
2094 I. KI M EL

ACKNOWLEDGMENTS

The author wishes to express his deep appreciation to
Professor J. J. Sakurai for many helpful suggestions and
continued guidance. Conversations with Professor Y.
Nambu are also gratefully acknowledged.

APPENDIX: NOTATION FOR VECTOR-
MESON DOMINANCE

Operator relations like j„=AS+„used in the text are
rigorously valid in the sense

&Ol j „(x)lv.m. )=(RS) s&0I C&„(x) lv. m.),
where

I
v.m. ) is a vector-meson state. For the elements

of Rs=gD 'TM'
I Eq. (3.1)j, we employ the notation

&oI j'.(0) I "&=,'f;".,
&oI j' (o)1(v'2)(Jf"'+If*')&= 'f
(0I j'„(0) I

q)=-,'v3&0I j „(0)I
p&= ,'%3m-„'f 'co-sg,

(oI j'.(o) I ~& = 2v3&0I j'.(o)
I
~&

-', v3—m 'fr ' sin8r &„,

&ol jo„(0)I &&=v &0IP„(O) I
&&=v'3m 'f ' sine

&0 I jo„(0)
I
~& = (v'-,') &0 I

j~„(o) I &

= (g2) m 'fp ' coses e„,
where e„ is the polarization vector of the corresponding
vector meson; j~„and j~„are the hypercharge and
baryon-number currents.

PHYSICAI REVIEW D VOLUME 3, NUMBER 9 1 MAY 1971

Consistency of Hard-Pion Theorems in K» Decays*

RQBERT OLsHANsKY AND KYUNGsIK KANG

Physics Department, Brown University, Providence, Rhode Island OZP1Z

(Received 30 November 1970)

The E~3 scalar form factor is studied by the hard-pion method in the framework of a (3,3*)+(3*,3)-
symmetry-breaking model using a modified pole-dominance approximation. A set of consistency relations
is found which provides a test of the reliability of the quadratic-smoothness assumption as well as of the
symmetry-breaking model. In particular, we find that the solution for the symmetry-breaking parameters
which fit the data is inconsistent with the quadratic-smoothness assumption. In addition, the status of other
theoretical models is briefly reviewed.

I. INTRODUCTION

~ 'HE semileptonic decays of the E meson have been
the subject of much attention' both because of

their accessibility to experiment and because they
provide a simple process for testing the ideas of current
algebra, pole dominance, and symmetry breaking.
Owing to some experimental uncertainties concerning
the determination of the parameter $(0) as well as un-
certainty about the existence of the ~ meson, '' an
adequate theoretical understanding of these decays has
not yet been achieved.

In a recent survey of the experimental situation,
Gaillard and Chounet' have found that a world average
on E+ decays gives $(0) = —0.85&0.20. Should this
value for ((0) survive additional measurements, a

* Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-233).' See, e.g., M. K. Gaillard and L. M. Chounet, CERN Report
No. 70-14 (unpublished); M. K. Gaillard and L. M. Chounet,
Phys. Letters 328, 505 (1970).' D. J. Crennel, U. Karshon, K. W. .Lai, J. S. O'Neall, and J. M.
Scarr, Phys. Rev. Letters 22, 483 (1969).

'T. G. Trippe, C. Y. Chien, E. Malamud, J. Mellema, P. E.
Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys.
Letters 288, 203 (1968).

discrepancy will exist between it and the predictions of
the conventional theoretical models. 4

In Sec. II, the results of these models are brieQy
reviewed. It is argued that within a dispersion-theory
approach the experimental result for g(0) implies that
the idea of a dominance must be modified. The predic-
tions of current-algebra calculations are dependent on
the pole-dominance assumptions for current divergences
as well as the type of SU(3))&SU(3)-symmetry-breaking
interactions that are assumed. ' Again the most straight-
forward approach based on pole-dominance approxima-
tions gives results in contradiction with the experimental
value of $(0).

Accordingly in Sec. III, we carry out a study of the
hard-pion method' which provides a means for including

4 For conventional theoretical models, we refer to those papers
quoted in Ref. 1 as well as C. G. Callan, in Proceedings of Topical
Conference on Weak Interactions, edited by J. S. Bell (CERN,
Geneva, 1969).' S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968); M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).

6 For earlier references, we refer to S. Weinberg, in Proceedings
of the Iiolrteenth International Conference on High-Energy Physics,
Vienna, 1968, edited by J. Prentki and J. Steinberger (CERN,
Geneva, 1968).



CONSISTENCY OF HARD —PION THEOREMS I X E i3 DECA YS 2095

corrections to the pole dominance for the current
divergences. In doing so, a new consistency condition
is found which must be satisfied in order for the previous
hard-pion results to follow.

Finally, the results are discussed in Sec. IV. In
particular, it is found that if the (3,3*)+(3*,3)-sym-
metry-breaking model is forced to fit the experiments,
then the consistency condition is badly violated.

II. SCALAR FORM FACTOR FROM DISPERSIVE
AND CURRENT-ALGEBRAIC APPROACHES

The hadronic matrix element for the decay
E+-+rr'+I+et is conventionally written in terms of
two invariant form factors f+(q') defined by'

rather typical calculations are sketched in order to point
out the salient characteristics of each method. It should
also be noted that since attention is focused on the scalar
form factor d(q'), rather than the usual form factors
f+(q'), our discussion is independent of the dynamical
assumptions used in computing f+(q') such as E*
dominance of the p-wave s Esta-te'.

A. Dispersive Approaches

Because of the simple unitarity relation for d(q') in
the elastic mE scattering region, one expects an approxi-
mate solution of the form

d(q') = (m' —t ')f+(0)
&~o(h)

I
v„-(o)

I ~+(p) &

= l L(p+h).f (q')+(p h).f (q—')j -(1)
(q' " 60(q")

(1r i(~+pin q (q —
q )

where q=p —h and V„x =(V„' iv„'—)/v2 If f~.(q') a«
parametrized in the decay region by where bo(q') is the s-wave I=-,' Xn. phase shift. To

estimate (7), one must make further dynamical assump-
tions, such as that s-wave E~ scattering is dominated
by a If: meson or that it is given by scattering length or
effective-range approximations.

(2)f~(q') =f+(o)(1+q'4+" ),
then the quantities presently accessible to measurement
are X+, $(0) =f (0)/f+(0), and f+(0) tan&, where 0 is
the Cabibbo angle.

However, as emphasized by Gaillard and Chounet, '
these two form factors are not dynamically independent
and, as a consequence, the experimental values for $(0)
and X+ are highly correlated. f+(q') governs the decay
into a p-wave pion while the matrix element of the
divergence of the current,

&~'(h)
I a.V.x (O)

I
Z+(P) &

= —lid(q'),

1. Pole Dom&sgece

If one assumes that s-wave Em scattering is domi-
nated by a ~ meson with mass m„, then (7) can be
approximated by'

d(q') = (m' —p')f (0)m '/(m '—q')
(3)

which gives
governs the s-wave decay. f~(q') and d(q') are the
dynamically independent form factors. If the scalar
form factor d(q') is parametrized by

d(q') = (m' —ti') f+(0)(1+q'Xo+ ), (4)

then the parameter ) 0 is preferable to $(0) from both
theoretical and experimental standpoints. The relation
between these two parameters is easily found to be

5(o) =(m' —t ')9 o
—l+), (5)

(m' —t ')Xo——(m' —p, ')/m„'. (9)

If one uses m.=18eV, then (9) gives (m' —ti')X,=+0.23.
While there seems to be no experimental evidence at
the moment for a low-mass f~., the existence of such a
meson would cause even greater difFiculties. On the
one hand, one would expect the pole-dominance
approximation to be more reliable if the ~ had a low
mass; on the other hand, there would be even larger
discrepancy between the predicted value and the
experimental value of the slope (6b).where m and p, are the E- and m-meson masses,

respectively.
The experimental situation for E+ decays according

to the survey by Gaillard and Chounet is that
Z. Scattering Lertgth A pprogi matio-N

(m' —ti')X~ =0.53&0.21
If the ~ does not exist, then s-wave Ex scattering may

(6a) be represented by a scattering-length approximation. '
One can estimate (7) by using the expression

(m' —ti')Xp ———0.30&0.25. (6b)

Now we show that the predictions for the slope
(m —ti )Xp of the scalar form factor based either on
dispersion-theory or current-algebra methods are not
consistent with the experimental value (6b). No attempt
is made to review all the relevant calculations, 4 but

& J+(0)=1 in the SU(3) limit.

bo(q') =aotih(q')/2q,

g P. Dennery and H. Primako6, Phys. Rev. 131, 1334 (1963);
K. Kang, Phys. Rev. Letters 21, 857 (1968); H. T. Nieh, Phys.
Rev. 164, 1780 (1968);J. E. Mackey, J. M. McKisic, D. M. Scott,
and W. W. Wada, ibid. 172, 1590 (1968); 183, 1520 (1969) (E);
J. C. Pati and K. J. Sebastian, ibid. 174, 2033 (1968).

fi N. Cabibbo and R. Gatto, Nuovo Cimento 13, 1086 (1959);
S. W. MacDowell, Phys. Rev. 116, 1047 (1959); N. H. Fuchs,
ibid. 172, 1532 (1968).
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where

P(qp) (Lq2 (imp+~) 2][qp (~ p) 2]/4~2 j I/2

and ap is the I=—,'s-wave Em scattering length. Then
it follows that

Qpg
(m' —p') Xp ——(nz' —P')—

(m+ p)

l'p(q')
dq'——, (10)

q5

which gives (m' —p')Xp=0. 5apy. If one uses the current-
algebra prediction ap—0.2p ', then the result is
(m' —y')Xp—0.1.'P The integrand on the right-hand side
of (10) is positive definite, so that any positive scattering
length corresponding to attractive s-wave Em scattering
cannot explain the experimental value (6b). Modifica-
tions to this approach such as the use of the Chew-
Mandelstam effective-range approximation do not
significantly alter the results.

From the viewpoint of dispersion theory, a negative
Xp means that high-mass states must dominate over the
low-energy m-E effects which are accounted for in these
calculations. In order to obtain a negative Xp, one must
therefore develop a dynamical scheme which takes into
account high-mass intermediate states or make addi-
tional assumptions. "

where f» and f are the E and pr-meson -decay con-
stants. "If one uses the phenomenological result'

which is based on the Cabibbo theory and the measured
amplitudes for E,&, x.3, E», and x» decays, one gets
d(m') —1.28f+(0) or

(m' —p')&p=0 28. (13)

The corrections to (11) can be estimated by using the
Fubini-Furlan technique, " according to which the
corrections are small as long as the pion pole dominates
a certain dispersion integral. Because of the success of
pion-pole dominance in the Goldberger-Treiman rela-

10 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
» See, e.g., K. Kang, Phys. Rev. Letters 25, 414 (1970).
'2 C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153

(1966); M. Suzuki, ibid. 16, 312 (1966); V. S. Mathur, S. Okubo,
and L. K. Pandit, ibid. 16, 371 (1966).

"In our notation, f =0.69@.
"N. Cabibbo, in Proceedings of the Thirteenth Annual Interna-

tional Conference on High-Energy Physics, Berkeley, CaHJ. , ZP66
(California U. P., Berkeley, Calif. , 1967);N. Brene, M. Roos, and
A. Sirlin, Nucl. Phys. 86, 225 (1968)."S.Fubini and G. I"urlan, Ann. Phys. (N. Y.}48, 332 (1968}.

B. Soft-Meson Approaches

The most direct current-algebra prediction comes
from the Callan-Treiman relation. '" If the soft-pion
theorem derived from the matrix element (1) is assumed
to be approximately valid for the physical pion process,
this relation gives

tion, " the Adler-Weisber ger relation, ' and the
scattering-length calculation of Weinberg, " one might
also expect the approximate validity of (11) and there-
fore (13).Furthermore, reasonable estimates show that
the corrections to the Fubini-Furlan dispersion integral
coming from nearby singularities are indeed small in
comparison to the pion pole term. "Therefore, in order
to understand a negative Xp, one must postulate signifi-
cant effects coming from high-mass states, presumably
with the quantum numbers of the f(: meson.

In addition to the approaches mentioned above, there
have been further attempts" to calculate Egs form
factors by making use of the Veneziano model (usually
in its simplest form) when supplemented by the Adler
condition. Without reproducing the details of this type
of calculation, we state that again one does not get a
negative ) p as long as smooth extrapolation away from
the physical masses is assumed.

From this review of theoretical models it is clear that
one must proceed beyond the pole-dominance approxi-
mations if one is to understand the measured slope of
the scalar form factor. The hard-pion method provides
the framework which seems best -suited for such a
calculation.

s SP &N1' S =1 zjgmg X

Xp pZ j X —Z sjpVQ X p

LQ,'(xp), N, (x)]= id, ipv p(pp),

LQ"(&p)» (~)j=+&de»i(~)

(15)

where Q; and QP (i=1,. . . ,8) are the generators of
SU(3) XSU(3).

16 M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958).

~~ S. L. Adler, Phys. Rev. 143, 1144 (1966); W. I. Weisberger,
ibid. 143, 1302 (1966).' M. Ademollo, G. Denardo, and G. Furlan, Nuovo Cimento
57A, 1 (1968).

'9 See, e.g., J. A. Cronin and K. Kang, Phys. Rev. Letters 23,
1004 (1969).

20 I. S. Gerstein, J. H. Schnitzer, and S. Weinberg, Phys. Rev.
1'75, 1873 (1968); I. S. Gerstein and H. J. Schnitzer, ibid. 175,
1876 (1968); N. G. Deshpande, Phys. Rev. D 2, 569 (1970);
R. Arnowitt, M. H. Friedman, and P. Nath, Nucl. Phys. 810,
578 (1969).

III. HARD-PION METHOD

In order to apply the hard-pion method" to E&3

decay, it is convenient to work within the framework of
a specific model of symmetry breaking. The most simple
conjecture is that the symmetry-breaking Hamiltonian
is given by

H = ppSp+ppmp,

where ep and us are members of a nonet of scalar
operators e, (i=0, . . . ,8) which together with a nonet
of pseudoscalar operators r; (i=0, . . . ,8) transform
according to the representation (3,3*)+(3*,3) of
SU(3)XSU(3). The transformation properties of the
u, and v; are expressed by the relations
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p' —q2 m2 —q2
G(q', q', 0) =-

2f.f»f„p' m'

The commutation relations (15) do not determine a
scale for the densities u; and v;. Hence the only quantity
of physical significance is the ratio e8/ep of the parame-
ters appearing in the Hamiltonian (14). Another
quantity of importance in determining the physical
content of the model is the ratio (o8/ceo made of the
vacuum expectation values

~»(q') —— ~.(q'), (20c)

~,=(0I~;Io) (i=o, g).
where 6 (q'), A»(q'), and A„(q') refer to the two-point

(16) functions

It has been shown by Gell-Mann, Oakes, and Renner'
that if one assumes pole dominance for axial-vector-
current divergences as well as approximate SU(3) sym-
metry for certain vertices, then es/eo: K2—and
ore/(oo —0. In what follows we modify the pole-dominance
assumption. No assumptions of the approximate SU(3)
symmetry for vertex functions are made. Consequently,
these parameters e8/eo slid (o8/coo are free in the present
discussion, so that we are able to study the dependence
of the E~3 scalar form factor on them.

From (14) and (15) together with the Heisenberg
equation of motion, one arrives at the following expres-
sions for the divergences of certain currents:

h(q') = i —d'x e*&*

X(0I T(B„A„'(x)B„A„"'(0))
I 0), (21a)

A»(q') = i —d4x e'&

X(0 I T(B„A„+(x)B„A„(0))
I 0), (21b)

A„(q') = i —d4x e"'

B„A„'(0)= —e e,(0)

B A '(0) = —(e» —e„)v,(0)
B„V„»+(0)=ie.u»+(0),

x (0
I
&(B„v„'(x)B„v„.(0)) I 0) . (21c)(i=1, 2, 3),

(i 4 5 6 7) (17) One can also derive the following theorerns for the
two-point functions:

where
e» = (4260+e8)/V3 &

6„=2v3 ee.

p' —k' m' —p' m„' —q'

p'f m'f» m. 'f.
d'xd'y e'~"e'&&

x(0I &(B.A.'(x) B v 4)B~Ai»'(0))
I o), (»)

where f„ is the decay constant for the z meson.
From the commutation relations (15) and the specific

model of the symmetry-breaking Hamiltonian (14),
one can derive the following identities for G(k', p', q'):

i m2 —q2 m„2—q2

G(o,q' q') = ——
2f.f»f„.m'

~»(q') —— ~.(q'), (20a)

—Z p& —g25Z 2 —
g

G(q', o,q') =
2f.f»f„p,' m„'

x —~.(q') ——~„(q ), (2ob)

To begin the study of the E» scalar form factor, let
us define a three-point function G(k',p', q') with m, E,

'

and ~ meson poles removed by

G(k2 p2 q2)

(22a)

(22b)

(22c)

where a& = (42&uo+&v8)/VS and co„=—,'V3coe.

If the three-point function G(k', p', q') is expanded in
a power series in the momenta,

G(k', p', q') =g+k'ki+p'k2+q'h3+ ~ ~, (23)

then from (20) the coefficients g, ki, k2, and ki can be
determined provided some assumptions are made about
the form of the two-point functions in the region of
small momentum transfer.

From the relation

m„' —q
G(p', m q') = — (~'(k)

I
B„V„» (0) I E+(p)) (24)

mg g

it follows that if in the range Ik'I(p', Ip'I &m',
I
q'

I
&m' the higher-order terms in the power series (23)

are negligible, then

m. 2

d(q') = —2i (g+p'hi+m'k2+q'k~) . (25)
m„' —q'

The basic assumption of our hard-pion approach is that
the quartic and higher terms in (23) are indeed negli-
gible. Hereafter, this is referred to as the quadratic-
smoothness assumption. An equivalent assumption iq
made in the previous hard-pion calculations. "
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andFor the reasons outlined in Sec. II, the usual assump-
tion of pole dominance in the unsubtracted propagators
(21) should be modi6ed. Hence we assume instead pole
dominance of the once-subtracted form of these two-

point functions and write

m —p,
(m' —Iti') Xo =—

fxo f 2+f 2+(2mo/m 2)f 2[» /(» )]+ (31)
fx +fr fs

(26a)~-(C') = (»-~- —l-C'f-') i'/( i' —9'),

~z(q') = [(»- ")—(~- ~.)—&x—q'fx']
Xm'/(m —

~ ) (26b) Equation (30) was first derived by Glashow and
%einberg and (31) was derived by Gerstein and
Schnitzer under the less general assumption that the
unsubtracted propagators are dominated by single-
particle poles. The consistency relations are of course
satisfied in these derivations because X =X~=X.=O.
Relations (30) and (31), however, are more generally
valid provided the corrections to the pole terms satisfy
the conditions (29). In Sec. IV, we see that (29) provides
an important check on the reliability of the quadratic-
smoothness assumption within the context of the
symmetry-breaking model we have assumed.

(26c)5„(g ) = (»gag Xgg fg )B4 /(ma g ) ~

By construction these forms satisfy the identities (22).
The limit P„=P~ ——P„=O corresponds to the usual pole-
dominance case. The requirement that the poles have
the correct residues leads to the equations

» oo =ii'f '(1+X.), (27a)

(».—»„)(»o —»o.) =m'f »(1+X x)) (27b)

(27c)».»o. =m.of„o(1+X„).

The positivity of the absorptive part of the propagators
requires that X, Xz, and 'A„be non-negative.

By substituting (26) into (20), one finds

IV. DISCUSSION

With the input fx/f f+(0) =1.28, the Glashow-
Weinberg relation gives

(f /fx)' (f./f )'=—0.56. (32)(28a)g = — (»„»o —»,oo,),
2fmf»fa Inserting this into (30) gives for the slope of the scalar

form factor2'»
hi ——— — f»' f.' f.'+ —f-—'—

4f-f»f.
m —p m 6z

+1.28
m. 2 m

(m' —p') Xo =0.28+ (33)

2&.f.'
+ —(»,»o„—»„»o ), (28b) One can show from (27) and (29) that

(» /»„) 'm„'f„'+(»./». )
&((m'fx' Ii, 'f '—m '—f ')+Ii'f '=0 (34)—z 207@

ho = — fz' f.'+f'+ — f»'——
4f~fzfg- »ow»oc which is independent of the X;. Inserting m„—1.1 BeV

and using (32) to eliminate (f./fz)' from (34) yields a
relation between» /»„and (f /fz)'. The requirement
that » /»„be real restricts the allowed values of (f,/f»)'
to lie in the intervals

2~»fz (»~»og —»g»o~)

(28c)
6~—6z CO~ GO»

—z 2COw

ho ——— f.' fx'+f' —f'—
4f.fxf. GO»

0.56& (f /fx)'&0. 7 or 0.9& (f /f»)'. (35)

Using m„—1.1 BeV again, from (33) and the experi-
mental value of the slope (6b) one finds2X„f o

+ (» co„„)»»o. (28d)—
(36)» /»„=+0.68&0.13,

Imposing the assumption that the quartic terms in the
power-series expansion (23) vanish on the right-hand
side of (20) leads to new consistency relations

X ii'f ' Xxm'fx' X„m„of,'
(29)

2(».—»„)'2

In addition, from (25), (28), and (29) come the results

f+(o) = (f»'+f-' f')/2f-f» (—3o)

which corresponds to (f /f»)'=1. 2&0.2. For the
solution (36), however, the consistency relations (29)
give rather unsatisfactory predictions for A,z and )„.
One gets )~—X,—O. lh, indicating that E and f~: domi-
nance are much better satisfied than m dominance.
Clearly this is an implausible result and one must
interpret it as a failure of the quadratic-smoothness
assumption.

Another unpleasant feature of this solution is that
f+(0)—0.7+0.1, which is somewhat diferent from what
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one would expect on the basis of the Ademollo-Gatto
theorem. "

On the other hand, the Gell M ann, Oakes, and
Renner type of solution with e /e„——y, '/m' corresponds
to values of (f /fir)' in the first interval of (35) and one
gets (m' —ii')X0=0.27. The slope is the same as that
predicted by the simple treatments discussed in Sec. II,
but again not in good agreement with the data. The
value of f+(0) is close to unity while one has Xic=10li
and X~—403 . If one sets an upper limit X —0.1 on the
basis of the Goldberger-Treiman relation, then these
may not be unreasonable order-of-magnitude estimates
of the extent to which the hypothesis of K and K domi-
nance are violated in the propagators. Hence the
quadratic-smoothness assumption could be reliable
if c /e„——p'/m'.

Since neither of these two types of solutions is
acceptable, one must consider other possibilities. If one
is partial to the Hamiltonian (14) with no additional
terms, the results of this work show that the quadratic-
smoothness approximation is not adequate and higher
terms must be kept in the power-series expansion of
G(k', p', 'ii). The alternative to this is to consider the
inclusion of other terms in the symmetry-breaking
Hamil tonian, which would then introduce more
parameters to the problem.
"M. Ademollo and R. Gatto, Phys. Ilcv. Letters 13, 264 (1965).

Finally, we note that none of our conclusions is

significantly changed if the K mass is varied as much as
100 MeV. While there are no indications for a low

K mass, the existence of such a particle would cause a
larger discrepancy between (31) and (6b) as was also

found in Sec. II. If the K meson does not exist, this
situation can be described by taking the limits m„'~~
and f„~0 in our results. One then recovers the
Dashen-Weinstein theorem" from (31).

emote

added in manuscript Aft. er submission of this

paper for publication, we received an experimental

report by C.-Y. Chien el al." in which a new value of

X+
——0.08+0.01 is suggested. If this is indeed the case,

then the use of Eqs. (11) and (12) can easily obtain

$ = —0.74&0.13 so that, from Kq. (5), (m' —p')Xo

=0.2&0.2. Furthermore, all of the consistency condi-

tions are then satisfied with the Gell-Mann, Oakes, and

Renner type of solutions with e /clc= —p'/m'.
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The constraints of unitarity on an amplitude containing J degenerate resonances are solved, and several
parametrizations of the solution are given. In one solution, the unitary amplitude is obtained from the
narrow-width limit. Forms suitable for other theoretical applications and for phenomenology are included.
The wide variety of possible cross sections and Argand diagrams for the general case are discussed, and
examples of the tripole are shown. The well-known results for the dipole are rederived without eRort.

I. INTRODUCTION

HE possibility of mult. iple resonances in the meson
spectrum has recently received both experimental

and theoretical support. The doubling of the A2 peak
in the KX4 channel as seen by the CERN boson spec-
trometer group, ' and recent spin-parity analyses, '
strongly support the hypothesis that, both peaks of the
3& have a spin and parity of 2+. One of the simplest,
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models that accounts for the phenomena of the A2
consists of two interfering resonances with the same
quantum numbers, which may or may not be de-
generate. Although the A~ has been studied experi-
mentally in some detail, ' ' not all aspects of its phe-
nomenology are resolved.

The R region, with its larger mass and background,
is not nearly so well explored. 4 Even so, multiple-
resonance behavior is consistent with the data, and
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