found empirically an efficient alternative to
matrix inversion for solution of these equations. By
iteration of the equations to obtain the coefficients of
(g%/4m)™ in the power series for tand, the Padé approxi-
mant to tand can be formed. It is found that for the
same mesh the Padé method reproduces the solution by
matrix inversion to any desired accuracy by choice of a
sufficiently high approximant. Thus by using the
Padé method, the coefficients need only be found once
to obtain the solution, although the order of the
approximant required depends upon g?/4wr. This con-
trasts with the matrix-inversion method which must
be repeated for each value of g2/4.

No effort has been made to extend this calculation
beyond the pion-production threshold. At the threshold
the interaction develops a singularity and the equations
can no longer be easily broken down into purely real
and imaginary parts.

This method can be extended to the J#0 cases, but
it becomes more complicated due to the increase in the
number of intermediate states. For the J=1 case, one
must deal with the 3S;, 3Dy, 3Py, and P states, and
upon an analysis similar to that in Sec. II, it is found
that eight intermediate states are possible. However,
once the J=1 problems are conquered, all other cases
are completely analogous.

The original goal of this program was the production
of the amplitudes of the ladder graphs and this has been
achieved with an accuracy of about 209, up through
the five-pion-exchange graph.
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