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ask if a very simple model can be constructed to fit the

p waves (assuming that the nonpole current-algebra
result fits the s waves). The simplest model might
contain the ~+ octet trajectory by itself. In this case,
only the I channel contributes. If only SL'(3) Clebsch-
Gordan coefficients are used, all the p-wave amplitudes
stand correctly in relation to one another when reason-
able d/f ratios are used for the weak and strong vertices.
However, if the magnitude and sign of (d/f)„„q is

taken from the current-algebra results, the relative
sign of the s waves and the p waves is incorrect. Thus
it may be that a number of trajectories are required to
fit the data. Our criterion (1.2) may be useful in limiting
this number.

We would like to remark that several authors have

proposed "duality" models" for nonleptonic hyperon
decays where the s-wave amplitude is given by the
E*-trajectory exchange in the 3 channel. Essentially
these models claim to pick up the E~ Regge-pole term
so that our result would have very serious consequences
for them if it is assumed that any result which is true
in the Van Hove model is true in any Regge model.

Finally, we note that a more detailed study of the
l-plane analyticity of the decay amplitudes could be
useful (though rather complicated). If ideas like the
one presented here turn out to be useful, they may, of
course, be applied to other decay processes.

"S.Nussinov and J. L. Rosner, Phys. Rev. Letters 23, 1264
(1969); K. Kawarabayashi and S. Kitakado, ibid. 23, 440 (1969);
Mahiko Suzuki, ibid. 22, 1217 (1969);22, 1413(E) (1969).
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The effect of m-~ interaction in isospin-zero states on the characteristics of the w ~ ~~y decay is investi-
gated by means of partial-wave dispersion relations. With the p-exchange contribution as the driving term
and elastic unitarity for z-~ scattering on the right-hand cut, we arrive at integral equations whose solutions
explicitly depend on the m--~ phase shift. Various scattering-length and resonance models are used to represent
the m.-~ phase shift. The high-energy contribution to the integral equation is treated in three ways: by
subtraction, adding an effective pole on the left-hand cut, and normalizing the amplitude at the f0 resonance
to a Veneziano model for co ~ x~y. Numerical results for rate and spectrum are discussed in the light of the
possibility of discriminating by experimental results among the various models for x-~ interaction.

I. INTRODUCTION
' ~N this paper we present a detailed study of the first-
~ ~ order electromagnetic process co —+2m. +y. Apart
from the natural challenge of a theoretical understand-
ing of the radiative transitions among vector and pseu-
doscalar mesons, there is an additional feature making
this process an interesting object for experimental and
theoretical study, since it provides the opportunity for
investigating the dynamics of x-~ interaction in even
angular momentum states because of the particular
final-state con6guration of the pion pair.

It is well known that the analysis of x-x interaction'
is quite difficult, mainly because of the complications
arising from the presence of additional hadrons in the

~ Based in part on a thesis submitted by N. L. to the Senate of
the Technion in partial fulfilment of the requirements for the
D.Sc.degree.

t Research supported in part by Stiftung Volkswagenwerk.
f Present address: Theoretical Group, DESY, 2 Hamburg 52,

Germany.' G. L. Kane, in Proceedings of the 1970 Conference on Meson
Spectroscopy, Philadelphia, Pa. (unpublished). See also the
Proceedings of the Conference on ~~ and E7f. Interactions, edited
by F. LoefBer and E. Malamud, Argonne National Laboratory,
1969 (unpublished).

final states of the processes investigated. As a result,
our knowledge of the details of the m-x interaction,
especially in the S-wave angular momentum state, is
still in a quite unsettled position, which occasions the
understandable interest in any process which could con-
tribute to advancing the study of x-x interaction.

In the process ar —+ ~my, only even angular momentum
states are allowed for the two pions, as a result of the
charge-conjugation invariance of the electromagnetic
interactions. Moreover, the pions are restricted to the
isospin-zero state when the process is considered to
first order in the fine-structure constant. This deter-
mines the relation between the two possible final charge
states, namely, I"(co -+ m+n. y) =21'(co ~ ~'m'y).

The first theoretical estimate of this process, 2 de-
scribing it as a transition co ~ (p)+m. —+y+~+m. , pre-
dicts a relative decay rate' of I'(co ~m+7r p+m'~'p)/
I'(cu —+all)=1.8X10 4. This number is obtained by

' P. Singer, Phys. Rev. 128, 2789 (1962).
'The values quoted for co decay in the compilation tables

LParticle Data Group, Phys. Letters 33B, 1 (1.970)j are
F {c0—+ all) = 11.9&1.3 MeV, out of which (90&4)% is made of the
3z decay mode, while the dominant electromagnetic decay to
m y accounts for (9.4&1.2)%.
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taking for g, ~ the value predicted by SU(3) symmetry
combined with canonical ~-p mixing, namely, g, „
=~~g„~, which is also consistent with the presently
available experimental information. However, this pole-
model calculation might be inadequate due to the
neglect of 6nal-state interactions, which could signifi-
cantly increase the decay rate. Yellin4 and Renard'
have considered this possibility and have added to the
above-mentioned Born term, pole diagrams with reso-
nances (a,e) in the ~-n channel. They do indeed predict
an increase in the rate by approximately one order of
magnitude. However, their numerical estimates suffer
from the uncertainty concerning the coupling con-
stants of the scalar particles to ~-y. Aviv and Xussinove
handled this difficulty by using finite-energy sum rules
to determine the coupling-constant products g, g,„7
and gr gr„, and obtained a value I'(co —+ 2n'+y) =0.1
MeV.

On the experimental side, the situation is that so far
only upper limits have been established for the w ~may
modes. These amount to I'(ca ~ n+s. y)/I'(cv ~ s+~ ~')
&5%7 and I'(co ~ vronoy)/I'(ro ~ neutrals) &20%%uq.

8 'o

From the preceding exposition, one sees that the
calculated decay rate is strongly model dependent. In
light of the interest attached to this process, a more
detailed investigation is called for. We undertake such
a study here by considering the analytic continuation
of the decay amplitude, namely, the scattering process
cv+y ~ m. +~. It is assumed that the partial-wave pro-
jections of the invariant amplitudes obey dispersion
relations in the s variable (the square of the energy in
the center-of-mass system of the two-pion channel).
The left-hand cut will be approximated by the p-meson
exchange contribution, while at the right-hand cut we
shall use elastic unitarity for the two pions. Ke arrive
thereby at an integral equation for the a&+y —+~+s.
transition, with the p exchange as the inhomogeneous
driving term. ""Kith our procedure we do not need
the knowledge of the couplings of cv-y to scalar and

' J. Yellin, Phys. Rev. 147, 1080 (1966).' S. M. Renard, Nuovo Cimento 62A, 475 (1969).' R. Aviv and S. Nussinov, Phys. Rev. D 2, 209 (1970).' S. M. Flatte, D. O. Huwe, J. J. Murray, J. Button-Shafer,
F.T. Solmitz, M. L. Stevenson, and C. %ohl, Phys. Rev. Letters
14, 1095 (1965); Phys. Rev. 145, 1050 (1966)'.

V. V. Barmin, A. G. Dolgolenko, Yu. S. Krestnikov, A. G.
Meshkovskii, Yu. P. Nikitin, and V. A. Shebanov, Zh. Eksperim.
i Teor. Fiz. 45, 1879 (1963) t Soviet Phys. JETP 18, 1289 (1964)j.' Z. S. Strugalski, I.V. Chuvilo, I.A. Ivanovskaya, Z. Jablonski,
T. Kanarek, L. S. Okhrimenko, E. Fenyves, T. Gemesy, S.
Kranovsky, and G. Pinter, Phys. Letters 29B, 532 (1969).' W. Deinet, A. Menzione, H. Muller, H. M. Staudenmaier,
S. Buniatov, and D. Schmitt, Phys. Letters 303, 426 (1969);
F. Jacquet, U. Nguyen-Khac, A. Haatuft, and A. Halstemslied,
Nuovo Cimento 63A, 743 (1969).

"An approach along these lines for studying the w-w interac-
tions in the decay E ~ ~~ev was initiated by Kacser, Singer, and
Truong (Ref. 12). The close similarity for this purpose between
X,4 and op —+~~y is obvious. One should stress, however, that
while in E+~ ~++ e+v both even and odd angular momentum
states of the pion pair are allowed, only even states appear in the
decay ~ —+ ~~p."C. Kacser, P. Singer, and T. N. Truong, Phys. Rev. 137,
81605 (1965); 139, AB5 (1965}.

tensor particles. The solution of the integral equation
depends on the m-x phase shift, and by assuming for it
various possibilities, we check their effect on the process.

A complication arises due to the apparent need for
a subtraction in the dispersion relation for the 5-wave
amplitude. In order to tackle this question in greater
detail, we use among other possibilities a Veneziano-

type amplitude which was constructed" for the process
Vr+vr —+ V2+vr, which now serves to normalize our
amplitude. This Veneziano-type amplitude naturally
has the correct asymptotic behavior at high energies
and also gives the correct description of the lowest-
lying resonances of the considered scattering process,
namely, p and f' Thus. , we are able to determine the
nature of the subtraction constant by normalizing at
relatively low energies to an amplitude possessing the
correct high-energy behavior. As a result of our analysis,
we are able to classify different forms of x-x interaction
into three main groups, according to their effect on the
decay width of ~ —+ ex'.

Before concluding the introductory remarks, we
should like to explain the reason for choosing for our
study the ~ decay among the various possible processes
of the type V + I'+I"+y.—The p —+ vr~y " and
E*—+Exp" decays, involving also charged particles,
have contributions from both inner brehmsstrahlung
and direct processes. Since the relative magnitude and
phase of the two independent contributions are model
dependent, the effect of the x-m interaction would be
more dificult to disentangle. The only other process of
this kind which has only a direct decay mechanism is

P —+ ewe. 4 ' Since the Born term is proportional to the

gym coupling, which is supposedly very small, one ex-
pects this decay to be of insigni6cant magnitude com-
pared to the other p decays and hence even more
difIicult to study experimentally than the (o~xwy
transition.

In Sec. II we develop the necessary kinematics and
define the invariant amplitudes. In Sec. III we present
the integral equations for the partial-wave amplitudes.
Section IV describes the various possible parametriza-
tions we assume for the x-x amplitude, In Sec. V we

present a determination of the subtraction constant
from a Veneziano-type amplitude for co ~ xvry. Section
VI contains a summary of the numerical analysis, and
in Sec. VII we discuss the conclusions we can reach from
our investigation.

II. INVARIANT AMPLITUDES) HELICITY
AMPLITUDES, AND KINEMATICS

In order to keep our treatment more general, we
define the amplitudes and kinematics for the process
V~+7r; —+ V,+~;, where the V's are isosinglet C= —1,
vector mesons. Whenever necessary they will be de-
"N. Levy and P. Singer, Phys. Rev. D 3, 1028 (1971)."P. Singer, Phys. Rev. 130, 2441 (1963); 161, 1694 (1967);

R. N. Chaudhuri and R. Butt, ibid. 177, 2337 (1969)."M. Sapir and P. Singer, Phys. Rev. 163, 1756 (1967).
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s chonnel —-=

7rp
t

Tp (' ——[(v2q sin0)/m(]

X[—k(gs)C —(2qko cos0)E], (2.6c)

TLi'=B 2(q—sm0)'E, (2.6(l)

Tp p' ——(1/m(mp) [k'sA+ (ppkp+k') B
+2qk(gs) cos0(kpD —poC)

—kopp(2q cos0) 'E], (2.6e)
where

(s 4+2) I/2 (2.7a,)

k, tel,
{[s—(m( —mp)'][s —(m(+m&)'])"' (2.7b)

2+s

Vl

t channel

FIG. 1. Definition of kinematiCs.

ko ——(s+m(o —m ')/2+s,

P, = (s+moo —m(o)/2+s,

cos0 = (t —I)/4qk.

(2.7c)

(2.7(i)

(2.7e)

tailed for the specific case V~ ——y, V2=+. Let 5 and T
be the scattering and transition matrices, respectively,
connected by the relation"

(2~)'~O'(pt p')—S=I- T
(16E(EpEpE() '"

T»&p p» (k)~~so» (p) i

(2.1)

(2.2)

where k, pq„(k) and p, pq, (p) are the momenta and
polarization vectors of V& and U2, respectively. Requir-
ing invariance under C, P, and T, the quantity M p can
be described in terms of Ave invariant amplitudes as
follows:

s = (p+k) '= (q(+qp) ',
t = (p+q, )'= (k+q, )',

(2.5a)

(2.5b)

N=(p+q()'=(k+q )'=m '+m '+2tI, ' s t. (2.5c)——

M,t(=A(s, t)p kt(+B(s,t)g,s+C(s, t)p hs

+D(s, t)ts. ks+E(s, t)h hs, (2.3)
where

D, =(q(—q )„,
and q(, qp are the momenta of the pions (see Fig. 1).The
invariant variables s, t, and I are dered by

q and k are the center-of-mass momenta of the pions
and vector mesons, respectively, and 0 is the angle be-
tween the momenta q~ and k.

In the 3 channel, with the s axis again in the direction
of p, from Eqs. (2.2) and (2.3) the following helicity
amplitudes are obtained:

T, ,'=-', [(A C+D E)qg—qp sin'0,—
—(1+cos0,)B], (2.8a)

T, ,' = —-,'[(A C+D E)q—&q p sin'0—(
+(1—cos0()B], (2.8b)

T, o' [(s,in——0()/&2m(]

X[q((qyPp —qpkp cos0()(A C+D E)
+2q&'(gt) (E—D) —kp'B] (2.8c)

To, (' ——[(sin0,)/v2mp]

X[q,(—ko'q, +Po'q( cos0,) (A C+D E)— —
—2qpo(gt) (E+C)+pp'B], (2.8d)

Tp, p' ——(1/m(mp) [pp q( cosO( —qpkp )
X (q(po' —qpkp' cos0,) (A C+D E)— —
+(q(qp kp pp cosO()B+—4tqyqpE
—2qp(gt) (q(po —qpkp cosO() (E+C)

+2qlhh) (Po'qi cos0( —qpko') (E—D)], (2.8e)

Parity and charge-conjugation invariance imply that
M p will be symmetric under the interchange q& ~ q&,

'

therefore the amplitudes A, 8, and 8 are symmetric,
and C and D antisymmetric under the exchange t ~ N.

In the s channel, with the s axis taken in the direction
of p, Eqs. (2.2) and (2.3) lead to the following helicity
amplitudes:

T(, '=2(q sm0)'E (2.6a)

T(,o' = [(&2q sin0)/m&]

X[k(gs) D—(2qpo cos0)E], (2.6b)
"Throughout this article we use units in which 5=c= 1.

where

{[t—(m( —t() '][t—(m(+t() ']j '"
2+t

(2.9a)

kp' ——(t+mP tJ, ')/2+t, —

p p' (t+m" p')/2+t, —— —

s s (m( p, )(mp t()
cosoq = — +—

4gygg

(2.9c)

(2.9d)

(2.9e)

{[t—( —p)'][t —( +p)']}'"
g2=— (2.9b)

2+t
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q», q2 are the center-of-mass momenta of V»-~, and
V2-x;, respectively, and 8& is the angle between p and
tI». The rest of the helicity amplitudes are derived from
(2.6) and (2.8) through the relation

(2.10)

For the decay o)-+22r+y, we set 202 ——2/2
—=m and

m»=0. Gauge invariance is ensured by imposing

T'0,)„=0

Integrating over ds» and dp, the unitarity condition
for T)), ,)„s(s) becomes

»/2

ImT), ,), (s) = — — fs*(s)T),,)„(s),
16m s

(3 4)

The unitarity condition for elastic ~-x scattering
allows us to express fs in the form

(or, equivalently, to 3E // 0), w——hich translates into two
relations between the five invariant amplitudes:

s y
1/2

f~(s) = 162r
~

e*'~~' sin/)s(s),
s—4/32)

(3.5)

8= —[(s—2/22)/(t —u)]C, (2.12a)

8= —2[(s—2/22)A+(t —u)D]. (2 12b)

Accordingly, for the process co~mwp, the Feynman
amplitude M p has the form

where 8q(s) is the I=O z-2r phase shift. In order to
apply unitarity to the process o)+y -+ 2r~+m;, we want
the explicit form of T&1&2 for this case. Using Eqs.
(2.11) and (2.12) together with (2.6), one has

M p' A(P tt//
——to Pg p)—+D(D 1'op —k. t) g s)
+C[P 6// —6 6//(s —2222)//(t —u)]. (2.13)

T, ;= —q'(s —2/22) C' sin'8

T2' o(,V2——q/222)- (t22u) H—sing,

(3.6a)

(3.6b)

III. DISPERSION RELATIONS FOR
DECAY a~2m+y

We assume that the decay amplitude may be obtained
from the scattering amplitude for the process &v+y —&

2r, +2r; by analytic continuation, for which amplitude
we write a dispersion relation in the s variable. The
right-hand cut is represented by elastic unitarity, and
the left-hand cut is approximated by the contribution
of the p exchange in the 3 and I channels.

The unitarity condition for the s-channel helicity
amplitudes (2.6), after using time-reversal invariance
and neglecting intermediate states with more than two
pions, takes the form

4+2) 1/2

ImT)„,)„'(s,so) =
162r2 k s

Fr (s,s2)

&& T2, ,)„'(s,s2, 3t )dsrd6t), (3.1)

where Ii is the 5=0 x-x scattering amplitude; ss, s2, and
s» are the cosines of the angles between py and p;, p
and pf, and p; and p„, respectively; and p is the angle
between the two planes defined by (p, &(p„) and

(pf xp;).
The expansion of T&1 &2 and F into partial waves is

T),), '(s, s,4) =Z (2j+1)D)0'"(4,2,0)T) ),x '(s), (3.2)
J

where DqoJ are the rotation matrices'~ with 'A=X2 —X»,

and
F(s,s) =Q (2J+1)FS(s)fs(s), (3.3)

Fz(s) being the Legendre polynomials.

"A. Edmonds, Angular Momentun &s Quantum Mechanics
(Princeton U. P., Princeton, New Jersey, j.957), p. 55.

Since C and D are antisymmetric under t ~ I, all the
above-defined functions are regular on the line f,=N.

Expanding these amplitudes according to (3.2), the
partial- wave amplitudes free of kinematical singularities
are

Tr, 2 (s)

q'(s —m')

[(j-')j(j+')(j+')]"'
[(2j+3)CS 2'

(2J—1)(2J+1)(2J+3)
—2(2J+1)CS'+(2j—1)CS~2'], (3.7a)

42[j(5+1)]"2Tr, os(s)

2q k2/2 2/2'(2 j—1)(2J+1)(2J+3)
&&[(2j+1)'Hz —(J—1)(2J+3)HJ 2

—(J+2)(2J—1)HS+2], (3.7b)

Tr, rs(s) (2qk)2
(A —q'C') s+

(s —2/22) (S—222)'

J(J—1) 2j(j+1)—1
X IZ-2+ — IZ

(2J—1)(2J+1) (2J—1)(2J'+3)

J(J+1)
+ Is+2, (3.7c)

(2J+1)(2J+3)

(t—u)'
T, ' —', (s—cc')(A —

2,3'=C'+ 3 ~, (3.6c)
2(s —2/22)2 )

where
C'= 2C/(t u)—, D'=——2D/(t —u),
H = (s—2222) D'+ (s—+2/22) C',
I=H+2222C'. —



2138 N. LEVY AN D P. SINGER

+q

lr.

I'ro. 2. Feynman diagrams, of the p-exchange contribution
to the t and u channels.

where
x=2(m '—p') —m' s=(s+x)/4qk

and Qs are the Legendre functions of the second kind.
Qz(s) may be expanded in terms of 1/s' (which will

simplify the solution of the resultant integral equation):

r(J+ 1)(2s)-'-'
Qs(s) =m'12—

r(J+-,')

(J+1)(J+2) 1—+ (3 11)
2(2J+3) s'

G — m' 2s (4qk)'z'
t, p~ ———— 2s —m' —4p'+

8 s—m' s+x (s—m')-

Qs(s) 8qks ( m' 2
x ——;I,——I~.,o, (3 10c)

2qk (s—m') ks —m' s+xl

and
k' = (s—m') '/4s.

and, since in the physical region of the decay 4p, '~& s ~& m'
one has

I
s

I
)3, in the expansion we shall neglect terms

of order (1/z') when compared to 1. Then Eqs. (3.10)
become

Partial waves of the invariant amplitude are defined
similarly to (3.3). t'= 6

The left-hand cut, approximated by the p exchange 5&3s+x
(see Fig. 2), is given by

4 7Ãp P
t g'=G

SV3 (s+x)'
(g"—O'Q'/Q')

»i,~2"'=Ge e,bp e~."(p)Q'—

2g

X ., Q' '(k)k"+, (3.8) t G — m'(g+m2) 2 —2(s —m')'

(3.12a)

(3.12b)

G:gepwgpwy/u

is the fourth-rank antisymmetric tensor and
Q„=(p+q2)„. From (3.8), (2.2), and (2.13) we get the
p contribution to the invariant amplitudes

2,= —[G/4(t —m, '))P(s+m') —2(t+p'))
+t ~ u, (3.9a)

C, = —[G/4(t —m, '))-,'(t —u) t —+ u, —

D, =[G/4(t —m, '))P, (t —u)+m') —t —+ u.

(3.9b)

(3.9c)

According to (3.7), the p exchange contribution to the
partial-wave amplitudes is

«(J—')J(J+')(J+'))'"
kp2

—[(2J+3)Qs 2(s)
4qk(2 J—1)(2J+1)(2J+3)
—2(2J+1)Qs(z)+(2J—1)Qspg(s)), (3.10a)

G(mp' —u') [J(J+1))"'J
&2(2qk) '(2J+1)

X[Qs-~(s) —Qs+&(&)), (3.1ob)

3 s —4p, '
X x+m'+2@' —-m'

7 s
(3.12c)

6 1 m2

&,pp= —— s —m'+(s —4p') 1——
4 (s+x) 3x

2 (s—m') (s—4p') m' (s —4u')
+

3 (s+x)' 3x s
(3.12d)

With the right-hand cut given by (3.4), and the left-
hand cut approximation (3.10), the integral equation
for the partial-wave amplitudes is

1 " e-'"'"' sin8s(s') tq'(s')R(s')ds'
4'(s) =t,~'+-

7i 4' s —s
(3.13)

R(s) is the inelasticity factor accounting for contribu-
tions of intermediate states of four or more pions; there-
fore, R(s) =1 for s(16t4'. Since the s channel is pure
I=O, the four-pion state may be approximated by an
equivalent 2p meson state which starts contributing at
s~& 2m„', i.e., R(s) = 1 up to s=2m, '. In calculating the
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1 " e """'sinbs(s') t, i,s(s')ds'
X — —— —+I'(s)

4@2 s —sI

with

(3.14)

us(s) =
s —4p, 2 bs(s') ds'

.* (s' —4&')(s' —s)

and I'(s) is a subtraction polynomial.

decay width (where 4to'~&s~& m, '), we are interested in
the low-energy behavior of the amplitude and therefore
justified in taking R(s) =1 for the whole range of inte-
gration. Possible high-energy contributions to the
integral (3.13) with R(s)41 will be taken care of by
subtractions. The solution of the integral equation
(3.13) is"

t&'(s) =t», '(s)+e»~ &

Inspection of Eqs. (3.10) reveals the asymptotic be-
hav&or of tp), as s —+~:

oo 1/si toi oo 1/s

t, om ~ 1/s, t,oo ~ C.
(3.15)

where s„are the positions of the poles in tpq~. Inserting
(3.12) into (3.16), we get the amplitudes

Therefore it is reasonable to assume that tq2 do not
require subtractions, whereas tp possibly does.

Using the approximation (3.12) for the inhomogene-
ous term, the equation (3.14) can be transformed" into

Resptogs(s)j, =,„
tg (s) = e"~&' P e ' &'"' +I'(s)

s —s

(3.16)

2V2 e"'('& ""
2 G

5v3 (s+x)

G4(m ' —to') 1 d
2— ~~2 &.&

—~g (—~&

5&3(s+x) s+x dx

G2q'e»~~& - t- 3 s —4@2 1
to'= —

~
2(s —m')'~ x+m'+2to' -m' — m'(x+—m')'

15s 7 $ (s+x)'

24m'to' (x+m') '
+

7x's (s+x)

(3.17a)

(3.17b)

m2 3 4to') d' x+m' x+m'
x+ —+2io' —-m' 1+

~
+— 2 —= x+m'+2to' ——m' 1+

2 7 x ) dx' s+x s+x 7 x )
24'' 1 d p 24m'p'

+m'(x+m') —+ — —~e "" *'+-
7x' syx dx) 7x's

(3.17c)

G 1 m'q
too = —e"'&'& — x+m'+(x+4to') 1 ——

~

12 (s+x) x)
1 d ) m'4to'

+2(x+m')(x+4to')I
~

e
—»(—*)y

'is+x dx) xs
e "'"'+P(s) . (3.17d)

The exact form of the subtraction polynomial I'(s)
is determined by the behavior of the amplitude at high
energies, and we shall examine various possibilities for
it, including a value suggested by a Veneziano-type
amplitude for this process. " In this context we are
using also an alternative approach to handle high-
energy contributions. In order to minimize their eBect
on the solution of the integral equation (3.14), one can
change the high-energy behavior of t,oo (which is only
a low-energy approximation of the left-hand cut) by
adding an effective pole far to the left. To this end, let
us rewrite tpp in the form

"J. D. Jackson, in Dispersioe Relations, edited by G. R.
Screaton (Oliver and Boyd, London 1960) p. 54.

G 1 m2

t,o"= ——2x+4to' 1——
12 s+x S

(x+m') (x+4to') 4to'm'
+2 +

(s+x)' xs
4 (3.12d')

and change it into

G 1 m2
t', p'= — — 2m+4@,2 1——

12 s+x S

2(x+m')(x+4to') 4to'm'
+ (3.1S)

(s+x) ' xs 1+s/A.
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where A is the position of the effective pole. Inserting We present now a few approximate solutions of Eqs.
(3.18) into (3.16), the solution for too is now (4.7) and (4.8):

G I
g

0 &up(s)

12 s+x

a. Scattering leng-th approximation, " where Xp is
taken to be constant. We then denote the approximate
Ã0 and D0 functions with subscript a,

I
+2(*+m')(x+4'') ——— e "p( ')

s+x dx

4p, 2m 2 4A
~
—up (0) t,

—up (—A)

xs A+s
(3.19)

E,=a0.

Insertion of (4.9) into (4.8) gives for Dp

D.=1+ao[H(v) —ie(v) p(v)],

where H(v) is defined by

(4.9)

(4.10)

IV. PARAMETRIZATIONS OF m-~ PHASE SHIFTS

(v/vr)'FrMr
S

sr s—ze(v)p(v)(v/v f) pf3Ef
(4.1)

In order to compute t&~ we need as input in Eq.
(3.17) information about ~-x phase shifts. In face of the
poor experimental information, ' we shall use several
alternative parametrizations for 8& and subsequently
analyze their effect on the decay characteristics.

Let us start with the less controversial D wave. Ex-
perimental analysis shows that 82 is small at low ener-
gies and passes through -', ~ at the fp resonance with
My = I264& 10 MeV, I'f = 150&25 MeV. Hence we
parametrize bp in two ways: (a) 8~=0 and (b) a Breit-
Wigner resonance form

H(v) =(2/vr) p(v) ln[vit +(v+1)'~ ] (4.11)

Insertion of D, into the solution of t po (3.17d) shows
that as s —+" and P(s) =0, too —&C/sins, while for
P(s) =b, too ~ b/lns.

b. Resonance approximation Evide.ntly (4.9), which
contains only one parameter, is reliable only at low
energies. A better representation of fp(s) will contain
more parameters. Here this will. be achieved in three
ways: (I) a twice-subtracted integral equation for Dp,

(II) Xo represented by a two-parameter function, and
(III) a combination of (I) and (II). For each case we
denote the E and D functions with the appropriate
subscript.

(I) Dp is written in the form"

v =(s—4p')/4p',

1/2

~(v) =

(4.2)

(43)

v v' " v' "' .Vo(v')
D0 —dv', (4.12)

vo vr o v+1 vo(v —v)

where now the influence of Ã0 on D0 at high energies is

g 0 A d l
Ieduced, and it will be sufficient to approximate it byand Hjvj is a step function starting at v =0. Accordingly,

a.

t,ug(s)

sr s i8(v)p(v)(v/—vf)—pI'ter
(44) D(i) ——1 —(v/va) [1+apH(vz)]+ap[H(v) —i0(v)p(v)],

For the 5 waves let us introduce first the notation of
Chew and Mandelstam":

V0=—
1+apH(v~)

(4.13)

fo(s) =+o(s)/Do(s)
For appropriate values of ap and vp, Dg& will become
a resonating amplitude at v& with a width F& given by

and 80 is given by

cotBp =
ReD0

(4.6) u
2V Bt'2

v~+1 vg H(vg)
(2va+1) . (4.14)

Gg gl 2

E0
Inserting D&i& into (3.17d), we get the high-energy be-
havior of tp'. For P(s)=0, tp' C/s', and for P(s)=b,
tp' b/s, ass~

(II) Alternatively, one can feed the additional in-
formation into cVp. This will be done by approximating
the left-hand cut by an eGective pole; hence,

1V0 and D0 obey the integral equations

v ' Im fo(v')Do(v')
1Vo=ao+- dV

7i ~ V V V

&(rr) =ape/(v+s), s=(A+4m')!4u' (4 13)
v " v' '" Xo(v')

D, =1—— — — -dv'=e "«». (4.8)-
o v'+1 v'(v' —v)

'9 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
'0 V. V. Serebryakov and D. V. Shirkov, Zh. Eksperim. i Teor.

Fiz. 42, 610 (1962) t Soviet Phys. JETP 15, 425 (1962)g.
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&err) =&p+bv, (4.19)

and solve for Dp by the twice-subtracted equation
(4.12):

=1- / o+(~o+b )LH()- ~()p()j (42o)

For suitable values of ap, b, and s p, the form D(»i) may
also represent a resonance at the position vg, defined by
the relation

and width
1+(u p+ bv)i) H(v)i)

(4.21)

I')i — 1+apIZ(vie)——=2v)i'" ( a+1)-
p +p+bvz

vs H(vR)
(4.22)

x 2

In terms of the three parameters the phase shift is
given by

(
v "' 1—v/vp

cothp ——— +H(v) .
v+1 Op+tV

(4.23)

The resulting Dp obtained from (4.8) is

D&») =D&»/(v+&) (4 16)

and when the amplitude describes a resonance, its
position is given by

~z
(4 17)

1+apH(vg) 1+apH( —z —1)

The solution of tp' for D(») is the same as for D(i), ex-
cept for a change in the subtraction polynomial to
P'(s):

m2
P'(s) =P(s)+—x+m'+(x+4ti') 1——

A —x x

d—2(x+m')(x+4ti') + — Dg)( —x)—g dS

m24p, 2

+ — D(r)(0) . (4.18)
Ax

(III) The preceding parametrizations allow bp to
vary at most by ~. We shall now present a parametriza-
tion which allows bp to vary by more than x. To this end,
we take Ep to be

The expression for bp clearly displays the above-
mentioned range of variation.

The high-energy behavior of tp' based on D(»z) is
tp' C/s'lns for P(s) =0 and tp' b/sins for P(s)=b,
as s ~ao.

V. DETERMINATION OF HIGH-ENERGY CON-
TRIBUTION FROM VENEZIANO MODEL

In a previous article, "we developed a Veneziano-

type amplitude for Vi+m. —v Vp+x scattering, which

correctly describes both high- and low-energy behavior.
As such, this amplitude can serve us in normalizing the
S-wave amplitude obtained in Sec. III whose high-

energy behavior is yet undetermined, as is evident from

(3.17d). Although exhibiting several features of the
"true amplitude, " such as the presence of the lowest
resonances in all channels (unaccompanied by daugh-

ters), it suffers from lack of unitarity.
Since the amplitude obtained from the dispersion-

relations approach is unitary, we present here a method
for matching the two. In order to implement this, we
impose unitarity on the Veneziano amplitude in a re-
stricted manner, " namely, at one point only. This is
chosen to be" Rem, =2, at which the Veneziano ampli-
tude is fitted to represent the fp correctly. The resonance
width fixes Imo. at this point, and imparts to the S par-
tial wave both a real and an imaginary part, which will
be used to normalize the solution (3.17d) of the disper-
sion integral.

One might object to this procedure since, on the one
hand, the integral equation contains for its kernel the
elastic x-x phase shift while, on the other hand, we
normalize its solution at an energy of 1264 MeV, where
the low-energy solution is not expected to hold. A par-
tial answer to this objection was already given in Sec.
III, where we pointed out that inelastic effects are small

up to s=2m, ' and will be included in the subtraction
polynomial. Moreover, when adding an imaginary part
to o, at the resonance position, the Veneziano-type
amplitude describes a two-pion resonating state, and
thus the two amplitudes display the same physical con-
tent, the matching procedure thus being justified.

I et us now extract the S wave from the Veneziano-
type amplitude. From (2.6d), and (5.16) in Ref. 13, we
obtain

2k p(1 —ni)(1 —n„) (2 —n, )
Ti,&=8—2(q sint)) E= (k s+2q k p)+

(2-n, -n„)(4-n, -n„) 3(3—n, —n,) (3—n, —n.)

(t —I)' k p 2p's z(1 —n() (1—n„)
1 + 1+— F, (5.1)

4 2k' 2 —n, —n„(3—n, —n,) (3—n, —n„)
"It is known that "straightforward" unitarization by adding an imaginary part to the trajectory functions destroys some of

the nice original features of the model.
"We use the notation defined in Ref. 13.
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where e' is the slope ot the p and fo trajectories, taken to be degenerate, "aud F is given by

P = —;G.'(PB(1—„2—.)+8(1—„,2 —,)yB(1—„1—„)j
+-,'(3—e)LB(2—n„3—n.)+8(2—n„, 3—n, )+8(2—n&, 2 —n )j
+(3—e)I 8(3—n(, 4—n,)+8(3—n„, 4—n,)+8(3—n„3—n„)]
+—,, (3—e)L24 —(4—e) (5 —e)jI 8(4—n„5—n,)+8(4—n. , 5 n, )—+8{4 n„—4—n„)]+ ), {5.2)

with 8(x y) =F(x)F(y)/I'(x+y) aud e=n, +n&+n„. For the mass configuration iii the process sr —+ m~y aiid the
value of the trajectory slope'4

e' = 1/2(m, '—p'),

(5 4)

At the point Reo.,=2, at which s=M '=2.6m' and u =sf =19.25, we obtain

Imn, =P=—1'rMfe'=

s+x s —m'
0!g=6 —1—/

2 5+x

(5 5)

(5.6a)

s+x( s —m, '
1—n„=e'—

i 1+
2 E s+x

cos8 =—b 1 a cose , (5.6b)

(5.7a)

a =0.45. (5.7b)

We use the above values iri (5.1) and expand it, retaining terms up to first order iri P arid third order in n, to
obtain

k.p ip ' ip
2'i, i ——— (2sk' —'q'k P)P (cos0)+ (1—n )(1—n )iP+ 1 — — 1—— —1

4e' 1—e& 1 Q~

g (t —u)' 3s
—k pg'+— —1—as I'
3 F2

1' 7 4 cos'0 1= —k.pm' P2(cos6)+if-—(1—n, ) (1—n„)+4 —+— —+—
9 15 9 7 1—ni 1—n J

4 cos'0
+(iP)'2 —+— —+

&t 1 o.'e

1
+2 — + — — P. (5.8)

(1—n,)' (1—n„)'

1'(x)F(y) 1 1 1+(x+y)/n-+- II
1'(x+y) x y =i (1+x/n) (1+y/n)

(1 n,)'— 5 ~ 1 2
+ ——-+2 — ——— (59)

2(2 —ng)(3 —ni) 2(2 —n„)(3—n„) 2 ~=3 (n —1)' n'

"The degeneracy assumption implies that all the numbers related to trajectories parameters are accurate within =5~/&."C. Lovelace, Phys. Letters 288, 264 (1968).
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TABLE I.Value of 10'Sfi' a in the scattering-length approximation.

(~
—

) 1 05 1/125e 0

—7.5—5—4—3—2—1
0
1
2
3

5
7.5

40.3 25.3 . 0.94 1.9
16.9 6.6 0.68 2.5 6.2
10.2 2.6 4.7 9.0
5.3 0.54 7,6 12.3
2.0 0.46 11.4 16.1
0.26 2.3 16.1 20.4
0.15 6.1 21.6 25.3
1.6 11.9 27.9 30.7
4.7 19.6 35.1 36.6
9.4 29.3 43.1 43.2

15.7 40.9 52.0 50.2
24.0 55.2 61.5 57.8
50.7 97.6 90.0 79.4

4.6 7.5
10.0 13.0
12.8 15.8
15.9 18.7
19.4 22.0
23.3 25.5
27.6 29.3
32.3 33.3
37.3 37.6
42.7 42.2
48.5 47.1
54.5 52.2
71.9 66.5

a So' is related to the decay rate through Eq. (6.5) and it expresses the
contribution to the decay rate of the S-wave amplitude t00 LEq. (3.17d) j.

b In this approximation, the 2r-7r scattering amplitude is defined in
Eqs. (4.9)-(4.11).

e The particular values ao = (1/12.5)y ' and P = —5 relate to the model
described in Sec. V.

From (5.8) and (5.9) we derive the value of the 5-wave
amplitude at the matching point

t00(sf) = ——,'G(15/14) (2.32+i')
= —1',3.72G(1+i/13.9) . (5.10)

From (5.10) it is seen that cotbp=13.9, which gives
80=4' or 184'. Among the parametrizations we have
considered, only two can attain the above-mentioned
values of magnitude and phase. These are (a) the scat-
tering-length approximation (4.10), which gives a slow
variation of bp, and (b) the resonance amplitude with
three parameters (4.20), which allows bp to rise beyond
7l s

Equating (5.10) with the solution of the integral
equation (3.17d), one has

where vg is the resonance position, and v is the point
where bp crosses through sr. Considering (5.13), (4.21),
and (5.14), we are able to restrict v)2 to the regions

0&van&2,

16.32 & vg & vt .

(5.15)

(5.16)

In the first region (5.15) I', turns out to be negative,
and we therefore discard this alternative.

T , 2tMDMit (4'&b)0) Ttu, is(S)t) r (6 2)

where p and 6 are the direction angles of k in the ~ rest
frame and T&, ,&, depend on s and t only. Integration
over the rest of the variables is straightforward and we
obtain

VI. NUMERICAL RESULTS

The partial-decay width for the process we consider,
expressed in the rest frame of the decaying particle,
is given by

(22I) QXg, M, M' Tit, PMM'MT)Mnr—
2m 8k 0( 10/20

d kd g1d g2
X b(m —& —

q1 0 1720)&'(&+qi+q2), (6 1)
(22r)'

where p~~. is the density matrix for co production
quantized along the s axis. T~, ,~ is the transition
matrix from an co with J,=M to a photon with helicity
)(1 and the rest of the quantities in (6.1), were defined
in Sec. II. We evaluate the integral in (6.1) in the
pions' center-of-mass system; thereby Tq, ,~ transform
into T&, ,&, by

1 m2
gus(s&) — x+m2+(x+4)22) 1——

Sr+2" S

r—
3 (22r) 22'ms ) t, ) 2

(6.3)

1 d)
+2(x+m') (x+4)2') — ——

I
g
—o(—')

Sf+S dS)

4p, 2m2

+ — g "s(0)+E(S )
3.72

(5.11)
1—i/13.9

For the scattering-length approximation, we obtain

Expansion (3.2) enables us to perform the integration
over 3, giving

r=—
I
&. ,i.'(s)

I
'(2~+ 1)

3 (22r) 224ms it, is, s
s 4t 2) 1/2

X-', (s —m') —
I

ds. (6.4)
s )

ap = (1/12.5)tt ',
I'= —5,

(5.12a)

(5.12b)

TABLE II. Value of 10'S0'' in the effective-pole approach.

(&- ) —1 —0.5 0.5

and for the resonance approximation 61.1
42.3
34.2
29.4
26.2
23.8
22.0
20.6

2x 3.8 1.8 30.9 43.9 53.7
4x 1.4 2.2 22.1 30.7 37.3
6x 0.41 2.6 18.8 25.4 30.4
8x 0.06 3.0 16.9 22.3 26.4

10x 0.05 3.4 15.8 20.3 23.7
12x 0.24 3.7 14.9 18.8 21.7
14x 0.55 4.1 14.2 17.7 20.2
16x 0.93 4.2 13.7 16.8 18.9

b =0.62(1—16.45/vp),

Itp = vyb+ (1/12.5) (1—vr—)/vs,

(5.13a)

(5.13b)

where there is still a free parameter left.
The order of growth of 60 requires the following

inequality:
v)2~& v—= ap/b~&vg, —

a Sao is related to the decay rate through Eq, (6.5).

(
b The partial-wave amplitude for decay, too, is given for this approach in5 14) L'u. (3.19),while thee-s scattering amplitude isdefined inEus. (4 9)-(4.11)(
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TABLE III. Value of 10'Sp ~ in the two-parameter
resonance approximation.

41'/u
~zg

0.5
1
1.5
2
4
5
5.5
6.5
8

10
12
14
16

0.6

66.1
54.9
43.2
33.6
12.3
8.0
6.6
5.1

1..2

40.4
33.5
27.7
21.9
10.3
7.6
6.7
5.5
47
3.8
3.3
3.0
2.8

31.5
26.4
21.7
18.0
9.7
7.6
6.9
5.8

2.4

26.9
22.7
18.5
16.0
94
7.7
7.1
6.1
5.4
4.5
39
3.6
3.3

1.5

40-

30-
0.5

-4 2
60 x10"-

a S0o is related to the decay rate through Eq. (6.5).
b In this approximation, the ~-m scattering amplitude is defined in Eqs.

(4.13)-(4.14).

Inserting Tj,, i,s from (3.7), we rewrite (6.4) as 20-

'm' mr=—
3)(2 7p p

2IgJds

=—i1 Q Sis=—2'
J,X

I(s)ds, (6.5)

10-

-0.5
where f:li4G': g—g

—X =
~
Xi—Xq ~, I&, is the

decay spectrum for partial wave J and helicity P, and
for further reference we defined

m2

l 1 I i i 1 I I

2X 6X '
. 10X 14X

FIG. 4. Sp in the effective-pole approach, for scattering lengths
ap (in units of p ') = —1, —0.5, 0.5, 1, 1.5, 2 and pole location
2x~&A~&16x (see also Table II).

Sp

90N.)0 '-

S),J=2 I),~(s)ds, I(s) = Q I),s(s) . (6.6)

-as

a5

We consider first the value to be used for f'. With
regard to g„„, its value is determined by assuming
co —+ 3m decay proceeds via co ~ (pm) ~ 3m, which
gives" g, '/4n. =0.6. The decay p ~ ~y has not been
measured yet (only upper limits are available); there-
fore we shall rely on indirect estimates for g„„,This
coupling can be related to g „~ (evaluated from the

70-

60-

50-

1.5 TABLE IV. Value of 10'Sp' ' in the three-parameter resonance
approximation. b This parametrization, with I"~=p, M~= 750
MeV (vg=6), and 8 P(c=420 MeV) =25', corresponds to solu-
tion b of Marateck et ul. ' In the first three columns we give results
for Fz,

Afoot

varying, and the last parameter Axed as above. The
last four columns correspond to values allowed by the Veneziano-
type model, Eqs. (5.13) and (5.16).

30-

20-

10-

Qr /p 05
rag

6 3.40 3.82
7 3.04 3.38
8 2.83 3.11

10 2.61 2,81
12 2.50 2.65
14 2.44 2.56
16 2.40 2.50
18 2.38 2.46

3.55
1.96

0.78

gr/„0. 10 0.31 0.41
~a+
16.5 2.55
17 3.05
17.5
18
18.5

-6 -4 -2 0 2 4 6 P

FIG. 3.Sp' in the scattering-length approximation, for scattering
lengths ap (in units of p. ') = —1, —0.5, 0.5, 1, 1.5, 2 and subtrac-
tion parameter —7.5~&8~&7.5 (see also Table I).

' S00 is related to the decay rate through Eq. (6.5).
b In this approximation, the ~-~ scattering amplitude is defined in

Eqs. (4.20)-(4.23).
e S. Marateck et cl., Phys. Rev. Letters 21, 1613 (1968).

"F.Berends and P. Singer, Phys. Letters 19, 249 (1965); 19,
616(E), {1965).
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60x10 '

50-

40-

» 10'-

8-

!

'I

i

30-

20-

10-

0.7g„.,/3 & g...& 1.3g .,/3.

In the following we shall then use

obtaining
now in the position to

'
n o calculate rl in (6.5),

g =0.89 MeU. (6.7)

From here onon, results are given for then or e charged partial
'gg'm x y, t e neutral mode then

ith no m-~ interaction resentp
e orn term. Calculating this rate from

"S C CTin gs of e Fourteenth International
yszcs, Vienna, 1968, edited b

as

I I

0~

6 9 12

FrG. 5. g o .o» the resonance a

18 p

for the two-param t
pproximation. The so]idcu

rame er case, with wi
curves are

and resonance location p.5'(
widths I'/p=p. 6, 1.2, 1 8, 2.4

dashed lines are for the h
~ ~~ (see also Table III) th

1
~@~&18 {seealso TableIV 5 t

se, with p/p=p. 5

see al
ine gives the value bt

', s reecolumns) ~ thed tt d

a so Table IV last fo 1

e Veneziano-type modealned with
our co umns).

decay ce~sry to be g '/4sr=017n whe
fine-structure con t tj by ~ ~ U

' 'ng y an angle 8 giving g
and (2) vector domina h' =g
where

ominance which gives gp y g

l Th
tion" on t)I, an

rs. e available experimental informa-

, g„, an g„allows the range

I

I

l

l

)

I

4~f

2
I'n. ——ri(Sao+Q Sg') =st(9.16+6.22) X10 4

=13.6X10 4 MeV. (6.9)

4"

+

M

S

FIG. 7. De. Decay spectrum for the Vene r e eneziano-type model'
g o = —5 and aA(u ')=1/125)

4p

fA $

FrG. 6. De. Decay spectrum in the Born
b t'o to th J=P e; ( ) the p contribution to th J=2;()tp n contribution t

o e

contribution to the J=0 2e =, 2 waves I (a)+(c)g.

( . ~ with the expressions (3.6)63 wi s . and (3.9), one gets

I B gX 16.9X10 '= 15 0X10-' MMeV. (6.8)

In all subse uent caq culations we use th
), which were derived with the a

lit d (3.12) i h quation. The ap-in te interal e u
nsis s o retainin onl

th 'o ofQ (E
h' h th J=2

'
n o & Eq. 3.11) and ne lec

'

proximated amplitudes 3 12
an = . alculatin I" wi
i u es .12, we get



m' 5

FIG. 8. Decay spectrum for the scattering-length approxi-
mation, vrith uo(p, ') = —1, —0.5, 0.5, 1, 1.5, 2 and subtraction
constant E= —4.

Compariso~ of I'& and I'& sho~s that the approxima-
tion discussed above is accurate within 10%.

The inclusion of the f resonance LEq. (4.4)j in the
expression for /q', (3.1/a) —(3.1'/c), causes merely a
slight change in gq Sq', the new value being 6.3&(10 '.

In Tables I—IV and Figs. 3-5 we give the values of
So' [which is related to the decay rate by (6.5)»d
(6.7)j for the various parame tr1zatlons of the 'll -1l S
wave discussed ln Scc. IV. Thc RppIopI'1Rtc decRy I'Rtc

is then given by I'=g(SOD+6.3X10-'). Figures 6—13
show the decay spectrum for several of the above-
mentioned parametrizations. For the resonance ap-
ploxlIQRtlons wc con6ncd oulsclvcs to the VRluc I =0
for the subtraction constant, as presumably a tv'- or
thI'cc-pRIRIQctcr I'cpI'cscntRtlon suKccs to dcscrlbc thc
amplitude in the decay region,

Flo. 10.Decay spectrum for the effective-pole approach, v ith
a0(p ') = —1, —0.5, 0.5, 1.5 and pole location A=2m.

VG. MSCUSSION

In our analysis we have allowed for a wide spectrum
of alternatives for the m-x interaction. As a result, we

have obtained a wide range of predictions for the decay
rate. Nevertheless, we can generally classify our results
into three main groups. (a) If the decay rate is of the
same order of magnitude as the one calculated from the
Born term, the parametrization able to account for it
is the scattering-length approximation with either
—I~&pco~» —0.5 Rnd P=O, or with thc effective-pole

Rppl oRch fol —0.5 «» @co~& 2& 01 normalized to thc
Veneziano-type amplitude with pu, = 1/12.5 and
P = —5. (b) An enhancement of the order of 15—50, i.e.,
2X Hj ~& I'~& 7X I0 MCV, results from the scattcnng-
length approximation with E'=0, 0.5~& pao~& 2, as well

as from the resonance model with 730 MCV& Mg & 1220
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Flo. 9. Decay spectrum for the scattering-length approxi-
mation, vnth e0(p ') = —1, —0,5, 0.5, 1, 1.5, 2 and subtraction
constant I' =0.

FIG. 11. Decay spectrum for the resonance approxlmahon (t%'o

parameters), with pal=2. 5 (iVg=525 MeV), I'/p, =0.6, 1.2.



MeV. (c) A rate of the order of 0.1 MeV or higher can
be accounted for by a resonance model with a low-

lying resonance 350 MeV~& M~& 650 MeV.
As we stressed in the Introduction and as also emerges

from the numerical results, our ignorance concerning
the high-energy behavior of the 5-wave amplitude pre-
vents us from unambiguously relating a particular
decay-rate value to a specific form of the low-energy
~-x interaction. In the scattering-length approximation,
for the same value of uo, we get very diferent results
for the decay rate when using the two approaches for
treating the high-energy contribution, namely, the
subtraction procedure and the e6ective pole. This holds
even when the two procedures describe the same asymp-
totic behavior of the amplitude, namely, for / =0. This
can be seen by comparing Tables I and II and the re-
spective 6gures. Although the results are fairly stable
for I' around zero and positive scattering length, one
sees from Table I and Fig. 3 that the decay rate varies

sharply with I' for constant u& when
I
P

I
+2. This fact

FIG. 12. Decay spectrum for the resonance approximation (two
parameters), with y g=6.5 (ASIA= 765 MeV), I'jp. =0.6, 1.2.

+ 0.5™
PC

Fxo. 13. Decay spectrum for the resonance approximation
(three parameters), with v@=18 (Mg= 1.220 MeV) and I'/p, =0.5,
1.The third parameter is 6xed from experiment to give 6 (8='420
MeV) =25' (see also caption for Table IV).

is not disturbing, large values of I' being unphysical
since they overshadow the low-energy behavior of the
m-x amplitude. The value I'=0 gives also what is
usually considered the most desirable high-energy be-
havior. The effective-pole approach summarized in
Table II and Fig. 4 is only slightly dependent on the
location of the second pole, for A.&5x.

The strong dependence of the results on the high-

energy behavior of the amplitude has also an advantage,
since it allows the experiment, to pick out the correct
alternative.

An M44tIonal tool for dlstlngus1Mng among the vari-
ous models is the decay spectrum. From the inspection
of Figs. 6—13 it can be seen that most models have the
common feature of the spectrum peaking at low energy,
except for the scattering-length model 6tted to Vene-

riano-type amplitude and the low-lying (Mg& 700
MeV) resonance amplitudes.

Our conclusions concerning the e6ect of the high-

energy behavior of the &a+y~m+n amplitude on the

decay rate, as well as the effect of the low-lying reso-

nances, agree in general, though not in all details, with

those obtained in the 6nite-energy sum rules approach
to this problem. '


