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Expressions are derived for Glauber double scattering and pair production via twin scattering from the
deuteron at large momentum transfers. In the double-scattering region, it is shown that twin scattering is
comparable to the Drell-Soding contribution and can even dominate the process.

I. INTRODUCTION

HE use of the deuteron as a target in high-energy
scattering experiments has been of considerable
help in understanding the scattering process. The simple
yet amazingly accurate picture afforded by the Glauber
approximation' has been extended to many different
reactions.? The small size of the deuteron and the fact
that the double-scattering region can be quite clearly
separated and studied experimentally has allowed one
to study the scattering amplitudes of unstable particles
from nucleons® and possible off-mass-shell and/or
dispersion effects.

Our purpose here is to discuss corrections to the
Glauber double-scattering formula and the production
of a pair of particles, for example pions, from the
deuteron at large momentum transfers. In addition to
the familiar Drell-S6ding process,* it will be shown that
twin scattering, in which each member of the pair scat-
ters from a nucleon, is very important at large momen-
tum transfers. In certain kinematic regimes it can in
fact dominate the process. The theoretical treatment
will follow the eikonal Green’s-function approach
developed in Ref. 5. Since we are interested in large
momentum transfers, the standard Glauber treatment
is not applicable.!:® As an introduction to our approach
and to derive an interesting correction factor to the
usual Glauber double-scattering term, we first consider
the scattering of a particle by the deuteron. Non-
relativistic kinematics is used since it is not clear how
to distinguish relativistic effects from those resulting
from different deuteron models.

II. DOUBLE SCATTERING

Our purpose in this section is to discuss the scattering
of a single projectile from a two-particle bound state at
large momentum transfer. This is a regime where one
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expects the standard Glauber approximation to fail.
The evaluation of the contribution of the double-
scattering diagram shown in Fig. 1 requires a knowledge
of the three-particle Green’s function. The eikonal
Green’s-function formulation is used together with the
analysis of the important diagrams for the process of
interest, which can be found in Ref. 5.

To the zeroth approximation, we neglect the relative
motion in the initial and final bound states. This means
obviously that

p~n~3P=n,
and
p~1'~3P'=p,,

which in turn imply
1’\’].()E §(k'+k) .

The next step in constructing the Green’s function is to
expand the energy of the intermediate state about the
above “zeroth”-momentum values and to keep only the
linear correction terms. The energy of the intermediate
state is written as

Eint= (EO“V'IO_VP‘po—Vn'n())
+V1+v, p'+veen, (1)

where E, and the velocities are all evaluated at the
zeroth-momentum values given above. The free three-
particle Green’s function in coordinate space then
becomes

G= —i/ dr €m45(t, —Tp—Vpr)
0

Xo(t, —1,—v,7)6(x' —x—V7), (2)
where

A =E—E0+V 10+V,,'p0+vn'no,

and E is the initial or final-state energy.

F16. 1. Double-scattering contribution.
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TaBLE I. Double-scattering form factor.
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' Itis now straightforward to evaluate the contribution
of Fig. 1 to the scattering amplitude using standard
perturbation theory. The result is

2 S d3yd3s
i— / dr eiT(E_EO)/ ”‘—fn(%A"f'B)fp(%A—f“s)
M Jo (2m)?

Xe® WY+ Vo= V)W +(v.—V)7),

where f, and f, are the projectile-nucleon scattering
amplitudes with the intermediate projectile possibly
far from the mass shell. The main difference between
this formula and the Glauber formula is the = integra-
tion, which takes into account the motion of the
constituents between scatterings. A more exact formula
can also be derived.”

To compare in more detail with the Glauber formula,
it is convenient to consider the situation in which the
ranges of the forces that give rise to f, and f, are small
compared to the separation of the bound particles. In
this situation, the 8 dependence of f, and f, can be
neglected and both the y and & integrations can be
performed. The final answer for the scattering amplitude
including the diagram with the nucleon roles reversed
from Fig. 1 can be written in the form

—Hf (30 fo(30)

0

A/m)G0), ©3)

where i= —A2
n=(E—E0)/|V—v,|~—1/8k,

G (1/7*)=(e™/r*). ©)

The first two terms are the single- or impulse-
scattering contribution with the bound-state form
factor F(f). The last term is the double-scattering
contribution and differs from the Glauber formula by
the factor G(3), which can be considered as the double-
scattering form factor. This factor has been evaluated
for a number of deuteron models and the results, which
are presented in Table I, are quite insensitive to the

models chosen.

and

7If one does not linearize the energy of the intermediate
projectile, then a more exact formula is easily derived:

: 3 3
i2r fdrei’(E_Eﬂ’ ‘”’”( # )S’Zden(%A—ts)fp(%A-l-B)
”

2m)*\ 2wir
X" =D ¥yt (v~ Vo) T WLy+ (0n— V) 7]
Integration by parts in the variable z yields the result in the text.
plus correction terms.
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There has not yet been a systematic comparison with
experimental data of the effect of the factor G(5). The
effect of this factor should, however, be substantial for
large momentum transfer and small energy.

III. TWIN SCATTERING

We now turn to the second process of interest, which
is the breakup of a projectile into a pair of particles by
scattering from a two-particle bound state. Again we
are interested in the regime in which a large momentum
is transferred to the bound state. This is a nonrelativistic
model which should give insight into processes such as
pair production by photons at large momentum trans-
fers. The projectile is treated as a tightly bound scalar
object described by the wave function ¢(x).

Consider first the twin-scattering process of Fig. 2.
We return later to the Drell-S6ding type of diagram.
As before, the momenta of the particles in the inter-
mediate state are expanded about their zeroth values:

n~p~3P=n,
n’'~p'~3P'=p,
Q2~k2+%A=Q2°-

The energy of the intermediate state is then written as
before and expanded as in Eq. (1). The energy of particle
ky is fixed and is included in E;n. The three-particle
Green’s function then takes a form essentially the same
as that found previously.

The contribution of Fig. 2 to the scattering amplitude
is

2r [ ‘ " dPyd®s
i——/ dr 6”<E_E°)/ ——fu(3A—03) [, (3A+3)
u Jo (27)®

X PG (k1—k2)+8)e? WH(y+ (V,— V) WY+ ¥, —V)7),

where ¢ is the Fourier transform of ¢(x). It is again
convenient to assume that f, and f, are short-ranged
and, in addition, that ¢(x) has a small size in comparison
with ¢(r). These approximations together with the
inclusion of the diagram in which the roles of #z and p
are interchanged then lead to a term in the scattering

F1G. 2. Twin-scattering contribution.
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F1G. 3. Drell-Séding contribution.

amplitude of the form

fn(4t)fp(4t) eirh?
— G (k1—ky)), )
92 < > !

2EA . (kl—kg)/4Q20 .

The extra phase factor ¢*"f in the bound-state average
reflects as before a time-of-flight-off-energy-shell phase
effect. The f’s are again off-shell amplitudes.

In addition to the twin-scattering process of Fig. 2
and the three others which are obtained by permuting
the particles, the Drell-S6ding process also contributes
as illustrated in Fig. 3. This process contributes terms
of the form

Sk —ks) f(tn1,l) +EGR—ko) ftn-1),  (6)
where f was defined in Eq. (3) and
li=lk:i:%(k1—k2) y
ne=—1/ls.

At large ¢ values, only the double-scattering part of
the f’s is important and it is convenient to write the
total scattering amplitude in a form which separates
the single from the double- and twin-scattering terms.
The total scattering amplitude H then becomes

H=H,+H,, Q)

where

where
Hi=FOLfa(0)+ () LGk —ko)+d(Gk—k1)] (8)

and

G(ns)
1fn(1t)fp(4t)< >[¢(1k ki ol
G- G(8)
+33k—k)- (l” - k)~
PG )], ©)
Q2

where 8; and ¢:° are obtained from B; and ¢° by the
change ki< ko.

One immediately sees that for a sufficiently large
momentum transfer, where H; can be neglected, the
twin-scattering terms are certainly of comparable
magnitude to the Drell-S6ding double-scattering terms.
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In fact, at large ¢, it is possible to choose events which
have ky—ko&ik—Fk;~1A and thus the ¢ factor
suppresses the double-scattering terms relative to the
twin-scattering terms. The twin scattering is further
enhanced in this region by virtue of the phase factors
since the 8’s are much smaller than 5. In any case, the
differing k1—k, dependence of the two contributions
should make it possible to separate them experimentally.

Finally we note the changes that result when the
members of the produced pair have isospin 1. Referring
to Eq. (8), we find that instead of H; involving the factor
Lfa@®4f»®)], one actually measures 2[2f3()+ f1(¢)],
where f; and f, are, respectively, the isospin-3 and
isospin-3 scattering amplitudes. Similarly in Eq. (9) one
finds that the double-scattering terms involving 5. and
n— are multiplied not by f.(3?)f»(3#) but rather by
302/ +8/:(0) f13)— f2ED]. This is the com-
bination normally encountered in pion-deuteron scat-
tering.® These results are independent of whether the
bound state being broken up is isoscalar or isovector.
The scattering-amplitude factor multiplying the twin-
scattering terms in 8; and B is, however, different in the
two cases. For an isoscalar projectile, one finds a factor

of
s[6/s°(GN+3 /G0 ],
whereas for an isovector projectile one finds
HENERCORYIRCONACORWIIRCONE

It thus becomes possible to measure somewhat different
combinations of the scattering amplitudes from those
normally encountered in pion-deuteron scattering.

IV. CONCLUSIONS

The main results of this paper have been the deriva-
tion of expressions for double scattering and for the
production of a pair of particles from the deuteron which
should be accurate at large momentum transfer and
small relative momentum of the pair. Resonant produc-
tion of a pair, through a p meson in the case of pion pairs,
has been neglected but could be easily included if
necessary. Further inelastic mechanisms have also been
neglected. The presence of the double-scattering form
factor G and its dependence on 7 for double scattering
and @ for twin scattering may provide an experimental
way of distinguishing these two mechanisms at low
energies. The two scattering amplitudes in twin scat-
tering need not be the same distance from the mass
shell, whereas they must be the same in double scatter-
ing. This may allow a more accurate determination,
especially of the phase, of off-mass-shell effects. If so,
it will provide a further test of the picture of high-energy

scattering from bound systems.
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