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We use finite-energy sum rules (FESR) to analyze the inelastic-electron-scattering data. We show that
the sum of resonances build up a scaling function although each resonance contribution falls off according
to a dipole formula. This is achieved by assuming that the dipole mass which enters into the form factor
increases when we go to higher resonances. The assumption seems to be confirmed by the data. We also
investigate the contribution of the Regge trajectories to the FESR, assuming that they all scale. We find
that the equations can be satisfied only if there is another contribution of a J=O fixed pole. The residue
function of the fixed pole is calculated explicitly and compared with that of the fixed pole found at real
Compton scattering. The two residue functions are found to have opposite signs.

I. INTRODUCTION

'HE new results on electron scattering off deu-
terium, presented at the Kiev conference, ' raised

again the question of the consistency of duality and
scaling behavior. Duality tells us that the low-energy
part of a scattering amplitude builds the high-energy
part via finite-energy sum rules (FESR). The low-

energy part, however, is dominated by resonances, and
in the case of electron scattering their contributions
decrease very fast with' g' (probably like the elastic
contribution which obeys the dipole formula' ), while
the high-energy cross section was found to decrease very
slowly with g' (probably like 1/q' for fixed c.m. energy4).
We are thus led to an inconsistency, namely, the two
sides of the FESR seem to have a completely different
q' behavior.

So far, the only attempt to explain this inconsistency,
is that of Harari, ' who suggested, in accord with the
commonly accepted picture of strong interactions, ' that
the resonances should be related only to the lower-lying
trajectories (with n(0)(1] and the Pomeranchukon
trajectory should be related to the background. This
picture therefore suggests that the residue functions of
the lower trajectories decrease very rapidly with
Q2(= —g2) and that the Pomeranchukon (scaling) con-
tribution starts to dominate at rather low Q' Laround
1 (GeV/c)']. This explanation seems to be ruled out by
the new data, » which seem to indicate that the difference
between the e pand e ncross -sections (which-is domi-
nated by the A2 trajectory at high energies) does scale.
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Since this difference is certainly dominated by reso-
nances, at low energies, we are faced again with the
above-mentioned difhculty: How can a sum of rapidly
falling-off resonances build up a scaling behavior?

We attempt to show, in this paper, that a dipole
behavior for alt the resonances' form factors is compatible
mith scaling and we suggest that the compensating effect
to the rapid decrease of the high power comes from the
fact that the higher the resonance, the bigger is the mass
of the dipole which dominates its form factor. This
suggestion seems to be confirmed by the resonances'
data and we also show that it leads to a scaling behavior
in a "semilocal" sense; i.e., when integrating the
resonances' contributions to vW&(Q', v) over any fixed
interval of the scaling variable, we get a resultwhich
does not vanish when Q' ~~, although every resonance
contribution by itself vanishes like 1/Q' (Sec. II).
Apart from checking the consistency of this assumption
with the present available data, we discuss some of its
further implications for experiment (Sec. III).

Having shown that the resonance contribution to the
FESR is compatible with scaling behavior, we go on to
examine the Regge-pole side of the FESR. We assume
scaling behavior for the n(0) 0.5 trajectories as well as
for the Pomeranchukon and find that the FESR cannot
be satisfied unless there is a J=O 6xed pole which
couples to the real part of the forward virtual Compton
amplitude. We calculate explicitly this fixed-pole con-
tribution, and going to the Q' =0 limit, we try to relate
this fixed pole to the one found in the analysis of real
forward Compton scattering. 7 We find that the two
Axed poles are about equal in absolute magnitude but
have opposite signs (Sec. IV).

II. SCALING RESONANCES

The first step toward establishing a relation between
the resonances' contributions to vW2(Q', v) and the
scaling curve was made recently by Bloom and Gilman. '
They have managed to show that by choosing a new
scaling variable,

~'=(2&v+iV')/Q'=o~+M'/Q', (1)
7 M. Damashek and F. . Gilman, Phys. Rev. D 1, 1319 (1970).
E. D. Bloom and F. J. Gilman, Phys. Rev. Letters 25, 1140

(1970).
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the scaling function F2(&o') averages the experimental
curve and passes through the resonances's peaks at
cvcl'y Q, provided tllat Q + 1(GcV/c) . Ill otllcl words,
the following relation between the Q'-dependent ampli-
tude I W2(Q', v) and, the Q'-independent scahng function
F2(a)') should hold for any Q'$& 1(GCV/c)']:

I Ws(Q', v)dv = F,((g')Cko',

where ~y, 2 are related to v~, 2, respectively, via relation
(&).

The importance of Eq. (2) )which is a triviality when
we send Q' to infinity and assume that I W2(Q', I ) does
scale] comes from the fact that it should hold for finite
values of Q', independent of Q'. We can thus write
W2(Q', I ) as a sum of resonances, insert this form into
the left-hand side of Eq. (2) and. see under which condi-
tions the result is Q' independent. Let us therefore
integrate the right-hand side of Eq. (2) between the
6xed limits My= 1 and N2=8, where 6 is some 6xed
number. Using Eq. (2), we get that 8, defined as

(aQ~M2) I23II

Q 0/2M

should be a constant, independent of Q'. Let us now
express W2(Q', I) as a sum of resonances (we use
the narrow-width approximation for the resonances
contributions):

Wm(Q', I) =Q W„(Q')b(I —(Q'+M„' —M')/2M), {4)

where M„ is the Nth resonance mass and W (Q') defines
its contribution to the amplitude and it is essentially a
coupling constant times a form factor normalized to
unity at Q'=0:

W-(Q) =g-'rG-(Q)]',
G.(0) =1.

%e are not going to take the background into account
since the discussion, which will use expression (4) for
the amplitude, remains completely unchanged under
either of the following two possibilities,

(I) The background contribution should be added, to
the resonances, and it scales by itself.

(2) The complete amplitude is given by resonances
which also build the background in some (as yet)
unknown way, probably via unitarity.

Let us therefore insert the resonances contribution (4)
into the integral (3), obtaining

where X is the number of resonances which can con-
tribute to the sum S. E is determined by the fact that

all the arguments of the 5 functions appearing in Eq. (4)
should be within the integration range. It is therefore
the index which corresponds to the highest resonance
which can obey the relation

M~'&~ Q'(a —I) .
This is perhaps the point to mention that we clearly
must have an in6nite number of resonances with in-
creasing masses which can couple to the yX system if we

are going to be able to describe the entire amplitude as
a sum of s-channel exchanges alone (in accord with the
usual concepts of duality' ).We are not, however, going
to assume anything about any speci6c mass relation
which the resonances should obey. The number E of
resonances which can contribute to the sum 5 at any Q'
will be determined at any particular model by inserting
the appropriate mass formula into Eq. (7). It is im-

portant to note, however, that Eq. (7) is a kinematical
constraint which is model independent. The mass of the
highest resonance which can contribute to the sum 5 is
therefore model independent and increases as QQ'.

I et us now look at the nth-resonance form factor
G (Q'). As we have mentioned. earlier, the form factors
decrease very rapidly with Q' and the data' seem to
indicate that they all follow a dipole behavior. Let us
then write

G-(Q') =(&+Q'/d-') '.

Bloom Rnd G11111RII llRvc speculated) llslng Eq. (2),
that all form factors should indeed have the same Q'
dependence. The essence of their argument is that the
nth-resonance contribution is peaked around

o)„'= I+M„'/Q',

and. by increasing Q' it will move toward, ra'=1. But
slllcc F2(cu ) 18 8 good RVCIRgc fol tile pllyslcR1 RIIlplltlldc

at all Q', this means that all the resonances should
"slide" along the scaling curve and the Q' behavior of
every form factor should be related to the behavior near
till'cshold of F2(co ) 111 'tile SRIIle WRy. Tllat ls wc gct tllc
behavior

G.{Q),. : I/Q

for every n, But this argument tells us that the higher
the resonance, the bigger is Q' where the falloff should
start because the resonance has a longer way to go
before reaching the co' 1 region. In other words, if the
resonances are to follow the scaling curve, it is clear
that the higher resonances should start falling o6
rapidly in Q' only at higher values of Q'. This means
that d„, the mass of the eth-resonance dipole formula

PEq. (8)], should increase with N.

The data seem to support this idea. The best test for
it would be of course to 6t every resonance form factor
with a dipole expression and see whether d really
follows our assumption. This has not yet been done,
however, and the most transparent way the experi-
mental resonance data are published' is in the form of
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We will take the above-mentioned. facts as evidence
in favor of our assumption and look at its implications
for scaling behavior.

By combining the suggested form (11) for d ' with
the mass relation ] Eq. (7)] for the highest resonance
which can contribute to the sum S, we see that d~', the
squared dipole mass of the highest contributing reso-
nance, grows like Q' and the form factor of the highest
resonance in the sum S is always a finite number, even
when we send Q' to infinity. That is,

GN(Q') o, „- const,

Q (GeVic) ~

FIG. 1, First four resonances' form factors as functions of Q'.
Curves were extracted from the data (Ref. 3).

curves of (do'/dQ)„. /(do'/dQ), i as a function of Q'. To
obtain G„(Q') from these curves, we first multiplied
them by the elastic dipole formula [with do' ——0.71
(GeV/c)']. We then extrapolated the Q') 1 (GeV/c)'
data all the way down to Q'=0 to get rid of the thres-
hold behavior. We then divided out the effective cou-
pling constant which one gets in this way. The results
are shown in Fig. 1 and they show that the form factor
of any resonance lies above the form factor of the former,
at least for the first four prominent resonances.

Another way to present the same data, which is
perhaps less impressive but at the same time free of any
speculations, is to take the experimental curves for
consecutive resonances and divide them by each other.
By doing this we directly obtain the experimental
curves for tG (Q')]'/tG i(Q')]' as a function of Q'
without any speculation. ' lf our suggestion is correct,
then these curves should show increasing functions of
Q', and Fig. 2 shows that they really do.

Further support for our assumption comes from the
way in which the experimentalists analyze the scaling
curve. ' They claim that they can get a good fit to u I/t/&

near threshold of the form

tG„&o'&]'

[Gn-i~~'&]'

l.5-
(l688)

N" (1 525 )

0.9- N ([525)
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and although every resonance contribution by itself
decreases with the same power behavior of the elastic
contribution, the highest resonances which contribute
to the sum S are always 6nite and enable 5 to remain
constant in Q, in agreement with scaling behavior.

Having shown that the integral over resonances from
threshold to any finite value of the scaling variable is
Q' independent, we immediately get that the integral
over any finite interval of the scaling axis has this same

property. Ke have thus shown that the sum of reso-
nances builds an amplitude which scales in a "semi-
local" sense. That is, for any 6nite interval in the
scaling variable, the area under the sum of the reso-
nances is equal to the area under the scaling curve, for
any Q'] &1 (GeV/c)'].

The specific form we have taken for the dipole masses

I Eq. (11)]is of course just for illustration purposes and
we by no means suggest that it should be the ultimate
form which the data must obey. %hat we do, however,
suggest, in view of the above calculation, is that the

ulV2— (10)
= L1+Q/(~ -~+")]"

where a~ are some constants, kt/ is the yÃ system c.m.
energy, and p,'~0,9 GeV'. Projecting the leading term
in Eq. (10) on the nth resonance, we get a dipole fit to
G (Q') with

0.5—

0.3-

N ()950)
rP (less)

in agreement with our suggestion.

9 In order to make this presentation as free of speculation as
possible, the curves were not normalized as demanded by Eq. (5).
If that were done, all the curves of Fig. 2 would just be shifted
to have a common origin at Q'=0.

f I 1
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Fro. 2. Ratio of form factors of consecutive resonances as
functions of Q2 (experimental curves). Curves are not normalized
and contain -the ratio of the coupling constants (see Ref. 9).
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following two features of resonances, which seem to be
obeyed by the data, build up scaling behavior.

(a) There is an infinite number of resonances, with
masses which increase indefinitely, which can couple to
the yE system.

(b) The resonance form factors obey a dipole formula,
and the higher the resonance, the bigger is the dipole
mass.

As a result of these two properties, the sum S remains
constant when we increase Q', although each resonance
vanishes very fast. The reason is that when we increase
Q', the contributions to 5 come from higher resonances,
whose form factors have not yet vanished since their
behavior is characterized by a bigger dipole mass.

Although point (a) is quite conventional and ac-
cepted by most people, point (b) has not yet been
investigated and we suggest that it deserves more study.

A word should be added here about the effective
coupling constants g„'. In the above explanation we did
not take them into account because we just wanted to
get a qualitative description of the way in which the
resonances build up a scaling curve. It is clear, however,
that in order to make the sum S constant we must also
demand some specific behavior for the coupling con-
stants. This behavior will depend. , of course, on the
specific model we take for the resonances. If we take, for
instance, a model with a quadratic mass formula and a
single resonance at every mass, we find that the coupling
constants should obey g„2 1/I in order to make the
sum S constant. In the case of a model with multiplicity
of resonances, our analysis can be applied as it is in the
case that all resonances with the same mass have the
same form factor. In that case we find that it is the sum
of the squares of the coupling constants of resonances
belonging to the same excited state which should de-
crease like 1/n. It is worth mentioning that an explicit
resonance model (with multiplicity) which obeys scaling
was constructed recently by Domokos eI ul. "and the
form factors in this model follow our conjecture.

III. EXPERIMENTAL CONSEQUENCES

The expression we wrote down for the resonances'
form factors LEq. (8)] and the assumption we made
about the increase of the dipole mass when we go to
higher resonances, suggest that the form factors become
more Rat when we go to higher resonances. This means
that the peak of any resonance will become more pro-
nounced, compared to the former resonances, when we
increase Q'. This conclusion (which is verified by the
data') suggests that by increasing Q' we enhance the
contribution of a certain resonance (compared to the
former ones) and create more favorable kinematical
conditions for its study. On the other hand, by increas-
ing Q' we decrease the absolute magnitude of the reso-
nance contribution because of the rapid fallo6 of the

'0 G. Domokos, S. Kovesi-Domokos, and E. Schonberg, Phys.
Rev. D 3, 1184 (19'71).

form factor. We want, therefore, to 6nd the Q' region
where the contribution of a certain resonance is both
most enhanced compared to the former one, and not too
small in absolute magnitude.

To do that, let us first write down the contribution of
the resonance relative to the former one as

f.(Q)=-
«.(Q')j' 1+Q'/d=i'&'= «.—.(Q)& 1+Q/d. &

(d-'/d--')' Q'~~

Since d„2)d„ 22, we see that f„(Q') rises mono-
tonically from 1 to some 6nite value when we increase
Q'. If we assume that d„2~M ' [Eq. (11)]and that the
resonance masses obey some kind of linear or quadratic
mass relation, then the ratio between consecutive
masses will approach unity when we go to higher
resonances and we get

/
e large

&n-1

We 6nd. that the higher resonances remain "equally
important"" when we increase Q' and we cannot
enhance the contribution of a certain resonance by
increasing Q'. For the lower resonances we can obtain
from Eq. (13) the Q' region where we have

f-(Q') ~ C

where C~ is some constant which obeys

1~& Ci& (d„'/d. 22)4.

This region is given by

d„'(Ci'"—1)

2/d 2 C i/4

For any Q' which obeys relation (15), the contribution
of the nth resonance, relative to that of the (n —1)
resonance, will be C~ times stronger than its contribu-
tion at Q'=0. On the other hand, we want to restrict
the fallo6 of the resonance form factor and we will

requll e
«-(Q') 3'& C2

where C2 is another constant between 0 and 1. Relation
(16) can be satisfied only by

Q2 & d 2(C —i/4 1)

Since we want relations (15) and. (17) to be obeyed
simultaneously, we see that Cq and C2 cannot be chosen

» Figure 2 represents the functions f~(P) up to the ratio of
the coupling constants (see Ref. 9) and it clearly indicates that
they become flatter for the higher resonances.
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arbitrarily but must obey the relation

dn, d2
C t/4+C r/4

d~—x

Equation (18) merely tells us that we cannot improve
indehnitely the relative contribution of a resonance if
we want it to have a finite absolute contribution. Sy
deciding what is the lowest C2 which still gives a
detectable counting rate, the experimentalists can see
from Eq. (18) how much the contribution of a certain
resonance, relative to the former one, can be enhanced.
For example, if we look at the Ã*(1920) and demand
that its form factor does not fall off below 0.5, we get
(assuming d„s~M„s) that its contribution relative to
that of the N*(1680) can be enhanced only by 25'1/~, at
most, compared with the corresponding value at Q =0.
The corresponding Q' happens to be around 1 (Gev/c) s.

IV. SCALING REGGE POLES

Having shown how the resonances build a scaling
curve in the sense of FKSR, let us look now at the
Regge-pole contributions to the equation. The high-
energy behavior of / 1Vs(Q', /) is given by

r Ws(Qs, v) (19)

where a; are the intercepts of the contributing Regge
trajectories. As we have mentioned earlier, the data'
seem to indicate that the A& trajectory scales, as well as
the Pomeranchukon. We will therefore assume scaling
for all Regge trajectories and write

P*(Q') =C'(2~/Q') * ' (20)

where C; are constants. %'e see now that in the scaling
region vS's(Q, v) for equivalently in this region, Fs(o/) j
has a Regge expansion in the variable m. I2 Assuming
that Regge behavior starts from some ~=coo, we can
write the following FKSR:

fit for Fs(o/). "This Qt gives us

Ct =0.28, Cs =0.18 if o,/o, =0.18,

Ct ——0.11, Cs ——0.68 if o,/o. , =0,

where C~ corresponds to the Pomeranchukon contribu-
tion and C2 to the o.=0.5 trajectories.

We found that with either of these fits one cannot
satisfy the FESR (21) for any value of o&s where mea-
surements exist (that is, up to o/ 20). If one wants to
extrapolate roughly the experimental curves to large
values of ~, one finds that, using the erst 6t, the FKSR
can be satis6ed only with ~0 65, and using the second.
fit, one needs coo 45. This is of course highly undesirable
since the data clearly indicate that Regge behavior
starts around ~-5, so that we expect ~, to be of this
order of magnitude. One can argue that there is some
inconsistency in our numerical calculation since, to
compare Eq. (21) with experiment, one should in
principle use only Regge 6ts which were done in the
co&~o region, for every ~0 which we choose. In any case,
this is certainly not a big effect and even with this
remark in mind it is very unlikely that the o,&0 tra-
jectories alone will satisfy the FESR (21) with o/s 5.
The point is that when we extrapolate the e)5 tail
to threshold, we get too much area between the extrap-
olated curve and the scaling curve, owing to the rapid
decrease toward threshold of Fs(o/). This area cannot
be compensated for by the area left in the broad peak
of Fs(o/) above the extrapolated Regge tail. We conclude
that we need another contribution to the FESR [Eq.
(21)j.Such a contribution could come from the presence
of a J=06xed pole"

Let us be a little bit more specific. The forward
virtual Compton amplitude for the scattering of a
photon with four™momentum q„and polarization vector
e„off a hadron with four-momentum P„ is given by
es*Tsy(P~q)ey and T/Ip can be decomPoseds

T„„(Pq) = (1/M')P„P„T,(q' p)+

Fs(o&)do/=g c;
8's(q', r ) = (1/rr) ImTs(q', r ) .

21 P', (q', /) is related to the cross section for photoabsorp-
tion of the virtual photon by the hadron:

The derivation of this equation took into account only
o.&0 poles.

Equation (21) gives us the usual result of FESR
theory: The area under the small ~ region of the scaling
curve is equal to the area under the extrapolated Regge
tail. Using the experimental curve for the left-hand side
of the FESR and. the Regge-Gt parameters for the right-
hand side, we can see whether there is any o)0 for which
Eq. (21) can be satis6ed.

We performed this calculation using a recent Regge

"We will be working in the Q ~~ limit so that the scaling
variables w and w' are essentially the same.

2

W's(Qs, v) = ——— I /(Q' ~)+o.(Q', ~)j (23)
4rrso/ (os+Qs) "'

Our conclusion about the J=O fixed pole can be

"H. Pagels, Phys. Letters 343, 299 (1971).
~~A J={)fixed pole in the electroproduction amplitudes has

already been discussed in the literature. In particular, J. M.
Cornwall, D. Corrigan, and R. E. Norton LPhys. Rev. Letters
24, 1141 (1970)j derived equations similar to ours from quite a
different point of view. See also a discussion of the Q dependence
of the residue function by T. P. Cheng and W. K. Tung, ibig. 24,
851 (1970), and Ref. 17.
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written as

"[&2(Q', )—&~(Q',v)7 „.' Po(Q'), (24)

What can we say about the real parts) Are they also
related in a similar way) The analysis of Damashek and
Gilmanr tells us that fi(v) obeys

where Tii(Q', v) is the contribution to the amplitude
from the n(0)) 0 Regge poles and Po(Q') is the residue
of the 6xed pole. '~ The FKSR (21) will now be modi6ed
and we simply have to add to its right-hand side the
function —(2M/Q')Po(Q'). But since any other term in
the equation is Q' independent, we clearly must have

Po(Q') =Co(Q'/2'�) (25)

and the J=O-pole residue function obeys the scaling
relation (20), although the pole cannot couple to
W2(Q', v). The constant Co can be determined from the
FESR (21), and we get for it the equation

0 '
Co ——Q C, Pm(GQ)kd . (26)

n&0

Equation (26) makes it explicitly clear that the con-
clusion about the presence of the 6xed pole is not just
an accident due to the choice of the Regge parameters.
The data really have to change drastically in order to
make CO=0.

Taking &oo ——5, we get Co 1.2 using the o,/o~=0. 18
6t and Co 2.5 using the o.,/o &

=0 6t.
The form which we find for the Axed pole enables us to

connect it to the one found in real forward Compton
scattering by Damashek and Gilman. ~ The point is that
when Q'~0 the longitudinal photoabsorption cross
section vanishes and we obtain from (23)

(27)

where o(v) is the real photoabsorption cross section at
lab energy v. But this is related to the forward Compton
nonflip amplitude pi(v), by the optical theorem:

Imfi(v) =(v/4s)o(v) . (28)

Combining Kqs. (22), (27), and (28), we see that the
imaginary parts of T2(Q', v) and fi(v) are related via

1 2

ImT, (Q',v) o, '-, ——Imfi(v).
A V

(29)

~ Note that an n=O pole cannot couple to 8'2, the imaginary
part of T2.

6( ) —f~(v), .' —~/~ (30)

where fa(v) stands for the contribution of the n(0))0
Regge trajectories to fi(v). Assuming that the real parts
of T2(Q', v) and fi(v) obey a similar relation to Kq. (29),
we get

v [2'2(Q v) 2'&(Q v)3 . ' 2Q2/2ilf' (31)

We see that the fixed pole we get in this way has an
opposite sign to the one found in the analysis of the
scaling curve.

One can of course argue that one should not make a
continuation in Q' from the scaling region" [that is,
Q'&~1 (GeV/c)'] to Q'=0 and also that there is no
reason why the real parts of T2 and fi should be related
to each other in the same way that the imaginaryparts
are [Kq. (29)j. If one accepts the above analysis,
however, then one is led to the conclusion that the
fixed-pole residue function changes sign when going
from Q'=1 (GeV/c)' to Q'=0" A mechanism which
can explain this somewhat unexpected behavior is not
yet known, and if found, could have very interesting
implications.
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"Note that the J=O fixed pole is the only pole that we can
continue to Q'=0 using Eq. (29). The a) 0 poles will blow up in
this limit and the o, (0 ones will vanish.
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(1970). Using the 6' and 10' data, they get the same result that
we get for Co. Using preliminary data for 18' (which at that time
were available only as a free-hand curve through the preliminary
data points), they claim to obtain the opposite sign for Co. The
18' data have meanwhile been published and they agree with the
data on 6' and 10'. Our analysis is based on fits to the over-all
data.


