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Regge Cuts and Sum Rules for Meson-Nucleon Charge-Exchange Scattering*
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I'seudoscalar-meson —nucleon charge-exchange scattering is investigated in the Regge pole-cut model.
Using a complex-conjugate-poles approximation, several sum rules for experimentally observable quantities
are derived and compared with experimental results. It is emphasized that the measurement of the polariza-
tion in the K-nucleon charge-exchange scattering can decide whether the cuts are important in charge-
exchange reactions, and which cut model provides the better description of these processes.

I. INTRODUCTION

~~URING the last few years it has become evident
that the Regge cuts in the complex-angular-

momentum plane cannot be neglected. Models involving
Regge cuts have been extensively discussed by several
authors. '

Generally it is assumed that the leading cut cor-
responds to the simultaneous exchange of the
Pomeranchuk pole and the leading Regge pole. ' If the
Pomeranchuk trajectory n&. has the value close to 1

at 3=0, then the branch point in the J plane resulting
from the exchange of the Regge trajectory n and the
Pomeranchuk trajectory occurs a,t or near J=n(0) at
) =0. If we take the cut along the negative real axis to
the left from the branch point, then each Regge trajec-
tory meets the corresponding Regge-Pomeranchuk cut
at or near t =0.

It has been shown' that in a certain class of models,
because of the collision of the Regge trajectory with the
corresponding Regge-Pomeranchuk cut, either a new

pole can come through the cut from the unphysical
sheet of the angular-momentum plane, meet the original

Regge pole and then form a pair of complex-conjugate
poles on the physical sheet, or the Regge pole can dis-

appear through the cut, , meet the pole on the unphysical
sheet, and the pair of complex-conjugate poles is formed
on the unphysical sheet of the J plane. Thus, for nega-
tive t, the leading J-plane singularities in the first. case
are the cut, and the pair of complex-conjugate poles,
while in the second case we are left with the cut only.
In the following we will work inside this class of n&odels

and we will assume that we have a pair of complex-
conjugate poles on either sheet, of the 1 plane.

* Work supported by the National Science I'oundation.
' R. C. Arnold, Phys. Rev. 140, 81022 (1956); S. I'rautschi

and IS. Margolis, Nuovo Cimento 56A, 1155 (1968); V. S. Henyey,
G. I.. Kane, J. Pumplin, and M. Ross, Phys. Rev. Letters 21,
946 (1968); A. Krzywicki and J. Tran Thanh Van, Nuovo
Cimento Letters 2, 249 (1369); R. Carlitz and M. Kisslinger,
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' If the Pomeranchuk trajectory passes through J= 1 at t = 0~

then the leading cut can result from the combination of the
leading Regge pole with an arbitrary number of Pomeranchuk
poles.

'P. Kaus and I'. Zachariasen, Phys. Rev. D 1, 2962 (1970).
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where n+(t) =nR(t)&inr(t) is a pair of complex-conjugate
trajectories and f(J,t) is a, function which has a cut.

The scattering a,mplitude T(s, t) can be written using
the inverse Mellin transform as

f(n+ t) f(n—t)
T(s, t) = s +— s—

1 ' lm f(j,t)s~
dj, (2)

(J nii) '+nr'—

where n, (t) is the position of the branch point and
2i Imf(J, t) is the discontinuity across the cut. If a pair
of complex-conjugate poles is on the unphysical sheet,
then f(n+, t) =0.

If the function f(J,t) which has a, cut in J is a
logarithmic function, the integral in (2) can be evalu-
ated analytically. If f(J,t) is not, a logarithmic function,
we can approximate' the integral in (2) dt high but not
asymptotic energies by a siniil;l, r integral in which
Imf(J, t) is replaced by Imf( z&, tn).

In any case, after integration we get.

f(n+ t)
T(s, t) = Imf(ng, t) Eif(n, n+) Ins]—

2m'iar

Sa+

f(n, t) Imf—( yq, tn) EiDn, —n ) ins]
+ + s —. (3)

6 8+ 2mio. r

Assuming that the function f(j,t) is real analytic, we

can finally write

Z'(s, t) =C(t,s)s"+"'+C*(t,s)s" (4)

J. S. Hall, G. Marchesini, a»d I'. Zachari tsen, I hys. Letters
31B, 583 (1970).

II. COMPLEX-CON JUGATE-POLES
APPROXIMATION

The continued partial-wave amplitude containing a
cut, and a pair of complex-conjugate poles can be
conveniently written in the form
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where

Z

C(t,s) = —-(Imf(ne, t) Ei[(n, n +) ins] —
m f(n+, t)}.

If one includes the signature, then the final expression
for the scattering amplitude in the discussed model can
be written in the form4

T(s, t) =C(t,s)(1&e ' +)s +'"
+C+(e $)(1~e i1ra—)ea—(t)-(3)

We should remind the reader that the above ampli-
tude includes the cut contribution as well as the contri-
bution from a pair of complex-conjugate poles. Ex-
pression (5) is an approximation which is, however,
expected to hold at presently accessible high energies. 4

It is important to realize that because of the cut
contribution, the new residue function C(t, s) is also a
function of s and is complex.

III. MESON-NUCLEON CHARGE-EXCHANGE
SCATTERING

In the following we will use the amplitude of the form
(5) to investigate pseudoscalar-meson —nucleon charge-
exchange scattering. We will derive several relations
(sum rules) among the observable quantities and we will

compare these relations with experimental results as
well. as with similar relations which were derived before
without the consideration of the Regge cuts.

We will consider the following charge-exchange
reactions:

experimental tests of exchange degeneracy (equality
of E p~K'n and E+n +-E'p differential cross sec-
tions) does not apply to the case of complex-conjugate
poles.

The scattering amplitudes for the reactions under
consideration can then be written at high energies in the
form

T~(7r p &a'n—) =v2[C~(s, t)(1—e ' +)s +

+C+*(e,f)(1—e '- )e ], (7a)

T+(~-p ~ gn) = —(v'3) [C+(s,t) (lee-'-+)s. +

+C+*(s,t)(1+e * -)s -], (7b)

T~(E p +K'n) =— 2[C~(—s, t)e ' +s +

+C~*(s,t)e '- s —],-(-7c)

T~(E+n +E'p) = ——2[C~(s, t)s ++C~*(s,t)s -], (7d)

where T+ are the helicity-nonflip and helicity-flip
amplitudes and C+(s, t) are unknown residue functions.

Eliminating unknown residue and trajectory func-
tions, one gets the following relations between differ-
ential cross sections and polarizations:

der d0—(m-p —+ m'e)+3—
(m p —+ qn)

dt

do c&
K p ~ Kom)+ (K+rt ~—E"p), (8)

dt dt

P(E+e ~ E'p) =0,
~ p~m'm,

'pc p~gÃi
K-p-+ Kon,

E+n +E'p, —

and we will make the following assumptions.

dg
=P(x p —+ n."n)—(m p —&

—x"v)
dt

(6a)

(6b) P(E p
—& K'I) (K p

—&K'm—)-—
(6c)

(6d)

(i) The signatured amplitude for a given process, con-
taining the contribution from an appropriate Regge
pole and Regge-Pomeranchuk cut, has a form given
by (5).

(ii) We assume the SU(3) symmetry for the Regge-
pole couplings. Because the Pomeranchuk pole is an
SU(3) singlet, the Regge-Pomeranchuk cut con-
tributions and therefore the whole amplitudes will be
related by the same symmetry.

(iii) We assume the strong form of exchange de-
generacy for the p and A2 Regge trajectories. Conse-
quently also the p-Pomeranchuk and A2-Pomeranchuk
branch-point trajectories will, be exchange degenerate.
The p-A2 exchange degeneracy has to be considered as
a convenient assumption which enables us to reduce the
number of unknown parameters rather than as the
consequence of some experimental evidence. The reason
for this is that, as will be shown later, one of the best

dO

+3P(n. p —+ goal) (n. p~ ge-) . (10)—-

IV. DISCUSSION

Relation (8) is the well-known sum rule derived
several times' before using only the Regge poles. It
should be no surprise that this sum rule has been re-
derived in the model taking into account the cut e6ect.
For its derivation it is suAicient to consider the signs of
the contributions from the vector and tensor exchanges
to individual amplitudes and SU(3) symmetry. As far
as these two features remain valid, ' the sum rule (8)
will not be aBected by the presence of the cuts. Rela-

' A. Ahmadza, deh and C. N. Chan, Phys. Letters 22, 692 (1966);
V. Barger and D. Cline, Phys. Rev. 156, 1522 (1967).

' The necessary assumptions for the derivation of the sum rule
(8) would not be valid if the Regge-Regge cuts were important.
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tion (8) has been compared. with experimental data and
a good agreement has been found. 5

The polarization sum rule (10) differs sharply from
the Regge-pole predictions. ~ It is known that the model
using only Regge poles predicts zero polarizations in
~ p~7ron and zr p~ gn because only the p trajectory
ca.n be exchanged in the first reaction and only A2 in
the second one. Furthermore, because of the strong
p-A~ exchange degeneracy also, the polarizations in
K p~K-'n and K+n~ E p are predicted to be zero.

On the other hand, in the discussed model only one
of the E-nucleon charge-exchange reactions is predicted
to have no polarization. The polarization in the second
I4-nucleon charge-exchange reaction is determined by
the sum rule (10). Furthermore, by writing explicitly
the expressions for individual polarizations,

40'
P(K P~ K'-n) (K P ~—K'n)

dh

2IC+C I sin(y+ —
rp )[e'raz e'~~zj —(11a)

P (n. p ~ n'n) —(m p ~ n'n)

IC+C I sin(cp+ —p )I e~~~z e—2~~z

2(e~~z e—~~z) c sn—o~n], . (11b)

do
P(zr p ~ gn) —(zr p —& zion)

-lIC+C-I »n(~+ —v-)I e'-' —e ""
+2(e~~z e~~z) coszrn—ej, (11c)

it can be seen that whenever the polarization in the EN
charge-exchange scattering goes through zero, the
polarizations in ~ p~m'n and ~ p —+ gn also have to
go through zero. In relations (11) the notation C~(s, &)

=
I
C+(s, t) I

e'~+ was used.
The predictions concerning the polarizations are the

most significant results of the discussed Regge pole-cut
model. They are different from the usual Regge-pole
predictions (which are known to disagree with experi-
ment unless hypothetical trajectories p' and A&' are
introduced) and they are also different from the predic-
tion of the absorptive-cut model. ' Unfortunately, only

See, for example, V. Barger and D. Cline, Phenonzenological
Theories of High Energy Scatterin (Benjamin, New York, 1969).

T. Roth and G. H. Renninger, Phys, Rev. D 2, 1293 (1970).

zr p~m'n polarization data are available. ' There are
insufhcient data" for vr p~qn and no polarization
data exist for the EE charge-exchange reactions. There-
fore, we can only once more emphasize the importance
of the corresponding experiments.

Finally, we would like to make a short comment on
the relation which has been suggested as a test of p-A2

exchange degeneracy. ' The Regge-pole model with
exchange-degenerate p-A2 trajectories leads to the
equality of the differential cross sections'"

do do
(K p—~K'n) = (E+n——+ E'p).

dh dt
(12)

(IC+I~+IC—I2)(e'~~z+e '~ z —2)

-4n' n(zI C I+'+
I
C

I
') .

We see that the difference is proportional to nq' and
therefore it can be smaller than the present experimental
error

I nz(t) itself is assumed to be small]. However, the
future possible deviation from equality (12) would not
necessarily substantiate the case against the p-A2
exchange degeneracy; it can indicate the presence of
the Regge-Pomeranchuk cuts.
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This relation, which seems to be satisfied within
experimental error at 5.5 GeV/c" as well as at 12
GeV/c, " is supposed to provide the test of the p-A2
exchange degeneracy. We would like to point out that
unlike the sum rule (8), relation (11) is changed by the
presence of the cuts. In our model the difference
between the two differential cross sections is
proportional to

dg da
(E p —+ K—'n) — (E+n —+ E'—p)
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