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one would expect on the basis of the Ademollo-Gatto
theorem. "

On the other hand, the Gell M ann, Oakes, and
Renner type of solution with e /e„——y, '/m' corresponds
to values of (f /fir)' in the first interval of (35) and one
gets (m' —ii')X0=0.27. The slope is the same as that
predicted by the simple treatments discussed in Sec. II,
but again not in good agreement with the data. The
value of f+(0) is close to unity while one has Xic=10li
and X~—403 . If one sets an upper limit X —0.1 on the
basis of the Goldberger-Treiman relation, then these
may not be unreasonable order-of-magnitude estimates
of the extent to which the hypothesis of K and K domi-
nance are violated in the propagators. Hence the
quadratic-smoothness assumption could be reliable
if c /e„——p'/m'.

Since neither of these two types of solutions is
acceptable, one must consider other possibilities. If one
is partial to the Hamiltonian (14) with no additional
terms, the results of this work show that the quadratic-
smoothness approximation is not adequate and higher
terms must be kept in the power-series expansion of
G(k', p', 'ii). The alternative to this is to consider the
inclusion of other terms in the symmetry-breaking
Hamil tonian, which would then introduce more
parameters to the problem.
"M. Ademollo and R. Gatto, Phys. Ilcv. Letters 13, 264 (1965).

Finally, we note that none of our conclusions is

significantly changed if the K mass is varied as much as
100 MeV. While there are no indications for a low

K mass, the existence of such a particle would cause a
larger discrepancy between (31) and (6b) as was also

found in Sec. II. If the K meson does not exist, this
situation can be described by taking the limits m„'~~
and f„~0 in our results. One then recovers the
Dashen-Weinstein theorem" from (31).

emote

added in manuscript Aft. er submission of this

paper for publication, we received an experimental

report by C.-Y. Chien el al." in which a new value of

X+
——0.08+0.01 is suggested. If this is indeed the case,

then the use of Eqs. (11) and (12) can easily obtain

$ = —0.74&0.13 so that, from Kq. (5), (m' —p')Xo

=0.2&0.2. Furthermore, all of the consistency condi-

tions are then satisfied with the Gell-Mann, Oakes, and

Renner type of solutions with e /clc= —p'/m'.
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The constraints of unitarity on an amplitude containing J degenerate resonances are solved, and several
parametrizations of the solution are given. In one solution, the unitary amplitude is obtained from the
narrow-width limit. Forms suitable for other theoretical applications and for phenomenology are included.
The wide variety of possible cross sections and Argand diagrams for the general case are discussed, and
examples of the tripole are shown. The well-known results for the dipole are rederived without eRort.

I. INTRODUCTION

HE possibility of mult. iple resonances in the meson
spectrum has recently received both experimental

and theoretical support. The doubling of the A2 peak
in the KX4 channel as seen by the CERN boson spec-
trometer group, ' and recent spin-parity analyses, '
strongly support the hypothesis that, both peaks of the
3& have a spin and parity of 2+. One of the simplest,

* Research (Yale Report No. 2726-591) supported by the U. S.
Atomic Energy Commission under Contract No. AEC(30-1)2726.' R. Baud et al. Phys. I.etters 31B, 401(1970); P. Schubelin,
Physics Today 23, No. 11, 32 (1970).

See, for example, G. Ascoli et al. , University of Illinois Report
No. COO-1195-193 (unpublished).

models that accounts for the phenomena of the A2
consists of two interfering resonances with the same
quantum numbers, which may or may not be de-
generate. Although the A~ has been studied experi-
mentally in some detail, ' ' not all aspects of its phe-
nomenology are resolved.

The R region, with its larger mass and background,
is not nearly so well explored. 4 Even so, multiple-
resonance behavior is consistent with the data, and

' M. Alston-Garnjost et al. , Phys. I.etters 33B, 607 (1970).' J. Bartsch et al. , Nucl. Phys. B22, 109 (1970);B. Levrat et al. ,
I'hys. Letters 22, 714 (1966); M. N. 1'ocacci et al. , Phys. Rev.
Letters 1'7, 890 (1966); L. Dubal et al. , Nucl. Phys. B3, 435
(1967).
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there is a de6nite possibility that the R is a spin-3
tripole. ' If one dares to extrapolate from the (p,A~,R)
sequence, this pattern suggests that the mesons along
the leading trajectory have multiplicities equal to their
spins. 5

On the theoretical front, two dynamical models have
been suggested in which the multiplicity structure along
the leading Regge trajectory increases with spin. The
6rst was suggested in the context of the dual resonance
models, where the difhculty in obtaining the physical
particle spectrum is well known. If reasonable restric-
tions are imposed on the mp amplitude, including the
requirement that the 2 recurrence of the ~ does not
have a parity doublet, then it appears that the residue
of the 2 particle does not factor in the mp helicity
space. 'Whether this increase in multiplicity is a general
feature of dual models that incorporate the physical
particle spectrum remains to be seen. Although the
mechanism of Ref. 6 does not apply to the A2, it is still
possible that there is a loss of factorization between the
mp and pseudoscalar channels. The second example is a
held-theory model. Gursey and Koca have constructed
a nonlocal, infinite-component 6eld theory that pro-
duces a doubled A2 in a natural fashon. ' This theory
has the additional feature that the multiplicity of each
resonance along the leading trajectory is equal to its
spin. Thus, their theory predicts a tripole R meson, a
fourfold S meson, and so on.

The purpose of this paper is to investigate further
the amplitudes, mass spectra, and cross sections result-
ing from a multiple resonance. We present the general
solution to the constraints of unitarity on a degenerate
J-fold resonance. The solution is given in several dif-
ferent forms, suitable for both theoretical and phe-
nomenological applications. In one form of the solution,
the cross sections and Argand diagrams for a J-fold
resonance can be predicted from narrow-width models,
since unitarity is sufficient to construct a unitary ampli-
tude from the level couplings (the term level coupling
will be given a precise definition). Unitarity determines
the relative magnitude of all the terms in the amplitude
that are higher order in the width scale.

A "degenerate" J-fold resonance amplitude is one
in which J resonance poles are located at A=M —i—,'I'. '
This is the case of most interest, since it depends on
fewer parameters. Moreover, from the experience with
doubled resonances, cross sections will not be sensitive

'L. H. Chan, R. Slansky, and D. Sutherland, Phys. Rev.
Letters 25, 482 (1970).' V. Rittenberg and H. R. Rubinstein, Phys. Rev. Letters 25,
191 (19/0); J. D. Dorren, V. Rittenberg, and H. R. Rubinstein
{unpublished).

7 F. Giirsey and M. Koca, Nuovo Cimento 1A, 429 {1971).
In this paper, J refers to the multiplicity of the resonance,

not its spin. However, in some cases these may be equal, as
suggested in Ref. 5.

~ For those who prefer to analyze the amplitudes or cross sections
in the variable s=A"', the following replacements should be made
everywhere: E —+ s, 3f —+3f', and ~F —+3fF. For a degenerate
pole, all resonance poles are located at s=PI~—gfI'.

to small changes of the spacings between the resonance
poles. "The shapes of the cross sections vary smoothly
as all the poles approach X=M—i~I'.

For phenomenological applications, we derive the
most general form of the production or formation cross
section obtainable from a J-fold resonance. These
formulas are suitable for phenomenology and data
fitting. In order to give the reader some feeling for the
variety of possible shapes, we have included 6gures
showing the cross sections and Argand diagrams re-
sulting from a tripole. It takes only 7 parameters to 6t
a tripole in any reaction, and in general, it takes 27+1
parameters for a J-fold resonance. Ke work in the
framework of the mass-matrix formalism, where both
unitarity and the degeneracy condition are easily im-

posed. The main device for 6nding the solution so
simply is the use of nilpotent matrices. The resulting
solution depends on (n —1)J parameters (n is the
number of channels, and J is the multiplicity of the
resonance) plus M and ~~1", the real and imaginary parts
of the location of the J-fold resonance in the complex
energy plane. The solution is given by Eqs. (5) and
(&)-(9).

We give several different choices of independent
parameters. The factorization properties, narrow-width
limit, the structure of production amplitudes, cross-
section formulas, and general phenomenology of the
J-fold resonance formula are also discussed. Some of the
interesting features include the large variety of shapes
possible for a general J pole, including the variation
of the number of peaks, and in those cases in which
there is only one peak, the tremendous variation is the
possible width of the single peak for a given value of I'.
In particular, the narrow structures observed in the
high-mass boson spectrum are not inconsistent with
the J-fold resonance structure.

In Sec. III, we apply the results to the dipole, to
obtain without effort the results already known for the
dipole. ""We discuss both the degenerate and non-
degenerate cases.

Section IV is concerned with the cross sections and
Argand diagrams of the tripole amplitude. A number
of 6gures are plotted there, and should give some feeling
for the tremendous variety of cross sections possible
for the tripole. Some examples which look like the data
are shown, but the difFiculties of making a serious 6t
are also mentioned.

The paper also serves as a sequel to Ref. 5, and a
number of propositions stated in that paper without
proof are proved here. In particular, we have succeeded
in generalizing the single-channel J-pole solution to an
arbitrary number of channels, have proved the fac-

' C. Rebbi and R. Slansky, Phys. Rev. 185, 1838 {1969)."S. Coleman, in Theory and PhenomenoLogy in Particle Physics,
edited by A. Zichichi (Academic, New York, 1969); Y. Dothan
and D. Horn, Phys. Rev. D 1, 916 (1970);Y. Fujii and M. Kato,
Phys. Rev. 188, 2319 {1969);K. W. McVoy, Ann. Phys. {N.Y.)
54, 552 {1969).
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torization properties, and. have shown that the narrow-
width limit is; indeed, sufficient to determine the shapes
of the cross sections and the Argand diagrams.

II. UNITARY DEGENERATE
J-FOLD RESONANCES

In this section we construct a unitary partial-wave
amplitude in which J resonance poles' have coalesced
to the same point, E=M—i-,'F, ' and the background is
neglected. This amplitude can be used to construct a
unitary amplitude which includes the background, as
shown in the Appendix. Suppose there are n channels.
The number of arbitrary parameters needed to specify
this amplitude is easily counted by first considering J
widely separated resonances. There are J couplings
to each of the n channels, J masses, and J widths.
Unitarity imposes J' conditions (which relate the
widths to sums of squares of coupling constants in the
limit where the poles are widely separated), which
leaves (++1)J parameters. Now let the poles all ap-
proach X=M—i2l': In this limit, the number of
constraints due to unitarity does not change. This
imposes 2J—2 more conditions, since all J widths be-
corne equal to I', and all J masses become equal to M.
Thus it takes (n —1)J+2 parameters, including M
and I", to specify a degenerate J-pole that couples to
n open channels. The mass-matrix formalism is con-
venient for our purposes, since unitarity is easily im-
posed on this form of the amplitude. The general time-
reversal-invariant mass-matrix form of the amplitude,
which allows for both degenerate and nondegenerate
configurations of J resonances, is

Ag(E) = —-,'I'X, (E—M+i-', I') ' pX;p,

where M and I are J-by-J real symmetric matrices,
the X; are real, and the J-by-J identity niatrix
multiplying the energy E is implicit. The parameter F
is inserted for dimensional convenience, and we define
it to be the average of the I"; in the case that the J
resonance poles are not degenerate. The implied sums
on n and P run from 1 to J, and the channel indices i
and j take on the values 1, . . . , n. Thus the matrix X
is a real n-by-J matrix whose first index operates on
channel space, and whose second index acts on an
internal space used to describe the J resonances or
levels. The operator X transforms a vector in the
internal or level space into a vector in channel space;
X~, the transpose of X, does the opposite. It is im-
portant to note that X and X~ operate on different
spaces. The X; are called coupling constants, or level
couplings.

The amplitude in Eq. (1) must satisfy partial-wave
unitarity. If, for example, we assume that the quasi-
two-particle channels dominate, then the many-
channel unitarity relation is

Imd;, (E)=P A;i(E)pi(E) A,7,*(E)= (.4pA');;, (2)

where p~~=p~5~~ and p~, the phase-space factor, is non-
zero only for open channels. The constraints of unitarity
on A(E) follow trivially, if one notes that an invertible
matrix, such as the matrix propagator, satisfies

2i 1m(B ') =B ' —B '*=—B '(B—B*)B '*
= —2iB '(ImB)B '*.

Substituting Eq. (1) into Eq. (2), and recalling that
X is real, we find

F=X~pXF.
Thus X completely determines the matrix elements
of I.

Ke now require that all the poles coincide at
L:=M—i-, F. To accomplish this, we write the ampli-
tude (in matrix notation) as

A(E) = —X iXr,
—.,'I'

E—M+ z-', I+-', rNi

where iV, which is defined by Eq. (4), is a J-by-J sym-
metric matrix (time-reversal invariant) whose elements
are in general complex. The requirement that all the
poles of A(E) are located at E=M—i-,'I' implies that
the eigenvalues of Ã must all be 0. Since X satisfies its
eigenvalue equation %~=0, Ã must be a J-by-J com-
plex nilpotent matrix. %e shall assume that E 'WO.
The case where E~ '=0 with i7~ '&0 is just the
problem of a (J—1)-fold resonance.

The mass propagator of Eq. (4) is easily inverted
to give

0+1

A(E) = Q XN"Xr.
E—M+i-', I'

Equation (4) satisfies unitarity if

I+1m(N) =XIX, (6)

where J is the J-by-J identity matrix. Equation (6)
gives —',J(J+1) independent relations among the ele-
ments of X and E.

There must be other linear dependences between X
and g. The number of dependences can be found by-
counting the parameters on which Eq. (4) depends
(nJ+J(J —1), excluding M and I'] and subtracing
the i~J(J+1) constraints of Eq. (6). (The total number
of real parameters specifying a J-by-J complex nilpotent
matrix is J(J—1).jThus, there must be —,'J(J—1) other
linear dependences.

The source of these other dependences is the arbi-
trariness in defining the orientation of the J-dimensional
internal space: A redefinition of the internal basis leaves
the amplitude invariant, while transforming X and X.
Ke restrict this set of transformations to those which
leave the form of the unitarity constraints of Eq. (6)
invariant. The group satisfying this condition is the
group of orthogonal transforrnations in J dimensions,
which is a —',J(J—1)-parameter group. Thus, N need
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be specified only up to an equivalence of J-dimensional
orthogonal transformations.

This freedom may be used in making a convenient
construction of 2V. In the form we find most useful
(which is given below), Ã depends only on —',J(J—1)
parameters, a/l of them being determined by the off-
diagonal elements of X~pX. The diagonal elements of
g are real. We have satisfied the linear dependences by
our choice of the other 2J(J—1) extra parameters
needed to specify S. Of course, other solutions of the
linear dependences may also be useful for some ap-
plications. With our choice, Ltf" is completely determined
by the X;, and the only constraint on the X, is that
the diagonal elements of XrpX equal 1. Thus, A(E)
depends on nJ—J independent parameters, as it should.
This form for the unitarized J pole is clearly useful for
narrow-width models, such as the dual models or non-
local 6eld theories, that should be expected to furnish
the level couplings, i.e., the elements of X. It is neces-
sary for a degenerate-unitarized Jpole that the elements
(XIX);,=1 (no sum on i) The. other elements of

X~pX determine A and, consequently, all the cross
sections and phase shifts.

It remains to find explicitly this solution for E. In
the case that J is odd, A' has the form

Qy

'EAZ

P14

P14

P1J

—Qy

1'P14

$P14
0

ZP1J

P14

1P14

P14

1P14

Zcxg

PBJ' ZP8 J

P1J )
ZP1J.

par
&par

0

(7)

where the a; are real and the P;; are complex. In the
case that J is even, simply remove the last row and
column from Eq. (7). A moment's contemplation
reveals that Ã is, indeed, the most general symmetric
representation of a complex nilpotent matrix of order
J, up to a J-dimensional rotation. It depends on
—',J(J—1) parameters, as required, and we can directly
relate these parameters to the elements of X~pX. We
discuss the derivation of Eq. (7) in Sec. IV for the
tripole. We define a, real symmetric matrix p by

0
0!]

=1m/V = ™I'
Imp14

~ Imp)J

Gi
0

Rep14
Rep14

Rep1g

Imp14
Rep14

0

Impgg

Imp14
Rep14

0

Rep4g

ImP, ~)

Repro'

Imp3J
Rep4J

0

(8)

The unitarity constraints, Eq. (6), are then given by

I+y =XIX. (9)

Thus, S is completely determined by the elements of
X, and the relations between diGerent elements of X
and X~pX are completely uncoupled. It is easy to see
that the shapes of the cross sections can be determined
from the narrow-width limit. From Eq. (5), the narrow-
width limit is

A~w(&) = —kl't XX'/(& —~)3 (10)

In principle, the scale of X is not determined in narrow-
width models. However, if some independent principle,
such as that suggested in Ref. 5, determines that the
multiplicity of the resonance is J, then unitarity can
be used to set this scale, since Eq. (9) implies that
Tr(XIX) =J. Thus, X is calculable from the narrow-
width model, and this provides adequate information
to compute 1V through Eqs. (8) and (9). Then the
unitarized amplitude follows from Eqs. (4) or (5).

The factorization properties of each term in Eq. (5)
are obtained from the properties of the nilpotent
matrices. I.et us consider the case where g '~0, and
the number of channels n) J. Other cases are similarly
treated. The n-by-n matrix XE~X~ is a matrix in
channel space. We prove that XX~X~ can be written
as a matrix product of a 11-by-(J—k) matrix with
its transpose. The order of the factorization is de-
fined to be J—k. Thus XX~ is the Jth order fa,ctoriz-

able, and XX 'X~ is the first-order fa,ctorizable, or
completely factorizable, since it is given by a column
vector times a row vector.

The proof of this statement uses the fact tha, t
det(A'~) =0 for k = 1, . . . , J—1. From det(1V) =0, 1V
can be written as 1At r, where |k is a J-by-(J —1) matrix.
Now, 1V' is also a nilpotent matrix, equal to ~ ~~.
Since det(A') =0 implies det(lkrp) =0, the (J—1)-
by-(J —]) matrix /~i' can be written as pp, where

is s, (J—1)-by-(J —2) matrix. Thus, we obtain
p'=$4k4t4rp~, where pp is a J-by-(J —2) matrix. This
procedure can be applied until k =J—1, since det(A' ')
=0. Thus, E~ ' can be written as the matrix product
of a J-by-1 matrix with its transpose.

These factorization properties were mentioned in
Ref. 5. This procedure also suggests a method for ex-
plicitly constructing E, as given in Eq. (7). We will
discuss this construction only for the tripole (see Sec.
IV).

The solution just presented is particularly useful for
narrow-width models, since all n(J —1) of the arbitrary
parameters are elements of X. In another simple solu-
tion, which has a somewhat more geometrical interpreta-
tion, the 21J(J—1) independent matrix elements y;,
of. Eq. (8) are chosen to be the independent parameters.
The advantage of this choice is that the parameters y;;
provide a measure of the mixing of a, J-fold resonance.
To see this, consider the vectors x —= (X1 . . . . ,X„),
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o.=1, . . . , J, which form a set of J vectors in channel
space. From Eq. (9), the x are normalized, and the
projection of x onto xt& (which is less than or equal to 1)
is just the mixing parameter y p. This projection is
defined by Eq. (9).The mixing between two components
of the J pole is a maximum if y p

——1, and is a minimum
when y p=0. For example, consider the "maximally
mixed" case, where y t&

——1 for all n and P. Then, we
recover the trivial case discussed in Ref. 5, where the

~
A

~

' for the J-fold resonance has J peaks of unit height
in all channels, with J—1 dips to zero between each
pair of adjacent peaks. The opposite extreme is p p

——0,
where all channels contain a simple resonance. (This
extreme can occur if a selection rule forbids the reson-
ances to mix. ) When some of the y t& are 0, then E"
can be zero for k(J—1. The construction of E in this
case presents no difFiculties, as it is equivalent to the E
constructed for a k-fold resonance, with k&J.

If the y p are chosen as free parameters, then there
are an additional 33J(J—1) linear dependences among
the X,:;. We first solve these constraints for the case
where the number of channel n=J, so that X is a
J-by-J matrix. Let us choose a reference form for X,
call it X"&, to be in the Jordan canonical form. Thus,
all the elements of X&') below the major diagonal are
zero. This is the crucial step in our solution since X('~
specifies a reference orientation of channel space with
respect to the internal space. However, all other
possible "orientations" of the level couplings Xi
can be reached by rotating Xi ('~ by a real orthogonal
transformation defined in channel space. This rotation
depends on 3J(J—1) rotation angles. (The metric of
these transformations is the phase space, so that
Rp&r=p. ) Thus, in the case that 33=J, the set of
—,'J(J—1) mixing parameters y;; and the set of +3J(J—1)
"channel orientation angles" specify the J pole com-
pletely. The elements of X"'=A~X can be obtained
from Eq. (9), since X&'& must satisfy the same nor-
malization conditions as X. Thus, we find the equations

cx—1

p X,&'&3=1—P X; &'&3p;, a=2, . . . , J

This solution is correct if none of the y;, are equal to 1.
The modification if, for example, one of the y;; is 1, is
simple. Let us choose this to be yJ 1,g=1. Then we

may set X&z&'~ =0, and the remainder of the calcula-
tion of X;,&') goes through unchanged. Other solutions
of Eq. (12) follow if the negative square roots are taken.
Needless to say, the lower rows of X(') for high-J
multiple resonances become rather complicated, but
are obtained in a straightforward way. The p;, are
constrained such that all the expressions inside square
roots are positive. The source of this constraint is
simply that the p;; are cosines of angles between a set
of J real vectors in channel space.

If the number of channels n is greater than J, then
not all the 33n(33 —1) parameters that specify a real
orthogonal transformation act independently on X.
Since the n-by-n rotation E. acts on an n-by-J matrix,
33(n —J)(n —J—1) of the rotation parameters leave the
n-by-J matrix unchanged. Thus, only 35(n —1)
—33(33—J)(n —J—1) of the rotation parameters affect
the elements of X, and the n-channel J pole is described

by (n —1)J parameters (including the y... but not M
and I'), as demanded.

It takes J amplitudes to describe the production of a
J-fold resonance, just as it takes J real amplitudes Xi
(c3=1,. . . ,J) to describe its coupling to channel i
However, the production amplitudes, call them X &~),

need not be real, and are not constrained by Eq. (9).
Thus, it takes 2J—1 extra parameters to describe the
production of a J pole, since one phase is unobservable.
The amplitude for producing a J pole that subsequently
decays into channel i is

1p
2

Ap, ;(E)= —X t~& X;t&. (13)
F. M+i3I'+3P—E „»

Of course, the X;p remain real and are still constrained

by Eq. (9). If the total cross section is measured, then
the shape of the J pole depends on fewer parameters.
From Eqs. (2) and (4), we find that

Q X &'&p X t&&'& =y t&

i= 1

These equations can be solved in a stepwise manner.
Absorbing the pi factors into the I;, we find the first
few rows of Xi "~ to be

X1] —1 ~ X1tx —+1~ ) A 2) p J
X "'= (1—7&3')'" X3+"'X33"'= (V3a —

V&3V ia) &

6=3) ~ ~ ~ ) J
X33"'——(1—

Y13 —Y13 —+33'+2+13Y23+13) / (12)
(1—V33')'",

X8a X88 X22 +8a +18+la +28+2a++28+1g 1a
2+12 +8a++12+18+2rx y

& ly ~ ~ ~
y
J ~

which depends on 33J(J—1) parameters from tv, plus
2J—1 more from X' ~. Along with M and I", this is a
total of —',(J+1)(J+2) parameters.

If the matrix elements Xi„can be computed from a
theory, it is then easy to compare the cross sections
predicted by the theory with the experimentally ob-
served ones. However, in general, the constraints are
not too restrictive for direct phenomenology, when a
complete set of formation experiments is not available.
Moreover, most of the data are obtained from produc-
tion experiments. Therefore, it is useful to extract a
parametric form for the cross section (or mass plot) of a
J pole that can be used quite generally in phenome-
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nological analysis. From Eq. (5), it is clear that a@~~~,

the cross section or mass distribution for a J-fold
resonance, is equal to L(E—M)'+ ~ I"j times a
polynomial in (E—M) of order 2J—2. This implies
that 2J+1 parameters (including M and F) are suf-
hcient to specify the shape and normalization of the
cross section. The polynomial must be arranged so that
it can have no more than J—1 real zeros and is never
negative, or else the polynomial is not obtained from
the absolute square of an amplitude. An example of a
useful form for data 6tting for aparticular channel, j
going to i, is

1r
2

2

+XÃXr (17)
E—3f+i-'F

plications, including the neutral E-meson system, "co-p

mixing, "the doubling of the A 2 meson, and the possible
mixing of two 1+ mesons in the Q region. "

An effortless derivation of the degenerate limit
follows immediately from the results of Sec. II. We
restrict our discussion to two channels; the generaliza-
tion to more channels causes no difTiculty. From Eq.
(5), the degenerate dipole amplitude is

I' j—2 2-

p g„~(g M)& (15) where Ãisgiven by Eq. (7),
& ~=o

This formula depends on 2J+1 real parameters, as it
should. If the experimentalist is able to measure enough
formation cross sections, or enough cross sections using
the same production reaction, then eventually the aI, '&

and bI, '& from the different experiments will have to
satisfy constraints. The connection between these
parameters and the X; is rather complicated. Of course,
in a single production experiment, the parameters of
Eq. (13) are essentially unconstrained. This formula, is
useful for exploring the shapes possible from a J-fold
resonance.

It is of interest to analyze those cases where the J
pole manifests itself as a single peak. The variation of
the possible widths increases as J increases. From Eq.
(15), we can estimate that the narrowest possible full
width at half-maximum is

Ã=cos0 —1
'

(We have absorbed the p; into the X; for notational
convenience. ) The sums on i are over the two channels.
It follows immediately from Eq. (19) that

cosP cos(P —0)
X=

sing sin(P —0)
(20)

and 0 is the mixing angle. The normalization condi-
tions, Eq. (9), are

QX, '=1,
(19)

In this case, only ao and 60 are nonzero. Similarly, the
widest possible peak is

For J&3, an adequate estimate of the ratio is

F~, /I'~„„„=1.5J.
Thus, the possible variation in the widths of the J
poles increases linearly with J. For example, if the S
meson is a fourth-order resonance, then the widths of
single peaks observed in reactions could vary as much
as a factor of 6. This variation is even more dramatic for
higher-order resonances.

III. DEGENERATE AND NON-
DEGENERATE DIPOLE

The solutions of the constraints of the unitarity
relations for a partial-wave amplitude containing two
resonances, both in the degenerate and nondegenerate
cases, have been known for some time. ""The problem
has attracted much interest because of its many ap-

where p is the orientation angle.
The two-channel dipole amplitude depends on the

four parameters 3f, I', 0, and P. Examples of the cross
sections and Argand diagrams implied by Eq. (17) can
be found in Ref. 10. It is worth emphasizing that A(E)
depends on only these four independent parameters;
additional parameters are redundant, or are dependent
on these parameters. "

We recall some of the features of the cross sections
for the formation of dipoles. "The shapes of the cross
sections in a given decay channel depend on the initial
channel, and a given initial channel can lead to different

shapes, depending on the decay channel. Both single

and double peaks are possible, and the phase shift

» T. D. Lee and C. S. Ku, Ann. Rev. Nucl. Sci. 10, 511 (1966)."M. Gourdin, Lecture Notes for the Eleventh Scottish
Universities' Summer School in Physics, 1970 (unpublished).

' Birmingham-Glasgow-Oxford Collaboration, Kiev Conference,
1970 (unpublished}.

"For example, the angle 8 in Ref. 10, which is the orientation
of the dipole in the complex energy plane, is redundant, and can
be set equal to zero without loss of generality. Zn this sense, the
directional dependence of the dipole is lost in the degenerate
limit.
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does not always travel through 2x, as it does in the
single-channel case. The A2 meson exhibits this same
complicated behavior with both single and double
peaks occurring in various reaction channels.

The production amplitude is not as constrained as
the formation amplitudes, and all the peculiarities of
the formation cross sections are possible with the pro-
duction cross sections.

We now turn to the nondegenerate dipole, and show
that the constraints of unitarity are again easily imposed
if we employ the mass-matrix formalism. The unitary
mass-matrix form of the amplitude is given by Eqs. (1)
and (3),

where
1—c')2ri(1+r), (25)

to —-', rx pX, we find the equations

x x:—P X, p,X; = (r —c I' )[(1—c )I']
x~ x~=—P X,~p,X,,= (r~ —c'r~) [(1—c') I']-', (24)

xr x2—=p Xalp6X$2=2cyf2 —iV1)[(1—c')r] '.
Since the X;are real and the p; are positive, the Schwarz
inequality may be applied to Eq. (24): (x& x&)(xQ'XQ)
)(x& x&)'. Along with the positivity of x& x& and
x2. x2, this condition implies

—,'r
A(E) = —X Xr,

M+i—-', rXrpX
(21)

which is true for any number of degenerate or non-
degenerate resonances. We now examine Eq. (21) for a
nondegenerate dipole.

The arbitrariness of the internal basis allows some
choice in the form of M or X~pX. In applications this
arbitrariness is sometimes used to make M or X~pX
diagonal, at least to leading order in perturbation
theory. We may also use this freedom so that the rela-
tion between the pole locations (the eigenvalues of
M —i-', I') and the elements of X are particularly simple.
Although the method is diferent, this same choice
was made in Ref. 10.

The mass matrix M —i21 has eigenvalues M1—i~I'1
and M2 —i-,'I'2, with corresponding eigenvectors &1 and
Q2. Thus, we can expand the mass propagator in pro-
jection operators formed from p1 and p2, and utilize
the properties of the projection operators to obtain

P'r)-s
A;;(E)= —X;.

E—My+i-,' I',

(&~)-s

E—My+i-,'rg
X;p. (22)

The factorization of each pole is manifest in Eq. (22).
If the eigenvalues are not degenerate, then the eigen-

vectors of M —i21t, which must be orthogonal and
normalized, may always be written in terms of one
complex variable as

Thus, 1—c2 is positive, which explains our choice of
the form of the eigenvectors in Eq. (23). The condition,
Eq. (25), already implies that rr and rq are positive.

This solution is identical (aside from a slightly
altered over-all normalization of the X; ) to the solu-
tion in Ref. 10 found by direct solution of the unitarity
relation. The normalization conditions, Eq. (24), are
much more complicated if c is taken complex.

IV. TRIPOLE

The variety of the shapes of cross sections, and the
behavior of the phase shifts can be fantastically com-
plicated for the tripole. The plan of this section is to
apply the results of Sec. II to the tripole, to give some
examples of their behavior, and to comment on some
possible applications to the data. Our discussion is
restricted to three channels and, therefore, there are
six arbitrary parameters aside from M and I'. Larger
numbers of channels just introduce more parameters
without adding to the wealth of phenomena possible
with the tripole. Less than three channels restricts the
possibilities.

The tripole amplitude, from Eq. (5), is

+( )
N' X~, (26)

+2
where l'lt is a 3-by-3 nilpotent matrix of the type given

(23) in Eq. (7):

72if+&718

iver

3 vg, . (—27)
0

&+12712
E=

|'23+2+18

(28)

We have still not utilized the freedom in choosing
the internal basis. The choice which simplifies the rela-

'L723 —713tion between the masses, widths, couplings, and c is
that Im(c) =0. Other choices of the phase of c can lead The mixing parameters 7 s are real, and are related to
to diagonal M or diagonal XpX, but the relation be- the elements of X by the normalization conditions
tween X and the pole locations is enormously corn- [Eq. (9)]:
plicated. Upon setting Im(c) =0, expanding M —i~r in
projection operators, and equating its imaginary part
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I'IG. 1. Absolute squares of the tripole amlilitu&]es for y1 ——1,
+13 0.9, »3 =0.9, p = —0.1671, 8 =0.207I, and p =0.44~. The
units along the abscissa are a=2(l' —M)/I'. Thus 2 units of e is
an energy change of I'. (The tripole is located at P;=M —i&I' in
the complex energy pla, ne. ) The phase-space factor p is set equal
to 1, which sets the vertical scale. The dash-clot line is rA» r',
the solid line is rA2sr', and the dashecl curve is
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Actors.

Thc
maximum possible value of the y;, is 1. The Argand diagram for
311 is given in I'ig. 6.

Although the above form ofiV is most easily obtained
from the general solution, Eq. (7), it is nol; difficult to
derive this form directly from the properties of the
nilpotent matrix. The construction of iV follows closely
the discussion of factorization of Sec. IT. If we assume
iV'/0, then the matrix 3,' is the product of a 3-by-2
matrix with its transpose a,nd iV' is the product of a
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I'IG. 2. Absolute squares of amplitudes for p12=0.75, ')r13=0.92,
y;3 ——0.91, p=1.1m, 8=1.4271-, and /=0. 62~. The dash-dot curve
is rA~, r', the dashed curve is IAc3rs, and the dotted curve is

r
A» r'. The energy parameter c is detined in the caption to Fig. (1).

Note that the narrow peak in rAc~rs has a full width at hali-
maximum of about -', 1', whereas, the width of the peak in IA33r'
is about II'.

I'IG. 3. Absolute squares of am~ilitudes for p12 ——0.75, y13 ——0.55,
jp3 —0.75, p = 671, 8 =0, a,nd p =0. 'I'he phase shifts for these

a,mplitudes are shown in I'ig. 4. The solid line is
~
A2& )', the short-

clashed line is rA~, r', and the long-clashed curve is rAI3r'.

X; =R;;($,8,$)X; t". (30)

The matrix X"& is given in Eq. (12). The angles are
Euler angles: P is a rotation around the z axis, 8 around
the y axis, a,nd f is around the new s axis.

To give some idea of the wide range of phenomena
possible with the tripole, we have plotted a few ex-

3-by-1 matrix with its transpose. Thus, cV can be written
as fzPsr and .Vs as PsftfP'PP, where tie is a 3-by-2
ma, trix and Pt is a 2-by-1 ma, t, rix. Because sY' is a
nilpotent matrix with the property (!V')'=0, Q pt)r
is equal to (1,i,0), up to a rotation, an over-all nor-
ma, lization, and the freedom of the choice of basis.
Moreover, fr~' (1,i), since ——/tetr is the 2-by-2 nilpotent
matrix. Therefore, we obtain a set of equations for the
elements of P&, which are easily solved. Then iV is
found by simply multiplying pager, giving Eq. (27).
The most general 3-by-3 nilpotent matrix ca.n bc ob-
tained by making an orthogonal transform ~tion on .V,
but we choose the internal coordina, te basis so that. the
normalization conditions are uncoupled and simple.
This sets the rotation equal to the identity.

The most convenient form for X depends on the
problem. If we were dealing with models that give the
elements X, such as narrow-width models, then the
most simple para. metrization is given in terms of six
a,ngles,

Xt ——sin0 sing, Xs ——sin0 cosd, Xs =co&, (29)

where we have absorbed the phase-space factors into
the X;. , ando, =1,2, 3.

For displaying examples of the tripole, it is somewhat
more convenient to use the second parametrization sug-
gested in Sec. II. In this case, the y;; are independent,
and the channel space indices of X are rotated from the
semidiagonal form of Eq. (12) using 3-by-3 rotation
mat, l lees:
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Fro. 4. Argand diagram for tripole with parameters listed in
Fig. 3. The arrow denotes increasing energy. The curve begins
at e= —5, and each cross bar signifies an increase of one unit of
~. Again, the solid line is the Argand diagram for Ag2, the short-
dashed line is A i2, and the long-dashed curve is A l3 ~

amples. Equation (26), with X defined by Eq. (27)
and X defined by Eq. (30), has been used to compute

t
Ae(E) t

' and the phase shifts for some typical values
of the six parameters its, its, ass, p, 8, and f." We
emphasize that these examples are formation experi-
ments, and the structures from production experiments
can be even more varied, since the reality properties
and normalization of the production amplitudes are
not restricted by Eq. (9). The cross sections and the
Argand diagrams are shown in the 6gures.

Figure 1 is exemplary of the rapid change of the shape
structure as a function of y;;. When all three y's are 1,
the cross section has the triple-peak. structure of the
maximally mixed case. But as 7;; is decreased, the
triple peaking rapidly gives way to single and double
peaking. Thus, it is not necessary that a tripole imply
a triple peak. In the example of Fig. 1, y~2 ——1, y~3 ——0.9,
y~q ——0.9, and already, some of the cross sections are
single-peaked. The phase shift corresponding to AII is
shown in Fig. 6.

Figure 2 shows how the widths of peaks can change
from cross section to cross section. tAttt' is sharply
peaked, with a full width at half-maximum of about
—,'r. Experimentally,

t
2»

t

' might appear as a broadened
distorted single peak. The width of the larger peak in

tA t'is about l.sr.
As the mixing parameters are further reduced, the

"We wish to thank J.Vitale for the use of his plotting program.
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Pro. 6. Argand diagrams. The solid curve is Aii for yi2=0.85,
yi3=0.65, y~~=0.25 and p=g=&=0; the dash-dot curve is Ai~ for
y&2=1, yi3=0.9, yg3=0.9, qb= —0.16'., 8=0.207I, and /=0. 4kr.
The arrows denote increase of energy, beginning at e= —5, and
the distance between bars in one unit of e.

shapes become even more peculiar, such as those seen
in Fig. 3. The sudden, rapid variations in energy are ac-
companied with sudden rates of change of the phase
shift, as can be seen in Fig. 4, where the corresponding
phase shifts to the cross sections of Fig. 3 are drawn.

In Fig. 5, we see a tripole cross section which is
similar to the missing-mass data on the E region. 4 The
phase shift for ~Art~ is shown in Fig. 6. Although it is
amusing that the tripole formula can fit the R region,
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APPENDIX

In this appendix, we show how the background may
be added. to the multiple-resonance amplitude, Eq. (1),
in a manner which satisfies unitarity. The general
partial-wave 5 matrix is the matrix in channel space,

5=Sg+2ip'"Ap'", (A1)

~l rr
rr

0 -4 -3 -2 -l
I

'2' o~%&Waa+w ~w w~
0 I 2 5 4

8e~'xg8r
7 (A2)

where p is the (diagonal) phase-space matrix, S/2 does
not contain the multiple resonance, A. has the reso-
nance, and 55~=I. 5~ also satisfms 5~5~t=I, and is
related to a set of "background eigenphase shifts" by

FrG. 7. Absolute square of amplitudes for p» ——0, p» ——0.5,
1»=0.71, y=e=$=0. The dash-dot curve is ~A~& ~2, the short-
dashed curve is ~A22~2, the solid curve is (A22 ', and the dotted
curve is IA22[2. The widths of the single peak and the double
peaks taken together are comparable, and a feature similar to
the A~ data of CERN and LRL (Refs. 1 and 3).

one should not take this particular result too seriously,
because the missing-mass experiment adds together
contributions from both G parities. On the other hand,
the examples already shown indicate that, the tripole
could be used to 6t the 8 region after a reliable separa-
tion of the negative and positive G parities have been
completed, and the back.ground from other angular
momenta estimated. According to the conjecture in
Ref. 5, the R is a spin-3, positive-G-parity tripole.

Our final example of a tripole, in Fig. 7, shows a
double peak in one channel and a single broad peak. in
another channel. We do not wish to suggest that the
A2 is a tripole. Nevertheless, the width of the single peak
seen in the LRL data appears too broad to be easily fit
with the dipole formula of Sec. III. In Fig. 7 we 6nd a
single peak that is as broad as the double-peaked
structure, which is much nearer to the comparison of
the peak structure seen by LRL and CERN."
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where 8 is the orthogonal matrix which rotates the
diagonal matrix ezfxe to channel space. (In general, B
is energy dependent, and has kinematic singularities
to cancel the kinematic singularities which ma, y appear
111 X//. )

Equation (A1) can then be expressed as

S=Be'"sB (1+2zpz 2A//i/2)Be'xsBT (A3)

The most important feature of Eq. (A3) is that SSt=I
and the orthogonality of 8 implies that

ImA =ApAt. (A4)

Of course, we take A to be the unitary multiple-
resonance amplitude derived in the text. The full

unitary amplitude, including the background, is
de6ned by

5=I+2zp Anp /

with 55~ =I.
Inserting Eq. (A3) for S in Eq. (AS), we find

(AS)

Agg=p ' '8e'x~ sinx/8 p
' '

+p 2B1/e&zBxpi T2 /pAl 2 /Bz ex sTB/ii/ 2 (A6)

Thus, A~ depends on the multiple-resonance amplitude

A, A' background eigenphase shifts X/2, and 21V(A/ —1)
rotation parameters, 8. This is correct, since the
"background" amplitude does not factor, and should

depend on —,A'($+1) parameters or, in general,

2Ã(%+1) energy-dependent functions.


