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TABLE VI. Results of a two-angle fit for b/a=1. 2.

Model

(ao+PP, ai, P], d&)

(~0+Po ~1. Pt. &2)

(~0+Po. ~1, Pt, V2)

(co+do, c&, d1, Exl)

6.0
7.3
8.3
7.2

C.l .
(%) 8

57 0.267 +0.01
45 0.25 5 ~0.01
34 0.258 +0.01
43 0.272 ~0.007

h2

0.205 %0.03 —1.22 %0.09
0.2 18+0.03 —1.19+0.0&
0.219~0.03 —1.39~0.09
0.190+0.02 —0.97 &0.08

0.58 &n& 0.60. (18)
Our two-angle fits for fi/a&1. 4 aie excluded if we

iinpose the requirement (18). Acceptal&le fits are only
"Scc,e.g. , IZ. E. Marshak, IZiazucl(lin, an(1 C. P. Ryan, 2'h,cary

of Weak Interact&~ns in Particle Physics (YVilcy Nc~ir 7'ork
1969), p. 441.

exI:elise of havin«very unreasonable values for 0,1 allcl
Ov. 1'or (no+go, ni, P„rfi), we «et the results displ iyed
in Table TII.

For each decay, an eiTective n=D/(D+I&') may be
defined. An indepenclent c1etermination of this nuniber
can be obtained for A —+ P and Z ~ A decays, "giving as
some sort. of average for these two decays a,n n in the
range

obtained for b/a(1. 2. From now on we fix b/a to be

ti/a=1, .2

a,s the inaxililu111 vali. le coIl'1patible with lbd.
We now list some results of a, two-para, meter fit. .

Table IV contains the X' and parameters for the models
giving the lowest, X', details are collected in Table V.
For a, two-an&~le Cit we obtain the results of Table VI.

The case (n&&+Pii, ui, Pi, rli) actually has a lower X'

than the symmetric two-an«le fit, again at the expense
of a, greater value for oy —0~. Since Zg4Z' AZ. , one
11lay hope to get. g()od Cits for 0& closer to 0&, since ()ur

symmetry breaking distinguishes between 3 «nd V.
Unfortunatelp, this is not the case.

We conclude by stressing that any model of SU(3)-
symmetry breaking should be tested with lbd. For the
type of symmetry breaking used in this paper, the
bre iking parameter b/a cannot be larger than about 1.2.
One may of course also take for granted the (".e11-3,/I ann-
Okubo formula and pure mass mixing with fi/a 1 and
try to Cit meson clata and 1C~-nucleon scattering into
this picture.
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The theoretical and phenomcnological advantages of looking at inclusive-tyl)e reactions in dual-resonance
models are discusse(l. The case of single-particle distril)utions is considered in some detail, a,nd part of
the contributions explicitly evaluated. We fin(1 that such contril)utions cxhiE)it "scaling" behavi()r of the
type observed long ago by Amati, I'u2iini, ancl Sta, nghcllini in thc multiperiphcral model and ~vhich divas

reproposed in more precise terms recently by I'cynman ancl ))y Hcnecke, Chou, Yang, and Ycn. Thc explicit
form of thc limiting clistribution is given. A similar behavior is foun(1 in the case of thc multil)article dis-
tribution. The need of manageable techniques for computing high-energy limits of clual Iool) discontinuities
is stressed. 9 e finally comment on the possible rclcvancc of our results on clcriving bootstrap-tyl)e conditions
from cluality an(i in l)roviding a. avay t() understancl thc connection between thc clual-resonance moclcl an(1
other models of current interest.

I. INTRODUCTION

A LMOST ten years ago, prior to any substantial
high-energy data, Amati, Stanghellini, and

Fubini' noted a remarkable scah'ng property of their
* IZcscarch sponsored in pa, rt. 1)y the iVational Science I'ounda-

tion uncler Grant No. 16147 an(l by thc U. S. Atomic l.ncrgy
Commission under Contract iVo, AT(30-1)-2098.

t On leave of absence froni the weismann Institute of Science,
Rchovoth, Israel.

multiperipheral model, "namely, that in the laboratory
system, fixed low-mass clusters of secondary particles
from high-energy collisions have a transverse momen-
tum distribution which is independent of the incident
energy and of the energy of the cluster.

D. Amati, A. Stanghellini, an(1 S. I'"ubini, Xuovo Cimento 26,
896 (1962).Scc also K. wilson, Acta I'hys. Austriaca, 17, 37 (1963).

I.. Hcrtocchi, S. I'ubini, an(l M. Tonin, X~uovo Cimcnt() 25,
626 (1(362).
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During the past year there has been a renewed
interest in this fascinating subject. Much of the recent
discussion concerns inclusive reactions (on which there
are now considerable data) such as pp ~ ~+anything.
Feynman' as well as Benecke, Chou, Yang, and Yen4
have conjectured4 that the momentum distribution of
those observed secondary particles whose lab momen-
tum is of the order of 1 approaches a limiting distri-
bution which is independent of the incident energy,
and in fact, apart from normalization, independent of
the identity of the incident particle.

This conjecture has spurred considerable theoretical
work directed at verifying this striking property in a
host of different models, such as the multi-Regge-pole
model' and even quantum electrodynamics. ' Here we
shall analyze these scaling phenomena7 in the frame-
work of the dual-resonance model. '

Before proceeding to our analysis, we would like
to make a few preliminary remarks concerning (1) the
importance of inclusive reactions as a phenomenological
testing ground for dual models, and (2) the plausibility
of a purely multi-Regge-pole or multiperipheral model
for the study of inclusive reactions.

Turning to the latter we note that, as it has been
stressed by Chew, nature chooses to produce a sub-
stantial part of the multiparticle cross sections with
low subenergies. This might appear to lower our con-
fidence in a multi-Regge-pole dominance of the matrix
elements. A similar statement applies to the use of
multiperipheral models.

Thus it appears to us that the dual-resonance model
which has reasonable high- and low-energy behavior,
and in which the effects of resonance formation are
explicitly included, might provide both a useful theo-
retical laboratory and a practical tool in which to
investigate inclusive reactions and scaling behavior at
high energy.

There is also a second good reason for looking at the
inclusive-type predictions of dual amplitudes. The point
which is well known, is that the dual amplitudes have
poles on the real axis, which make them nonunitary.

' R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969}.
4 J. Benecke, T. T. Chou, C. N. Vang, and E. Yen, Phys. Rev.

188, 2159 (1969). Their general definition of scaling is not re-
stricted to particles whose lab momentum is of order orle, but
applies to any volume of phase space.

' D. Silverman and Chung-I Tan, Phys. Rev. D 2, 233 (1970);
2, 3089 (E) (1970); N. F. Bali, A. Pignotti, and D. Steele, ibid.
3, 1167 (1971); Carleton E. DeTar, ibid. 3, 128 (1971); A. H.
Mueller, ibid. 2, 2963 (1970); K. Wilson, Cornell University
report, 1970 (unpublished). See also ¹ Bali, L. S. Brown, R. D.
Peccei, and A. Pignotti, Phys. Letters 33B, 175 (1970), for a
discussion of the experimental situation.

6 See H. Cheng and T. T. Wu, Phys. Rev. Letters 24, 1456
(1970), and references therein.

7 We are not considering the deep-inelastic type of scaling in
dual models as done by V. Rittenberg and H. R. Rubinstein,
Weismann Institute report, 1970 (unpublished).

8 For a review see, e.g., Chan Hong-Mo, CERN Report No.
TH1057, 1969 (unpublished); V. Alessandrini, D. Amati, M. Le-
Bellac, and D. Olive, CERN Report No. TH1160, 1970 (unpub-
lished); G. Veneziano, MIT Report No. 151, 1970 (unpublished).

This problem has been recently investigated in Ref. 9
where it was shown that one gets typical behaviors for
exclusive cross sections of the form o 1/I's (o ~ ~
for I's ~ 0) if I'ii is the total width of the resonance R.

Thus, in order to get a finite, meaningful result, one
has to take into account explicitly the total width of
each resonance. This point is well known to everyone
who has used dual amplitudes for phenomenological
6ts to exclusive type of experiments. " In such fits one
simply puts an imaginary part in the trajectory func-
tion fitted to give correctly the width of some low-lying
resonances. However, the arguments of Ref. 9 show
that the dependence of 0- upon I'z is quite critical and
one therefore expects the results to be quite sensitive"
to the explicit input form of Imo. .

The point made in Ref. 9 is that on the contrary,
whenever one sums over all the unobserved final states
(i.e., one is looking into the iiiclesive type of experi-
ments), the above critical dependence on I'ii is washed
out and one is entitled to compute experimental cross
sections by looking at certain discontinuities of the
NrimoCkfied (i.e., zero width) dual amplitudes and by
smoothing them out by hand. The main assumption
of course is that, once the resonances have acquired
a finite width, the asymptotic behavior of the resulting
amplitudes will still be 'given approximately by the
(multi-) Regge limit of the unmodified dual amplitudes.
Indeed one expects other eGects, like absorption, to be
already included at least in part, once resonances are
given nonzero widths. The forward amplitudes con-
sidered here, however, should not be affected too much

by these corrections.
In view of the two points mentioned above, we believe

that dual amplitudes and the inclusive type of experi-
ments do match nicely: (i) The theoretical predictions
are less model dependent than in exclusive experiments;
(ii) dual amplitudes take nicely into account both low-

and high-energy e8ects, which seem to play comparable
roles in the physical situation. The rest of the paper is
organized as follows. In Sec. II we recall for the sake of
completeness the results found in Ref. 9 on the total
cross sections. In Sec. III we discuss the single-particle
distribution in some detail and we evaluate some of the
contributions to it. In Sec. IV we extend our con-
siderations to the case of multiparticle distributions,
and finally, in Sec. V, we summarize the results and
draw some conclusions.

A. DiGiacomo, S. Fubini, L. Sertorio, and G. Veneziano, Phys.
Letters 33B, 171 (1970).

0 See, for instance, Chan Hong-Mo, R. O. Raitio, G. H.
Thomas, and N. A. Tornquist, Nucl. Phys. B19, 173 (1970); and
J. Bartch et ul. , Aachen-Berlin-CERN-London-Vienna collabora-
tion, ibid. 820, 63 (1970), where references to earlier works can
be found.

"We should, however, remark that at high energy the presence
of so many overlapping resonances will presumably simply pro-
duce a smoothing out of the behavior on the real axis. It is then
reasonable to assume, as we shall also do, that such smoothing can
be obtained there by replacing the dual amplitudes by their
(multi-) Regge-pole limits.
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FIG. 1. Dual contributions to the amplitude for tJ+b ~ everything:
(a) resonant contributions; (b) nonresonant contributions.

II. TOTAL CROSS SECTIONS

The most inclusive experiment of all, the total cross
section, is also the simplest one to study in the duality
framework. As noticed in Ref.9, the scattering amplitude
for a+b ~ everything can be conveniently decomposed
in the dual model into the sum of two classes of terms:
those which contain resonances in the direct channel
and those which do not. The two types of diagrams are
indicated in Figs. 1(a) and 1(b), respectively. In
drawing Fig. 1(b), use has been made of the general
property of the planar dual model according to which
whenever a+b do not form a single resonance, they
have to produce two resonances (which then decay
into the final state).

The total cross section will come out, to first order
in unitarity corrections, by squaring the amplitude,
integrating over phase space, and dividing by the Aux.
When we square the amplitudes of Fig. 1(a) the result
is simply' the averaged imaginary part of the elastic
a+b —b a+b amplitude times the usual kinematical
factor. We normalize our four-point function in such
a way that

(a,b iSi a,b) —8...ebb

b(2or)'l&b)(p. +pb p. p—b)—
Tab~a'b' 1 (2 1)

(2P., oX2Pb, oX2P. , oX2Pb, o)"'

I'( n,)I'( n—r)—
T,b, b

= —2y' +permutations, (2.2)
I'(—n.—n, .)

The second contribution to o-&,~ comes from squaring
the amplitudes of Fig. 1(b). As discussed in Ref. 9, this
will hopefully bring in diffraction (together with non-
resonating backgrounds). Unfortunately, no convincing
evaluation of this contribution (which involves calcu-
lation of the discontinuity of a nonplanar loop) is
available at present. This will also limit the generality
of our discussion in the subsequent sections. Although
such calculation is certainly nontrivial, it is also a
well-defined and solvable mathematical problem. We
hope that the answer will be known soon.

Finally the last contribution to o.&,& comes from
interferences between Figs. 1(a) and 1(b). These can
be proven not to be small because of a well-defined
phase between some diagrams of Fig. 1(a) and some
of Fig. 1(b). Again evaluation of these terms is beyond
the scope of our present investigation.

III. SINGLE-PARTICLE DISTRIBVTIONS

A. Kinematics

We consider the inclusive reaction of Fig. 2:

a+b —+ 1+X,
where X=everything represents for us any number of
scalar particles. The differential cross section at a 6xed
value M~' of the missing mass is a function of three
independent variables (see Sec. IV for the discussion
of the multiparticle distribution). The natural,
Mandelstam-type, invariant variables can be taken as

s= (P.+Pb)', t= (Pb —Pi)',
~X PX (Pa+Pb Pl)

(3.1)

A different and particularly physical choice of
variables for the scaling limit is the one of Feynman'.

s= (p„+pb)',
~

pi'i, g=2pi"/gs, (3.2)

where pi' and pi" are the center of mass tr-an-sverse

and parallel momenta of the detected particle.
The relation between the variables (3.1) and (3.2) is,

in the high-energy limit,

t= —(1/x)Ltb'(1 —x)'+
~
Pi'~']+0(1/s) for x)0, (3 3)

p =3f~'/s = 1—a+0—(1/s),

where p, is the mass of the scalar particles and
where n,.=n(s) =no+n's. Then we find

2p gQ
(la) ~ (n )ae—i

s large r(1+n )
(2.3)

~ p i
) o+~i) iso 2p

S X ~

-,'s 7 s

It is perhaps worth stressing that, in order to get
Eq. (2.3), one has only to assume that interference
between different dual multiplets can be neglected
(I')b((n' '). On the other hand, interferences inside the
same multiplet have to be neglected in the case of total
cross section since this is just what defines the states
with a definite lifetime.

Scaling (or limiting fragrnentationb) is a statement
about the limit of the above-mentioned differential

FrG. 2. Reaction tJ+b ~ 1+everything
and its kinematical variables.



INCLUSIVE REACTIONS AND DUAL —RESONANCE MODELS 2119

cross section do when s~ &e and both
~

pi'~ and x are
kept fixed.

In the most general case in which constant asymp-
totic total cross sections are not assumed, one defines
scaling as"

l(b

do d pi
lim —= F(x,

~
pi'j),

s ~ ~; x aiid otot +1
(p~j fixed

(3.4)

where F is neither zero nor infinity.
It is quite obvious that, in terms of the variable (3.1),

scaling will be defined as

do'
lim

s ~ 'p=~x'/s otot
and t Gxed

(3.5)

(bf) (bp) {bg)

The condition 3 fixed will be replaced by I fixed if
x&0.

B. Discussion of Dual Contributions

As in the case of total cross sections, we can con-
veniently divide the dual contribution to the scattering
amplitude of Fig. 2 into several classes. It appears
useful to introduce for each dual graph a "resonance
number" r defined as the least number of resonances
out of which all the unobserved ("anything") final
states come out. For instance, the terms of Fig. 1(a)
have r=1, and those of Fig. 1(b) have r=2.

In the case of the single-particle distribution of Fig.
2, we can have r= 1, 2, or 3. In general, for two initial
and e final detected particles, we can have r = 1, 2, . . . ,
n+2, and also r =0 if e& 2.

Going back to Fig. 2, for each r we have

(3)

topologically different terms. The total number is then
7, of which there are 3 with r =1, 3 with r =2, and 1
with r =3.The whole set of diagrams has been depicted
in Fig. 3.

At this point, one should in principle square all these
contributions and, by use of the arguments of Ref. 9,
one can reduce everything to uniquely defined dis-
continuities of dual amplitudes. With the exception of
Figs. 3(ai)—3(ai), one will have to compute loop dis-
continuities. This is by no means trivial, although the
recent developments in constructing multiloop ampli-
tudes in a general way" seem to offer grourid for some
optimism. Of course interference terms must also be
kept in general. Some of them are clearly negligible
(such as the one between 3 (ai) and 3 (a2)]; some others
Lsuch as the one between 3(ai) and 3(ai)] are clearly
important as we shall see.

"See DeTar, Ref. 5.
'3 C. Lovelace, Phys. Letters 323, 703 (1970); V. A. Alessan-

drini, CERN Report No. 1215, 1970 (unpublished); M. Kaku
and L. Yu, Phys. Letters 33B, 166 (1970).

(c)
FIG. 3. Classification of the dual contributions to the

single-particle distribution.

At this point we note, however, an important simpli-
fication which occurs if we restrict ourselves to the
distribution of the fastest particle with c.m. longitudinal
momentum parallel to particle b(p&0, x 1). We will

be left then with only three important types of graphs,
namely, in Figs. 3(ai), 3(ai), and 3(bi). This is because
in all other graphs one carrot exchange a Regge tra-
jectory in the t channel [remember that 1= (Pi, —Pi)'].
Therefore they are depressed for s —& ~, I, fixed as the
8,„"third term" in the four-point function. ' With
similar arguments one becomes convinced of the fact
that Figs. 3(aq), 3(a3), and 3(bq) should give the dis-
tribution of the particle moving fastest and parallel to
p (x —1), while figures of the type shown in 3(bi)
and 3(c) will give the distribution for x 0 and will be
therefore relevant for determining multiplicities and
pionization. '4

Because of the aforementioned technical difficulties
in studying loops, we shall limit ourselves to the x
region and therefore to the Figs. 3(ai), 3(ai), and 3(b~).

Before proceeding to the actual calculation, we wish
to remark about two of the consequences of limiting
ourselves to da' ".

"This separation is similar to that of Bali et al. , second paper
in Ref. 5. In this respect we should also mention that we are not
including graphs in which the detected particle comes out of the
decay of an intermediate resonance. When such a resonance is
formed by the two initial particles, this eGect is clearly taken
already into account, because of duality. Although we feel that.
this is the case in general, we are unable to prove such a statement
as yet. We hope that, in any event, the corrections to our approxi-
mation will be small. Again, such an assumption is consistent with
Bali et ul. , Ref. 5.
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n'dM2. For the graph in I'ig. 4(a), for instance, we have,
apart from trivial factors,

a a' (4a) dxd dsx ' ' ' '2 " '(1—x) "' '

X (1—y) ' (1—s)
—o—(1—xs) + o

X(i—y 2)'+' '(1—xys) ' ', (3 6)

where we have defined n(i) =nt, n(s) =n. , n(8) =n;, and
n(iVx2) =n)tl. We have also set the slope n' of the
trajectory equal to 1. We are interested in the limit in
which t is fixed and o.„o.;, and o.~~ ~. We first con-
sider the limit when Rem„Ren;, and Ren~~ —~.
By the change of variables

Fxo. 4. Elastic six-point functions needed to compute the con-
tribution to the cross section coming from the diagrams of Figs.
3(aI) and 3(a3).

x=expL —u/( —n, —1)7,

y =expL —v/( —n; —1)],
2 =expL —w/( —n2r —1)],

(3 7)
(i) If we integrate do'" over the whole phase space,

we get, within the usual multiperipheral approxi-
mations, 0-&,& without any multiplicity factor, which
usually comes in if we integrate the full distribution.

(ii) By comparing the value of ot«t (or better its
resonance formation component) as in (i) and as in.

Sec. II, one gets" a condition resulting in a nonlinear
constraint upon y2 of Eq. (2.2). The fact that such a
constraint can be satisfied comes indeed from the
validity of Eq. (3.5).

one gets

(4a) —( n 1)a(t)( n 1)—2a(t)+ao( n 1)n(t)

d24dVdw tv
—( +va"+)tv")(uV) —n(t)-lw-ao —1

xL(w+u) ) (w+ vi )]"'"Lw+pu+4 v]-'"

XLF(u')F(")1 "' 'F(") a™
X[F(u'+w')F(v'+w')]'+' 'F(u'+v'+w') ' ', (3.8)

where

C. Comyutation of Simylest Contributions

u'=u/( —n, —1),
V'= V/( —n; —1),

w' =w/( —n)tr —1),
p = (—n~ —1)/( —n' —1)

) = (—n~ —1)/( —n.——1),
u" =u'+u,
'V ='V +'V t

'M =XV +K')

(3.())

and finally

F(x) = (1/x)(1 —e
—'), 0&F(x)&min(1, 1/x)

(x& 0) . (3 1o)

By using the arguments of Bardakci and Ruegg, "we
can prove at this stage that the limit o.„n;—+ ~,
e~ —+ ~ can be taken inside the integral and thus we

get

( n )n(t)( n )a(t)
Rem(s) -+ —oo;
ReaiVf —+ —;

t Fixed"G. Veneziano, Phys. I.etters 343, 59 (1971)."In the context of the multiperipheral model, the convenience
of reducing the calculation to that of an elastic six-point function
has been noted by Mueller (Ref, 5).We are grateful to G. F. Chew
for pointing out this paper to us.

X( nu) "")+"@'(&,—VP ), (3 11)

K. Bardakci and H. Ruegg, Phys. Letters 288, 242 (1968).

Here we compute the contributions to dg"'" coming
from Figs. 3(ai) and 3(ao). It is quite unfortunate that
we have to omit, for the moment, Fig. 3(b2) from the
discussion. Indeed, if the graph of Fig. 1(b) would
prove to be able to produce diffraction with constant
(or almost constant) cross sections, then Fig. 3(b2)
would. be expected to dominate der"'". We hope to be
able to fill this gap in a future publication.

By the arguments of Ref. 9 the contributions to do-

coming from Figs. 3(ai) and 3(ao) can be reduced to
the calculation of the discontinuities of elastic six-point
functions" in the tree approximation. To be more
precise one gets the diagrams of Fig. 4, where 4(a)
comes from squaring 3(ai), 4(b) comes from 3(ao), and
4(c) and 4(d) come from the interference.

In order to get the desired cross section, one has to
take each of these graphs and compute the 8-function-
type discontinuity in the variable iVx2= (p,+po —pi)'
while keeping the other variables (p,+po)2=s, (po —pi)'
=t, and (p, '+pb')2=8 independent of each other. The
physical result is then obtained by letting s=Res+ie,
8=Res —ie. Finally one smooths out the M~' discon-
tinuity by the obvious replacement d3II2rt(M2 3I)t(2) v—
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where

~(t,p,p) = —( + + )( )- (t)— —o—1

the form (1/8) times a function with no discontinuity
in n,~. It will then be enough to subtract a real counter-
term with the same behavior as 8 —&0. We just state
that the final outcome is to have again Eqs. (3.15) and

(3.16) hold, but with C (t,p,p) now given by

"'+""
//

CI t, , /. (3.13)n;— —0!g —0!8

We can be confident that taking the discontinuity
across the nor cut in the form (3.13) will immediately
give us the average over the true 6-type discontinuity.
Therefore the physical quantity will be

84(4 ) = (n,) ' DiSC u
—2a(t)+ao

X I
— C'(t p p)

+n.
(3.14)

which is therefore of the form n, Q(t,nor/n, ). In order
to get the real cross section dg, we have to multiply by
the appropriate powers of the coupling constant and
divide by the Aux. The result is

d~(4e) ~~~+4

(n.)" 'f(t p=n.v/n. ), (315)
d p1/pio ™I42f

where

XL(w+up)(w+vp) j'+' eLw+pu+pvj —'". (3.12)

The arguments of Ref. 17 can be brought further to
prove Eqs. (3.11) and (3.12) in any direction of the
complex planes of e~ and n„o.;, with the exception of
the real axis (as usual). Therefore one obtains

)-a (t)+ae/2
(4e) ( n )ae/2( n )ae/2

—n, )

Ct(t p p)regulerizetl dudvdw(uv) a('-) 'w " '

X[V tt—z tr(W+u )ac+at(W+Vp) at+at

X(w+up+vp) '" v "~—"(w+up)'"+"(vp)"

v" "(w—+vp) ""(pu)" "j (31»

X (1—p)"—

f
xci t, (3.18)

ntt na ) ——atr/ —az=p/(z —1)

Similar results hold for de"'~ and do. &'"). Equations
(3.16) and (3.17) are indeed quite complicated and the
properties of the function C are presently under study.
It is possible, for instance, to perform explicitly one of
the three integrations in (3.17). The remaining two-
dimensional integral is of the kind

which is now well defined.
The evaluation of the other tree contributions LFigs.

4(b)—4(d)] is similar to the one given here. In fact, it
is identical provided we reinterpret s and 8. Since

n//—trn~— n//tr—.n n24~—p/p 1, w—e obtain for in-

stance

do &4') ~~2~4
cl0

d'P, /P, o s; 42r2
p, t fixed

Disc n) 'a(')+a'—
f(t,p) = —

i
(ct,p, p)

2z~ n, )
(3.16) dhdy(xy) E(1+x)(1+y)j'

X(1+oo+y)'(1+pm+ py)" (3 19)

Comparing this result with Eq. (2.3), it is then im-
mediately possible to verify that scaling, in the sense
of Eq. (3.5), does indeed hold.

There is still, however, a tricky point and this is that
the integral (3.12) as such is simply divergent. The
reason for this is that the process of Fig. 4(a) has a
pole in the channel b+1+1'e 1'+a'+(2 and, since
Pi=Pi, we are just sitting on top of the pole. Never-
theless, the 3IIx2 discontinuity is finite Lpoles in Mxg
are incompatible with poles in (po+pi+pi)2j and it
is just enough to regularize the integral by subtracting
a real counterterm. This can be done in many equiva-
lent ways. A particularly elegant one is to let the
trajectory of channels b+1+1' and b'+1+1' have
intercept eo—8 instead of o.o. For B&0, everything is
then defined and scaling is seen to hold for any 8. The
amplitude, however, will have a behavior for b ~ 0+ of

I (t,0,0) =I"(—nt)I'(2nt —no)

Therefore from Eqs. (3.15) and (3.16) we obtain

~~2~4

d pi/plo 1
' . 42K

(3.20)

P2( n ) n 2at—ae

x . (3.»)
I'(1+no —2«) nod

which we hope can be reduced to some hypergeometric
function.

It is very interesting to consider instead the limit
in which n(s)))n(Mx2)))1, say, for instance, of n(Mx2)
))1, but fixed. One finds it possible to pass to this
limit by setting p=p=0 in the integral defining C. On
the other hand,
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FIG. 5. Elastic (2m+4)-point function needed to compute a
particular contribution to the e-particle distribution,

Combining all the four contributions of Fig. 4, we
finally obtain

Pi/Pio 1«net«n
t fixed

I'(—~ )
cKp I

S

I'(1+n p 2n—,)

241 g Ap

X — cos' xo. / 2 . 322

Equation (3.22) agrees with the result of Chang,
Freund, and Nambu, "which is based on a "statistical
approach" to dual amplitudes. We hope also that our
derivation will eventually clarify the connections
between dual and statistical models. " As remarked
by the authors of Ref. 18, a behavior of do/dtdM' similar
to that of Eq. (3.22) agrees well with experiments.

We stress, however, that the simple result (3.22)
only holds for p ~ 0. To extrapolate such a form out-
side p=0 does not seem g priori justified here. Our
result thus divers from the corresponding one of Bali,
Pignotti, and Steele' in Sec. II of their paper. We
agree, however, with them in the p~0 limit. Their
calculation is based on a multi-Regge-pole model in
which one drops the Toiler-angle dependence of the
Regge residue. How good this approximation is in the
case of dual amplitudes can be explicitly checked by
studying the small-p behavior of the function C.

Finally we remark that we have to restrict ourselves
to the case of o.o(0. In the physically interesting case of
o.o&0, factorized dual amplitudes exhibit poles in the
physical negative-t region. These (tachyon) poles cause
the integral over cose of the differential cross section to
diverge. For phenomenological purposes one might try
to use for e»0 the type of amplitudes recently pro-
posed by Rittenberg and Rubinstein and by Olive
and Zakrzewski, " although they violate one of the
important properties we used, i.e., factorization. "

'8 L. N. Chang, P. G. O. Freund, and V. Nambu, Phys. Rev.
Letters 24, 628 (1970).

' R. Hagedorn, Nuovo Cimento 56A, 1027 (1968). Actually,
before comparing with his results one should also compute the
loop-type contributions. It is amusing to speculate that there
could be a connection between the density of states which ex-
plicitly enters into the loop calculations and the transverse mo-
menta distribution which, in Hagedorn, depends crucially on the
"ultimate" temperature ETo 160 MeV.

'OV. Rittenberg and H, R. Rubinstein, Phys. Rev. Letters 25,
191 (1970); D. Olive and W. J. Zakrzewski, Nucl. Phys. 321, 303
(1970).

"A. P. Balachandran, L. N. Chang, and P. H. Frampton,
Nuovo Cimento 1A, 545 (1971).

A. Kinematics

We consider the inclusive process

a+0 —+ 1+2+3 +n+X.

The differential cross section

(d'Pi/&i)(d'Pz/&z)" (d'P-/F:)

will be a function of 3e independent variables [it is an
(zz+3)-point function with one external leg of variable
mass]. For our purposes a natural choice of variables
is (see also Fig. 5)

s,=s=(P.+P,)', s;(i=1, 2, . . . , zz),

i, (i =1, . . . , n), P,P, (j =2, . . . , zz),

where

s'= (P.+P P P ' ' ' P')'

i*= (P P P. P*)'.— — —

In particular, s„=p,'=M»'. We also de6ne

p;=s,/s, z=z, . . . , zz

(4.1)

(4 2)

(4 3)

The Feynman-type variables' for the case would

s, p;", p,, (i=1, . . . , zz), (4.4)

which are also 3n in number since there are 2e —1
independent p;&. Scaling will be defined in Feynman's

IV. MULTIPARTICLE DISTRIBUTIONS

The discussion of multiparticle distributions follows

conceptually the same patterns as that of the single-

particle distribution. However, the resonance number r
of Sec. III can now assume values as high as n+2 for
an n-particle distribution. When, for instance, a
diagonal contribution is considered, one gets immedi-

ately into the technical problem of computing the
discontinuity of a nonplanar (r 1)—-loop amplitude.
Thus a thorough discussion of the multiparticle dis-
tribution leads one quickly into the realm of quite
involved multiloop amplitudes. In order to get some
answer to compare with experiments, a systematic
technique for dealing with such loops is felt to be
needed.

Here we shall content ourselves to consider only the
simplest contributions to the multiparticle distribution.
If again we consider only the distribution of the n-

fastest moving particles in the direction of Pz, con-
siderable simplifications are expected, namely, the
momenta Pz and Pi through P„should be adjacent in
the dual graph.

Before going into the calculation we briefly discuss
the kinematics of the process.
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der d'pl d'p2 d'p„
~ F(X; P;I)

O.t,t,'. ~„",d'. Ej E2 E„
PQ flXCd

(4.5)

where x;=2p;"/gs. In other words, P, instead of being
a function of 3e variables, becomes a function of 3e—j.
variables. The connection between variables (4.4) and
(4.1) in the scaling limit is the following:

x;=expt —u;/( —n(s;) —1)],
y'= expL —'i(—(8') —1)]

8=expL —w/( —nII —1)].
(4.9)

U8111g Eqs. (4.6), I't 18 easy to scc that Rll tllc vRI'Ial&lcs

e appearing in the above term are to be kept fixed in
the scaling limit. In order to study such limits, wc make
the change of variables

py= I Sy~

Mx'
P2= 1 SI $2~ ~ ~ -

~ P~=
exp( —P u; —P w; —w)

PnI +P
~'= —(2 PI)'+P'+ 2 ( 2 *-)

l=l a=1 g@ m=1
Xll U '(u, v,w'), (4.10)

pi'p~ PB'p

p I+p2
x, p,

' ——,4.6b
gf'

where u, '=u;/L —n(s, )], etc. Except for the case of n
bclng thc tra]cctory cxchRngcd between 6 Rnd 8, Rll

U have a limit for I', ~', m'~ 0 which is a function
of u, 8, w and the p, only. The aa' trajectory gives a
term

wllcl'c $,=2E;/Qs and Rll x; Rl'c tRkcll to bc posltlvc.
One can get easily convinced that the set of variables
(4.1) is equivalent to that in (4.4). In the variables
(4.1), the statement of scaling takes the form

do' d'pl d'p.
~(P' &' Pl P') (4 7.)

&tot,. Pq.P,
'. @I @e

Ss flXed

Altl1ollgll tlM sct. of val'Iablcs (4.1) 18 tllc most, Ilatulal
for our purposes, other variables might be morc appro-
priate for studying the multipartide distribution in
soHlc klncnlRtlcal I'cglon.

B. Exylicit Computation of One Dual Contribution

We now prove that scaling in the sense of Eq. (4.7)
does indeed hold for the analogous diagram Fig. 4(a)
which, for the e-particle distribution, is given in Fig. S.
We have then to look at an elastic (2m+4)-point func-
tion, which apart from trivial powers of the coupling
constRIlt ls glvcn by

e n

Q dÃI II dyld8$'J 8-Z q=X

{1—exp) —g u, ' —Q w,
' —w'])— &'I—'

{Qu +v +w')
Ss', e', to'~0

=(—nII —1) Io'+If{u V W p;). (4.11)

The Jacobian J also has a simple limit. In conclusion,
following the procedure of Sec. III and collecting all the
factors, one gets

{4.12)

Since all the p; p; are functions of p; and p,„Eq.(4.12)
veri6es the scaling limit for the distribution of the e
fastest particles. Of course, in order to get do- one has
to take 'tile dlscontlnulty of (4.12) wltll I'cspcct to nsr
and then let 8;=s;*. One couM quote the explicit
cxplcsslon fol P II1 (4.12) wlllcll 18 111 tllc forrll of R

multiple integral, but this is not particularly illumi-
nating. Furthermore, in order to get a convergent
integral one must again subtract a real counterterm,
as we did in Sec. III. There is nothing conceptuaBy
new, however, because of the fact that we detect
scvcI'Rl 6IlRl pRI'tlclcs lnstcad of R single onc.

Another possible outcome of the study of multi-
particle distributions is the derivation of more con-
sistency (bootstrap) conditions of the type discussed
recently by one of us." Such nonlinear conditions for
the dual coupling constant are presently under
investigation.

V. CONCLUSIONS
wllcl'c J 18 tlM llsual Jacoblan glvlllg cychc symI11ctry
and we have symbolically indicated by IJ U ' all The main point of this paper was to show the useful-.

the remaining factors in, the integrand in Chan s form. s ness of considering inclusive-type experiments in the
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dual-model framework. Especially in view of the
apparent success of dual phenomenology for exclusive
experiments, ' we have stressed the plausibility and
the advantages of a dual phenomenology for inclusive
reactions. Indeed, the theoretical predictions appear
less model dependent in the latter than in the former
case.

Following the guidelines of the work of Ref. 9, we
have shown how the theoretical predictions can be
reduced to rather straightforward computations of
discontinuities of dual trees and loops. Furthermore,
the multiparticle phase-space complications existing in
other models are greatly simplified here by an appro-
priate use of duality.

We have thus examined total cross sections (mainly
for completeness), single-particle distributions, and
multiparticle distributions. However, we have limited
ourselves to the calculations of the simplest contri-
butions to the cross sections, those reducible to dis-
continuities of tree graphs. We 6nd quite easily that
scaling in the sense of Feynman' and of Benecke, Chou,
Yang, and Yen4 is obeyed by these contributions and
we are able to predict the limiting distribution.

As a consequence of having neglected loop diagrams,
we are quite strongly 1imited for two main reasons:
First, we cannot take into account diffraction
(Pomeranchukon exchange); second, we have to limit
ourseIves to the distribution of the fastest particles
moving parallel to one of the incident particles. The
positive results we obtain for the trees should, we
believe, encourage further theoretical work on the dual
factorized loops, and some workable technique should
be found in order to compute their discontinuities in
the relevant kinematic regions. In view of the recent
progress in the theory of many loops, " this does not
seem an impossible thing to ask for the near future. If
such techniques were available, one could obtain the
full single- (and multi-) particle distribution and in-
vestigate questions like pionization and average
multiplicity.

Moreover, there is hope" that the multiloop calcu-
lation will yield a theory of diffraction in the duality
framework. If this would turn out to be true, then also
the first limitation of our present claculations could be
overcome. If, however, it would be impossible (or
simply too complicated) to obtain the Pomeranchukon
in the dual framework, one will still have, as in the 85
phenomenology, ' two options open. One is to restrict to
quantities which have no Pomeranchukon contribution.

22 See, e.g., D. J. Gross, A. Neveu, J. Scherk. , and J. H. Schwagr,
Phys. Rev. D 2, 697 (1970); Phys. Letters 318, 592 (1970).

As an example, it appears that, if one considers
a(n.—+p ~ n.—(fast)+anything) —o (n

—+e —+ w
—(fast)

+anything), all. the graphs of Fig. 3, except the ones we
explicitly calculated, are unimportant. Therefore our
result should apply directly to such single-particle
distribution.

The second possibility would be to use a phenomeno-
logical expression for Pomeranchukon exchange as done
in the 85 phenomenological fits."

Finally, one is faced with the problem of trajectories
with 0.0+0. Again from the point of view of phe-
nomenology one can try to use ad hoc modifications
which hopefully should not alter too much the general
features of dual amplitudes. "

Our results have also relevance to more theoretical
questions, like that of implementing unitarity in the
dual-model framework. It has already been noted""
how one can get nonlinear bootstrap-type conditions
on the dual coupling constant. Furthermore, the con-
nection between dual models and other currently
studied models such as the multiperipheral model, '"
the limiting fragmentation scheme, ' and the statistical-
thermodynamica, l model'9 seems now a bit easier to
study.

We should remark, however, that, as usual, the most
relevant comparison will occur through confrontation
of the theory with the experimental high-energy data,
which are expected to increase considerably within the
next few years. Much more theoretical work is certainly
needed before we shall be able to produce a useful and
reliable scheme for phenomenology. Nevertheless, it
does not seem impossible to us that such a scheme will
indeed be available within the next couple of years.
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of ghost states for 0, {0)&1. We are convinced, however, that the
general conclusions we obtain should not be aAected by this con-
ceptual diQiculty (see also Ref. 9).
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