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Various forms of the gauge-field model with broken symmetry are studied. It is shown that only symmetry
breakings which originate in the kinetic terms lead to models consistent with the algebra of currents, and this
requires, in particular, the w- ¢ mixing to be of current type. Breaking in the mass terms lead to modifications
of the algebra, the consequences of which are analyzed. A nonet symmetry model yielding inverse-mass-
squared relations is presented, and Sugawara’s theory of currents, in relation to the vector mesons, is also
studied. The models treated in the paper are compared with experiment.

I. INTRODUCTION

N the algebra of currents the underlying group
structure is used otherwise than in the eightfold
way.! According to the eightfold way, the multiplets of
particles correspond to low-dimensional representations
of the SU(3) group and assumptions about the sym-
metry breaking directly led to relations among particles.
In the current-algebra formalism? the physical states
are connected to the group in a less direct way. The set
of electromagnetic and weak currents is enlarged to
complete a representation of the group, while the spin-0
and -1 particles enter the picture through the diver-
gence-field identities or the current-field identities. In
the first, divergences of axial-vector currents are sub-
stituted by pseudoscalar meson fields (PCAC),? and in
the second, the divergenceless parts of the currents are
assumed to be proportional to interpolating fields of
spin-1 mesons (vector-meson dominance).*=¢
Accepting vector-meson dominance as a working
hypothesis, one can then try to translate the symmetry
characteristics of the hadronic currents into properties
of the vector mesons. As it turns out, the algebra of
currents is not enough for that purpose, and one needs
extra information which could (one might hope) be
found in the broader frameworks of models which have
been proposed for the currents.
The first model for the current algebra was, of course,
the quark model? which, unfortunately, does not seem
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to be in complete harmony with the idea of vector-
meson dominance. Schwinger terms, for instance, come
out to be divergent in the quark model, whereas vector-
meson dominance relates them to finite ratios of masses
and coupling constants of physical particles.

In the present work we do not discuss further the
quark model and restrict ourselves to two other models
which have been proposed for the currents: the gauge-
field algebra” and Sugawara’s theory of currents.®

In the gauge-field algebra the currents are treated
from the very beginning as canonical vector-meson
fields. The algebra obeyed by the currents is, in fact,
deduced from the canonical commutation relations for
these fields. It is then not surprising that current-field
identities (or vector-meson dominance) come out as a
very natural feature of the model.

A completely different approach motivated Suga-
wara’s theory of currents. Here the aim was to combine
current algebra with dynamical information in the
simplest possible way compatible with self-consistency.
Specifically, an energy-momentum tensor is constructed
solely from bilinear products of currents. But, as it was
later shown,® despite the differences Sugawara’s theory
can be related through a singular limiting process to
gauge-field models. One can then study the conse-
quences of this limit on the current-vector-meson
relationships.10:1!

In the type of models we are considering, symmetry
breakings will have their effects not only on the vector
mesons but also on the algebra for the currents. As we
will show, some types of symmetry breaking and mix-
ings, which would otherwise be permissible, have to be
excluded if one wants to maintain Gell-Mann’s current
algebra. In particular, symmetry breakings introduced
through mass terms in a Lagrangian are ruled out.

Once the SU(3) symmetry is broken, the isosinglet
current of the octet in general undergoes mixing with a
SU(3) singlet corresponding to the baryon-number

7T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

8 H. Sugawara, Phys. Rev. 170, 1659 (1968). See also C. M.
Sommerfield, 7bid. 176, 2019 (1968).

9 K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 (1968).

10 H. Sugawara, Phys. Rev. Letters 21, 772 (1968).

171, Kimel, Phys. Rev. 181, 2152 (1969).

2084



3 GAUGE FIELDS, THEORY OF
current. As a result, the physical w and ¢ particles are
neither pure octet nor singlet but a mixture, which
accounts for the failure of a naive application of Gell-
Mann-Okubo mass formula for the vector mesons. The
oldest and simplest way of treating the mixing is based
on a nondiagonal mass term in the Lagrangian.'? Along
this line we consider two models, the mass-mixing as
described by Kroll, Lee, and Zumino® and another
scheme which leads to a quasi-orthogonal mixing of the
vector mesons relative to the currents.

The mixings described in the last paragraph are
shown to be in conflict with the algebra of currents.!3:14
The only type allowed is the current mixing which
originates from nondiagonal kinetic terms in  the
Lagrangian. It is interesting that one of the few things
one can say with certainty about Sugawara’s theory is
that precisely this mixing is excluded.

The paper is divided as follows: In Sec. IT the gauge-
field framework is presented and general expressions for
current commutators and spectral function sum rules
are given. The different types of mixing are treated in
Sec. III and in the next section these are combined with
octet breaking to produce the simplest possibilities of
gauge-field models with broken symmetry. Sugawara’s
theory of currents is studied in Sec. V in relation to
vector mesons. Consistency between symmetry break-
ing in gauge-field models and current algebra is treated
in Sec. VI and in Sec. VII we explore the possibility of
having a higher nonet symmetry for the vector mesons.
Section VIII contains final remarks as well as com-
parison with experiments.

II. GAUGE-FIELD MODEL

The gauge-field model is based on a Yang-Mills
Lagrangian. The motivation for the original work by
Yang and Mills'® was to generalize to more complicated
groups the well-known procedure of introducing the
electromagnetic field in order to preserve local gauge
invariance in the Lagrangian. The prescription is to
start from a Lagrangian'® £,,(y,04) for the fields ¢
which transform according to representations of a com-
pact semisimple Lie group with generators Q., and make
everywhere in £;, the replacement

("),Ab - DM‘le 6M¢+iggv“,,[Qa,¢] ) (21)

where the vectors v, are usually called Yang-Mills or
gauge fields. Then, add a Lagrangian for the v’s of the
form

Ly=—3Vewpe,, (2.2)
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with
V= 0,0%— 80y —igovP,[Qp,0%,]. (2.3)

The combination (2.1) is gauge invariant if v, trans-
forms as

V% —> vaF+A3[Qﬂ)7)aM] _gO—laﬂAa ) (24)
where the A’s are the gauge parameters and
[Os,v*u]=1fsar?"s, (2.5)

with the structure constants fus, of the Lie group

defined by
EQu;QB] =7:fﬂ67Q7 . (2.6)

It is easy to see that if £3(,0,4) is invariant under
global gauge transformation (A, constant), then
EuW,Dp)+-£, will be invariant under local gauge
transformations where the A’s are coordinate dependent.

In spite of its elegance, no use was made of the Yang-
Mills theory in particle physics, mainly because in order
to preserve the gauge invariance, the fields v, have to
be massless. Leaving aside this technical problem for a
later solution, Sakurai,* inspired by the Yang-Mills
work, proposed a theory of strong interactions in which
the conserved hadronic currents are universally coupled
to a set of vector mesons. Afterwards, as a solution to
the mass problem, Schwinger!” advanced the idea that
the unrenormalized gauge fields are originally massless
but acquire a finite mass due to the strong interactions
and showed explicitly how this can happen in a field
theory in two dimensions.

Interest in a massive Yang-Mills theory was recently
revived by the work of Lee, Weinberg, and Zumino.”
Their original gauge-field model is based on a symmetric
Lagrangian. We will take symmetry-breaking effects
into account from the beginning, but being mainly
interested in the vector currents (and mesons), for the
sake of simplicity we will not explicitly write the axial
vectors in our Lagrangian. Let this Lagrangian, for an
SU(3) octet plus singlet of vectors, bel8

= —IVIKVe—vr, v, (27)

where we have employed a compact notation with
vectors and matrices in a nine-dimensional space such
that

'vf,‘
Vll: v; ) (2.8)
"
20,
and where the components of V,, are
V= 0,0%— avvau_%gofaﬁ'y[”ﬁmml'lr . (2.9)

From Lagrangian (2.7) one can derive equations of
motion like, for instance,

M02v0=6’°1ck+g0F, (210)
17 J. Schwinger, in Theoretical Physics, edited by A. Salam

(IAEA, Vienna, 1963).
18 We denote transposition either by a superscript 7" or a tilde.
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where =, the canonical momentum corresponding to
Vi, is given by

7o =K Vi, (2.11)
while the components of F are
F“=fa577rﬁk’v°‘k. (212)

The hadronic currents are assumed to be linear com-
binations of these fields according to

ju=Rv,, (2.13)
where the matrix R is constant but not necessarily
diagonal. So, for the charge densities we have
j0=RM0—Zakﬂk+goRMo"2F ,

from which we can immediately calculate the equal-time
commutators
[7%0(), 7%0(y) J=igo(RM ¢™%) ar(RM s™2) s

X fpas(M*R™) 5 jéo(w)8%(x—y)  (2.15)

(2.14)

and

L7%(),7%:() ]
=igo(RM ) ayRorfonsR 15 7 ¢i(2) 8% (x —7)
+i(RM2R) 50:8%(x—7) .
We can now introduce fields ®, corresponding to the

vector-meson particles in terms of the v’s and a matrix
S, 19

(2.16)

v, =S®,. 2.17)
The currents and the vector mesons are then related by
ju=RS®, (2.18)

in such a way that the two-point functions for the ®’s
are diagonal.
From Eq. (2.11) we get the relation

drjo—9ojr=RK=;+F’, (2.19)

where F’ is bilinear in the currents and will not con-
tribute to the two-point functions.?

By commuting Eq. (2.19) with ji:(y) at equal times
and taking the vacuum expectation value, we get

{[dog(x),7%:(3)]) = —i(RK™'R) apdrid*(x—y)
+i(RMo“2E) ,,,Bakai63(x—y) .

This commutator can also be written in a Lehmann-
Kllén representation in terms of spin-1 (o) and spin-0
(@) spectral functions as

0:0k
—i/dﬂ2{9a8(1)(#2)<5ik— —-*)
u?

—pas <o>aia,c} Sx—y). (2.21)

(2.20)

19 We use whenever possible the notation of Ref. 6. The matrices
S, M, K, T, gp, g0, and M? are essentially the same as there but,
in general, extended to the nine-dimensional space.

20 The contribution of F/ to Eq. (2.20), for instance, will be
proportional to the VEV of two currents at the same space-time
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For the vector currents the spin-O spectral functions
pap® are zero for a, B=1, 2, 3, 8, and 0. For «, f=4,
5, 6, and 7 they are of second order in SU(3) breaking
and can be neglected. Thus, by equating terms with and
without derivatives of the 8§ function in Egs. (2.20) and
(2.21), we get the two sum rules?

/ s =(RMR) s (222)

and

/ du*pas=(RK™'R) s (2.23)

From Egs. (2.18) and (2.20) we get for the ®’s

([06B(%), B85(y) D agmso = —1(STK1571) 160%(x —)
Fi(STIM25) 45050:0%(x—y) . (2.24)

A proper normalization of the vector-meson fields
requires
SKS=I (I the identity matrix) (2.25)

and

SM2S=M?, (2.26)

where M is a diagonal matrix whose elements are the
vector-meson masses.

In closing this section we point out that the sum rules
(2.22) and (2.23) when applied to the components of the
electromagnetic current give useful relations among the
widths of the neutral vector mesons decaying into lepton
pairs. From (2.22) one gets

(RM2R) 33
m,L(p— IH)=
(RM0_2R)33
X[moI'(w— 1) +m,[(o— )] (2.27)
and from (2.22)
(RKﬁlR);;s
b AT (p—> IH) = ———
(RK™'R)ss
X[m T (w— ) 4m BT (o — 117)]. (2.28)

III. TYPES OF MIXING

The present section essentially follows the analysis of
Kroll, Lee, and Zumino® except that besides mass and
current mixing we consider a third possibility which we
call orthogonal mixing. Since we do not take into
account here weak or electromagnetic interactions, the
only mixing to be considered is between the hypercharge

point. The usual assumption made in relation to gauge-field
models, that these VEV’s vanish, is also adopted in the present
work. For a discussion of this point see Ref. 7.

2t Spectral function sum rules for the hadronic currents were
first obtained by S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
We refer to Eqgs. (2.22) and (2.23) as Weinberg’s first and second
sum rules whether the right-hand sides are SU(3) symmetric or
not.
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and baryon-number currents. K and M,? will then be
diagonal except for 2)X2 blocks.

The current-field identity relation (2.18) is usually
written in a different way. The matrix product RS has,
of course, dimensions of mass squared and it is con-
venient to factor out the mass matrix M2,

RS=gM?*=gp™'TM?,
where gp is diagonal and T is of the form??

1

(3.1

T= (3.2)

—sinfy
cosfp

cosfy
sinfp

To treat the mixing?® we have to distinguish between
mixing due to M¢? and mixing originating in K.2 In the
first case K is diagonal and Eq. (2.25) is solved with

S-1=K!1/29, (3.3)

where 0O is an orthogonal matrix.

With regard to the current—-vector-meson relations,
the mixing coming from M,? can be further subdivided,
according to the form of R, into mass mixing and orthog-
onal mixing.

a. Mass mixing. R is taken to be

R=g0_1M02 ,

with go proportional to the unit matrix.
From Egs. (2.26), (3.1), (3.3), and (3.4), we get

T=gpgs K20, (3.5)
With (gpgo'K'/%) being diagonal, Eq. (3.5) implies
T=0. (3.6)

That is, T is an orthogonal matrix with 8y=05=46. In
this case the vector-meson mass relations can be sum-
marized in the matrix equation

TM*T-'= K-'2M*K-112,

(3.4)

IZ1/2=g0gD—1 ’

(3.7

In the case we have just described, the v fields are
mixed relative to the j’s. That means that 28, contains
both 78, and j° and the same goes for v,°. We might
consider the alternative of having the following
situation.

b. Orthogonal mixing. The mixing is still due to non-
diagonal elements in M2 but now R is diagonal and in
the 8-0 sector K is proportional to the unit matrix,
K =x?I. Then S is quasi-orthogonal,

—sinf
b
cosf
22 Qur notation is further clarified in the Appendix.
% From here to the end of Sec. IIT we work in the 8-0 subspace
and, consequently, all matrices are 2X 2.
% Symmetry breaking and mixing in the kinetic matrix were

first used by S. Coleman and H. J. Schnitzer, Phys. Rev. 134,
B863 (1964).

cosf
S=K_1(9=K_1( (3.8)

sinf

THEORY OF CURRENTS,

AND VECTOR MESONS 2087

and from Egs. (3.1), (3.2), and (3.8) we get

(mp2/m,?) tanbp=(m.2/m,?) tanfy=tanf, (3.9)

which can also be seen from the fact that with R and K
diagonal, the 8-0 element of the second sum rule (2.23)
is zero.?® One also obtains

m,? cosfy/cosf

). (3.10)
0 m.,? cosf p/cosd

R =Kg1)—l(

That is, with the notation of the Appendix, we have the
following relations between the hypercharge and
baryon-number currents and the w, ¢ vector mesons:

m,?% cosly
Ju¥= ——(cost ¢, —sinf w,)
fr cosf
m,? cosly
= ——8 (3.11)
Jr cosf
and
my2 coslp
JuB= (cosf w,+sinb ¢,)
fBcosb
m,? cosbp
= —w%. (3.12)
[ cosb

This is as far as one can go in the way of connecting the
w and ¢ vector mesons to the currents (actually to w,?
and w,®) by an orthogonal transformation which is the
reason for the name orthogonal mixing.

¢. Current mixing. Here both M? and R, which can be
related as in Eq. (3.4), are diagonal. Combining Egs.
(2.26) and (3.1), we see that both sides of

goRM~2Rgp=TM*T (3.13)
have to be diagonal, which leads to
(my/m,) tanfp = (m,/m,) tanfy =tand. (3.14)

Alternatively, we see from Eq. (2.26) that we can define
an orthogonal matrix

cosf —sind
OEMOSM-1=( > (3.15)
sinf cosf
with which we have
gpRMt=TMo™!. (3.16)

The vanishing of the off-diagonal elements of the right-
hand side of Eq. (3.16) again gives Eq. (3.14), which
justifies the identification of the angles in Eqgs. (3.14)
and (3.15).

2% In connection with an SU(3)-symmetric Weinberg second
sum rule, the angle relation (39) was also considered by M.
Gourdin, in lectures delivered at the International Conference on
Quark Models, Wayne State University, Detroit, 1969 (un-
published). This angle relation, however, only depends on the
vanishing of the 8-0 element of the sum rule and neither of the two
simé)le octet breakings we consider in Sec. IV leads to Gourdin’s
model.
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For current mixing, the mass relations are contained
in

OM—20'=M¢ KM : (317)

which is easily obtained from Egs. (2.25) and (3.15).

IV. SIMPLE GAUGE-FIELD MODELS AND
VECTOR MESONS

As we have seen, symmetry breaking for the set of
nine vector mesons (and currents) involves two pro-
cesses, the breaking of the octet symmetry and singlet
octet mixing. The simplest possibilities for octet break-
ing are breaking in the kinetic matrix?* with K s 84
+Ddgap and breaking in the mass matrix with (M2) s
« 848+ D'dzqs. The combination of these breakings with
the three types of mixing described in Sec. III yield
six models, the first three of which are “pure” in the

/ A pap P = g5 [ bapm®+ba0dpo(n?—m?) ]

and

M2 Sap(1+8a0Ddsss) — e(Sasdpo+ 8200p8)

KIMEL 3

sense that breaking and mixing originate in only one of
the matrices K or M2 The other three are hybrid
combinations with one of the matrices responsible for
the octet breaking and the other for the mixing. These
combinations are:

(1) Octet breaking in K plus current mixing. The mass
matrix is

(M ?) ap = 8apm®~+-08acdgo(n?—m?) 4.1)
while for the kinetic matrix we have
(14+Dds1)
K= 4.2)

(1+Dd338) €K )

€K k2

This results in the following sum rules [from Egs.
(2.22) and (2.23)7:

(4.3)

(no sum over a or 8). (4.4)

/dﬂzpaﬂa) =
g02[1 +5ao(K - 1)][1 +550(K— 1)][1+Dd8aa—' 5a0/\/3— 62(5a8+5a0)]

A model based essentially on these sum rules was
first proposed by Oakes and Sakurai (0S).26 From the
first sum rule (4.3), or more directly from Eq. (2.27),
one can derive the following width relation:

Z=3T(p— e*e) —[(ma/m,)(w— €ete)
+(my/m,)T(¢— ete)]=0. (4.5)
With the angle 6 defined in Eq. (3.14), the masses can
be related as
Y@mg2—m,~2) =m, % cos0+m, 2 sin?0  (4.6)
and the coupling-constant ratios can be obtained from
Myt =mps® [P =(9/4) fy~*/ (4dmps2—m, %), (4.7)

while fz depends on the as yet free parameter «.

(2) Octet breaking in M y* and mass mixing. This is the
second type of mass mixing of Kroll, Lee, and Zumino
except that they did not get the relations among cou-
pling constants or widths. Here the kinetic matrix is
simply

Ka;j=8,,5+6a0630(f<2—1) ) (4.8)
while the mass matrix is of the form
m2(1+D'dsu)
2 — T
Ma m2(1+D’d888) Msgo?| <4'9)

m802 n?

26 R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).

From Eq. (3.6) we see that the coupling constants
are simply related as

Jo=Frx=Q2/V3) fr=3fz, (4.10)
while for the masses we get
s@m g —m,?) =m,? cos?0+m,2sind, (4.11)

where §=0y=05.
The radiative width relation we obtain here is the one
first proposed by Sugawara,

my?

Z=3T(p— ete) —
%(41%1{*2—7%,,2)

Mg My
X[—I‘(w —ete)+ —T(o— e+e“)] =0. (4.12)

My M,

(3) Octet breaking in My plus orthogonal mixing. In
this case we have a mass matrix like Eq. (4.9) while K
has to be proportional to the unit matrix, K =«%/, and
R is as in Eq. (3.10). We get the same mass relation
(4.11) as in model (2) but with the angle 6 defined in
(3.9).

The coupling constants are related by

My? cos?dy

2= =3 fy 2 )
Je ' [3(4mgs®—m,2) ] cos?

(4.13)
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and from Eq. (2.28) we get

—1 4 ”y? *
2=3T(p—ete)~| —————
S(dmgs®—m,?)

Med my®
X[—P(w —ete)+ —T(e— e+e‘):l =0. (4.14)
my3 my

(4) Octet breaking in K and mass mixing. This corre-
sponds to the first case of mass mixing treated by Kroll,
Lee, and Zumino. The kinetic and mass matrices are
here

K op=00p+Ddsap+06a00p0(k*—1) (4.15)
and
m?
2=
M, m e (4.16)
M302 n?
The mass formula is now
[3@mg2—m,2) T '=m,? cos0+m,?sin?, (4.17)

where 6=0y=0p, and the coupling constants can be
obtained from Eq. (4.7). In this model the right-hand
side of the first sum rule (2.22) is the same for a=3=8
as for a=6=3 and so relation (4.5) is also valid here.

(5) Octet breaking in My? and current mixing. The
elements of the mass matrix are

(M ?) op=m*(bap+Ddsag) +8a0dpo(n*—m?)  (4.18)

while the kinetic matrix contains the mixing param-
eter e,
1

(4.19)

1 e’
ek k2

We get here
[3(dmgs2—m,2) T 1=m, 2 cos0+m, % sin20 (4.20)

with @ defined in Eq. (3.14), while the coupling con-
stants satisfy Eq. (4.10). We also have in this model
Sugawara’s width relation (4.12).

(6) Octet breaking in K plus orthogonal mixing. The
kinetic matrix is in this model,

K op=04p1Ddsapt8a0dp0Ddsss

while the mass matrix is given by Eq. (4.16) and R is as
in Eq. (3.10). From Eq. (2.28) we now immediately get

(4.21)

mp?
2=irG— ete) =i+ -1)

mK*2
my2 M3
X[——F((p —ete)+ —T(w— eﬂa‘)] =0. (4.22)
m,’ m,®

The masses are related as in Eq. (4.17) but with the
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angle 6 defined in (3.9). The coupling-constant ratios
can be obtained from

(4.23)

Besides the above simple models we would like to
comment on a different proposal which appeared in the
literature.

(7) Das, Mathur, and Okubo (DMO) model. These
authors have proposed a model? based on a symmetric
Weinberg first sum rule and a second sum rule with
octet breaking

Jotm?= [t mudt = fytm(m g™ —im~?).

mt
/du2paa(1)= ——2(5,,,3+Dd3a3) (e,8=1,...,8). (4.24)
8o

In the framework of gauge-field models, as pointed
out by Kang, this situation arises when the inverse of
the kinetic matrix for the octet is proportional to the
right-hand side of Eq. (4.24). For the complete set of
nine currents the inverse of the kinetic matrix is

1+Ddsu

K-1= (4.25)

14-Ddsss €

€ K2

In this model the widths are related as in Eq. (4.5)
and the masses as in Eq. (4.11) but with the angle 6
satisfying the current-mixing relation (3.14). The cou-
pling-constant ratios can be obtained from

Jo7tmy®= s mgs®

My2Me?

(4.26)

=8 f —2
_ny 2 2__1 2 2
My +m —5(4mK* ——mp)

V. VECTOR MESONS IN SUGAWARA
THEORY OF CURRENTS

In Sec. IV we studied models which can be obtained
by breaking the symmetry in simple ways in the gauge-
field theory. A seemingly different type of theory for the
currents proposed by Sugawara® was shortly afterwards
shown to be obtainable as a singular limit of a gauge-
field model.? It is our purpose in this section to see what
implications Sugawara’s theory of currents would have
on the vector mesons.

Sugawara based his theory on current commutation
relations as given by gauge-field models and on an
energy-momentum tensor constructed solely in terms of
currents (with no derivatives allowed).

For exact SU(3) symmetry, Schwinger’s condition

[@oo(x),aoo(y)]me
= —i{O0i(®)+Ou(y)} 9:6%(x—y) (5.1)

restricts the energy-momentum tensor to be of the

27T, Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).
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form?
Ouw=(1/200{(Lj% 7%+ —gwi*r ) —(G— js)} . (5.2)

There is, besides, a consistency condition: In order for
S BOpu(x)d®x to be a good Poincaré generator, the
following (Sugawara) equations of motion have to hold:

9%y =(1/2C) fapr{ [ 5" ]+ (G — j5)}  (5.3)
and
ayja5v—"av]'a5u

=(1/20) fap A L% 5% 05+ (G2 5}, (5.4)

where C is the coefficient of the Schwinger terms in the
current commutators.

As Bardakci, Frishman, and Halpern® have shown,
the model we just sketched can be obtained by taking
the limit

(5.5)

in a symmetric massive Yang-Mills model. To see how
that comes about and in order to allow for symmetry
breaking, we consider the general relation between the
tensors V¢, [in Eq. (2.9)] and the currents

Raﬁvﬁw = 6Mjal’ - a”jal‘ - %gORaﬂfﬂ%Rw’—lR?\?\’—l
XALT" w i It 2 o))

V. 1s contained quadratically in the energy-momentum
tensor and thus cannot be divergent in the limit (5.5).
On the other hand R is proportional to m?2/gy and
vanishes in that limit. That gives zero for the left-hand
side of Eq. (5.6) which then becomes Sugawara’s equa-
tion of motion (the more careful analysis of Ref. 9
confirms this result)

m—0, go—0, m?/g?—C

(5.6)

3,,]"",, - anaH =%gORaa’fa’vhR~lvv’R~1>\>\'
XA, 3N 4 — j5)} -
To obtain the current commutators in the present
model, one has to substitute, in Egs. (2.15) and (2.16),
g 2R =m~2M,® by its (finite) value in the limit (5.5).
By the same procedure, we get from Eq. (2.22) the
sum rule

(5.7

/ A’y pas® =lim[ g (M) g ] , (5.8)

the right-hand side of which is, of course, also the
coefficient of the Schwinger terms.

Sugawaral® has proposed a model with M,? as given
in Eq. (4.9), where mgo and # go to zero as m in the limit
(5.5), and also assumed a second sum rule of the form

/ dpp 5= const X1im[ ge™4(M %) o] (5.9)

With regard to the vector mesons, such a proposal leads
to the same results as model (2) in Sec. 1V.

28 The j5’s designate the axial-vector currents.

KIMEL 3

But looking at Eq. (2.23) we see that in the limit
(5.5), instead of a sum rule like (5.9), we have a trivial
one (the right-hand side is zero). So, for Sugawara’s
model to have any content, terms which were assumed
to vanish in deriving Eq. (2.23) ought to be allowed to
contribute here. If we put u=0, »=¢ in Eq. (5.7),
commute it with j#;, and take the vacuum expectation
value (VEV), the result is

([do7i(2) —dig%(x), 7Pu(¥)])
= _iaik/dﬂzpaﬁag(x_y)

=802 Rua for mR ™I (M %) yy R 7R eer
X w () 7 i) ) (7 5 (%) 7 5i() ) } 63 (6 —y)
= —igo* (M o*) aar (M 52)an (M%) yy (M) 5 (M 57%) ce
X farmfory {7 6(®) 7 i(2))
+ (s (20) N 5i(@))} 63 (w—) .

So, actually, owing to the ambiguous character of the
VEV of two currents at the same point, the symmetry
properties of Eq. (5.10) are at best an extra assumption
one has to introduce into the model. If (5.10) is assumed
to be like Eq. (5.9) then, as we already said, one gets
relations (4.10)—(4.12). One could instead take a sym-
metric second Weinberg sum rule and reproduce the
results from the orthogonal mixing-model (3) of Sec. IV.

The only restriction seems to be that it is not possible
to have current mixing in Sugawara’s theory. If
(M?)3=0 as is required in order to have the 8-0
element of Eq. (5.8) vanishing (necessary condition for
current mixing), then regardless of whatever else one
assumes of Eq. (5.10), its 8-0 element is also zero, and
one does not have any mixing at all. With regard to
vector mesons, then, the only sure statement one can
make about Sugawara’s theory is that it does not allow
for current mixing.

(5.10)

VI. CONSISTENCY BETWEEN SYMMETRY
BREAKING AND CURRENT ALGEBRA

Of the different types of mixing and symmetry break-
ing in a Lagrangian model, the ones coming from the
mass matrix seem to be the simplest. They were, in fact,
the only types used until Coleman and Schnitzer?
called attention to another kind originating in the
kinetic matrix.

When it became necessary to break the symmetry in
the Weinberg sum rules, again the mass type of breaking
was the first to be invoked by Okubo et al.?” Besides
simplicity, a physical argument can be given for that
choice. As Okubo pointed out,? since the mass terms in

S, Okubo, in Proceedings of the International Theoretical
Physics Conference on Particles and Fields, Rochester, N. Y., 1967,
edited by C. R. Hagen ef al. (Interscience, New York, 1968).
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a Yang-Mills Lagrangian violate gauge invariance it
seems natural to blame them for the symmetry break-
ing also.

But, as we show in this section, in order to be con-
sistent with Gell-Mann’s algebra of currents, a gauge-
field model has to have a mass matrix which does not
contain symmetry breaking or mixing. Of all the models
studied in Sec. IV, only the first (Oakes-Sakurai) and
and the seventh (Das-Mathur-Okubo) satisfy this
requirement.

To see how symmetry breaking and current algebra
are related, we first restrict ourselves to the currents
belonging to the octet only (i.e., ignore the mixing with
the singlet) and start by checking the better-defined
time-time commutators. From Eq. (2.15) we see that
for these commutators to have the usual form R
has to be

R=g0~1M02. (61)

With this substitution the time-space commutators,
Eq. (2.15), become

L720(%),7%:() Jaomuo =1(M o®) gy (M o™*)xe
X faynj ()03 (x—y) +igo 2 (Mo?) apd:d>(x—Y) . 6.2)

In order to recover Gell-Mann’s type of commutator
from Eq. (6.2), we see that M2 has to be proportional to
the unit matrix, M (?=m?1.13

As we already pointed out, what would seem to be the
simplest assumption, i.e., symmetry breaking in the
mass terms, has to be ruled out unless one is willing to
modify the algebra for the currents. On the other hand,
the algebra remains unchanged when the symmetry
breaking is introduced in the kinetic matrix K, for
which the simplest possibility is, of course,

K g=00s+Ddsas.

We proceed now to show that current algebra and 8-0
mixing in the mass matrix cannot coexist in a gauge-
field model. In order to do that, we consider a
Lagrangian with a mass matrix which in the 8-0 sector

is of the form
mg? Mg’
M02 = .
ﬁ‘Lso2 n2

To have the correct time-time commutators, R still has
to be given by Eq. (6.1), which means that orthogonal
mixing has to be ruled out. To stress that point, we
remark that for orthogonal mixing, Ros=Raas sub-
stituted into Eq. (2.15) leads, for instance, to

[O°,0 )~ maQ" (6.4)
which clearly contradicts the original assumption of Q°
being an SU(3) singlet (unless ms02=0).

Mass mixing also leads to bad results. From Eq.
(2.16) with R as given in Eq. (3.4), we obtain

[Q=/%(x)]=1 %(M 0)so(M i *)gsfassji(x)  (6.5)

(6.3)

and

LQ%57i(x) ] =1(M o) 1{3V3[ (M 2)ss7%(x) :
(M 52)507%(x) ]—5(M 52 ss5% (%)}, (6.6)

which are inconsistent with 7% being a singlet when
(M 1) g0 ="m5025%0.

The mixing problem can also be analyzed starting
from the sum rules. Weinberg’s first sum rule can be
extended to the nine vector currents in the form

/ A0 as™ =5100p+51"8a0dp0
+Sl,l(6a06ﬂ8+5a8550) ) (6‘7)

where 51"/ is proportional to the VEV of the crossed 8-0
Schwinger term. It is easy to show that the following
three assumptions lead to unphysical results: (i) s;/50
in Eq. (6.7), (i) 7%, transforms as an authentic singlet,
and (iil) all Schwinger terms are C numbers (as is
usually assumed in gauge-field models). Under the con-
ditions stated above, the right-hand side of the following
equal-time Jacobi identity® vanishes:

L7%(),L0%5":(») 1]1=LQ%L1%(),":(y)]]

+L77:),L0%%(x)1].  (6.8)
So, from the left-hand side we get
FV3IL7%(x), 7% 1— 3L 7%(), 5% () 1=0, (6.9)

according to which if s;”£0, there has to be also a non-
vanishing 0-3 Schwinger term whose effect would be to
add to Eq. (6.7) still another term of the form
51°3(820083+8.43080) giving rise to medium-strong w-p and
¢-p mixing. To avoid this, both terms in Eq. (6.9) (and
s1") have to be zero and as Oakes and Sakurai?® first
pointed out, s,/ =0 necessarily implies w-¢ current
mixing. Saturation of pg® by w and ¢ gives, with the
notation of the Appendix,

—(m,% cosfy sinf g
V2fyfB

—m,?sinfy cosfp)=s1"=0, (6.10)

from which the current mixing relation (3.14) follows
immediately.

As we can see from Egs. (6.5) and (6.6), for mass
mixing condition (ii) listed above is not satisfied. While
4% transforms as a unitary singlet, the space com-
ponents 7% do not. In this way 5,°%5£0 can be avoided in
a mass mixing model. That this possibility be taken
seriously has been advocated in a recent paper by
Cremmer.?! It is not clear whether this proposal, as well

30Tt has been found that Jacobi identities for equal-time com-
mutators of current densities might not hold in some cases. See
F. Bucella et al., Phys. Rev. 149, 1268 (1966); K. Johnson and
F. E. Low, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 74
(1966). On the other hand, it is perfectly correct to use a Jacobi
identity like Eq. (6.8) involving a charge, a charge density, and
the space component of a current.

3 E. Cremmer, Nucl. Phys. B15, 131 (1970).
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as Sugawara’s!® modification of the commutation rela-
tions [which arise, for instance, from a model like (2)
in Sec. IV]

[O%s%(x)]

14-D'd,
='ifa5"/[8w+<1 - Ef)&,nﬁy{,j’,(x) , (6. 1 1)

14-D/dsy

will lead to noncovariance of measurable quantities. We
think that these points warrant further investigation.
What we can say now is that, as was first shown in Ref.
13 and in more detail in this section, symmetry breaking
in the mass terms of a gauge-field Lagrangian leads to
modification of the algebra for the currents. Conversely,
if one wants to preserve the algebra as postulated by
Gell-Mann, the symmetry breaking has to be introduced
in the kinetic terms, which means that of all the models
of Sec. IV one has to choose either (1) or (7).

VII. BROKEN NONET SYMMETRY

Okubo has shown?® how the vector mesons satisfy a
(broken) nonet symmetry when SU(3) medium-strong
effects are contained in the mass terms of the Lagran-
gian. Since we concluded in Sec. VI that on theoretical
grounds models with breaking in the kinetic terms are
to be preferred, we show here that model (1) in Sec. IV
also comes close to obeying a nonet symmetry.

The closest one can get to a nonet symmetry is with
n=m in Eq. (4.1) and the kinetic matrix (4.2) reducing
to the form

Kaﬁ=5a5+Dd8aﬂ (ay ﬁ:l, RS 8’ O) ’ (71)

where doas=(\/%)84s. In this situation symmetry break-
ing and mixing are simply related by U(3) Clebsch-
Gordan coefficients. From such a higher symmetry one
can derive the following relations [besides Egs. (4.5)

and (4.6)]:

tand=1/v2= §=35.26°, (7.2)
Moo=, , (7.3)

and
m¢‘2+mw”2 = me:f 2, (74)

The first two are the same as in Okubo’s nonet model3? "

while the last equality, independent of the mixing angle,
is experimentally satisfied even better than the corre-
sponding (Okubo) expression for the direct masses
squared. In BeV—2, the left-hand side of Eq. (7.4) is
2.59 while the right-hand side is 2.51.

Since Egs. (7.2)~(7.4) are not far from reality, we
only have to add to K in Eq. (7.1) small amounts of
further symmetry breaking and it is convenient to do
it in the following way:

Ka,g = 5ag+D{dsaﬂ+%\/g7][5a0580
— (V%) (1+Q) (8asds0+0a0dps) 1}

82 S, Okubo, Phys. Letters 5, 165 (1963).

(7.5)

KIMEL 3

where 5 and Q are simply related to the violations of
Egs. (7.2) and (7.3) according to

my 2 my = 2mg?

~0.16 (7.6)

77 =
My —mgi?

and
3 My 2=, "2

~1.12. (7.7)

Q= -
2 my 2t my 2 —2mg?

The angle § and these symmetry-breaking parameters
are connected by

tan20=2v2[1—-2(34+Q)y]. (7.8)

Our purpose in this section was to point out that the
approximate validity of Okubo’s nonet scheme cannot
be taken as an indication that direct-mass-squared
relations are to be used for vector mesons. With the
same ease and with as good results one can formulate a
nonet-symmetry model leading to inverse-mass-squared
formulas.

VIII. COMPARISON WITH EXPERIMENT
AND FINAL COMMENTS

With regard to the vector mesons, the consequences
of the models we have studied are reflected in the values
of coupling constants and mixing angles. Experiments
dealing with e*e~— hadrons provide one of the best
ways of measuring these quantities and so in this section
we compare the predictions of the different models with
the results from the colliding-beam experiments per-
formed by the Orsay Storage Ring Group (OSRG).33-35

From the radiative widths of ¢ and w the angle 8y can
be obtained but it is much harder to get an experimental
value for 6. OSRG lists 85 derived from I'(¢ — K K1)
but, as pointed out by Gourdin,* this width actually
gives a measure of 6 instead of fp. The width for
¢ — KK is given by

cos?fp

. 1 fy dmg\*'*
I'e— KK)= —— m«,(l — )
12 47 cos*(6y—03)

M2

L fv* m(1—4mx®/m,?)*?

= . (8.1)
12 47 cos®y(1+-tanfy tandp)?

In the three types of mixing we have considered (mass,
orthogonal, and current) there is a sort of universal

3 J. E. Augustin ef al., Phys. Letters 28B, 503 (1969).

#J. E. Augustin et al., Phys. Letters 28B, 508 (1969); 28B,
513 (1969); and 28B, 517 (1969); J. E. Augustin ef al., Nuovo
Cimento Letters 2, 214 (1969); J. Haissinski, in Proceedings of
the Conference on zw and Kx Interactions, Argonne, 1969
(unpublished).

3 J. Perez-y-Jorba, in Proceedings of the Fourth International
Symposium on Electron and Pholon Interactions at High Energies,
Lizerpool, England, 1969, edited by D. W. Braben and R. E. Rand
(Daresbury Nuclear Physics Laboratory, Daresbury, Lancashire,
England, 1970).

36 See Gourdin’s lectures cited in Ref. 25.
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TasirE I. Comparison of theoretical models and experiment.

Oy 0 0B
(deg) (deg) (deg) 1o 8o’ 8 ° Sy 2 (keV)

ORSAY expt. 41.6+3.0 29.84+4.4 21.2+1.0 9 1.2040.24 1.56+0.15 11.141.2

(1) (0S) 34.8 28.1 224 9 0.65 1.34 7.92 —0.59-£0.52
(2) 39.7 39.7 39.7 9 1.23 1.77 12.0 0.3740.40
3) 53.4 39.7 26.1 9 2.33 1.31 14.58 0.26+0.39
4) 34.8 34.8 34.8 9 0.65 1.34 7.92 —0.594-0.52
(5) 39.8 32.6 26.2 9 1.23 1.77 12.0 0.37+£0.40
(6) 49.6 34.8 224 9 1.35 0.98 9.28 —0.624-0.48
(7) (DMO) 47.2 39.7 32.5 9 1.17 1.01 8.75 —0.594:0.52

relation among the angles [see Egs. (3.9) and (3.15)]

tanfy tanfp=tan? (8.2)
and so, for all types of mixing,
_ 1 fy? 4dmg\3'? cos*0
I(p— KR)= ———~m¢<1—- )
12 4 my? cos?y
cos* m,(1—4mg?/m,2)%?
= oL =/ e (8.3)
4w X48g,72
where we have employed the usual definitions
g =1 r?sin¥y, g, t=ifr?cos’y. (3.4)

Thus from a knowledge of T'(¢ — KK) and g, one
can obtain 6. But there is another way of getting § which
is independent of g, and that is through the cross
section for ete~— KK at the ¢ mass,

Tom(ete=— KK)

127 T'(¢— ete™)T'(o— KK)

- b

(8.5)

M2 r,?
where one can substitute for radiative width the first of

T(p— ete)

=2 —2
3T Ly Mo, (8.6)
T'(w — ete) =5ma’gy My,
and get
_ | dmg2\3/2
Tommgi(eTe™ — KK) = —— cos“ﬁ(l — ) . (8.7
12T, My

We have calculated 6 from Eq. (8.3) with I'(¢ — K*K~)
and g,~? of Ref. 39 and also from Eq. (8.7). Both ways
gave the same result which we list as the experimental 8
in Table I. Let us emphasize again that from the OSRG
experiments 65 cannot be obtained independently of 6y
and 6. Thus, we calculated 65 from Eq. (8.2) in terms of
the experimental  and 0y and obtained the value listed
in the table which agrees with the one in Ref. 33 but not
with the newest value quoted in Ref. 35.

As can be seen from Table I, we have adopted the
convention of normalizing the coupling constants to

Jo?=9.

2 in the table refers to width relations like Eq. (4.5).
In any given model there is a particular combination of
the radiative widths of the neutral vector mesons which
theoretically should vanish. The numbers in the =
column measure the departure of the experimental from
the theoretical (zero) value of these combinations.

It has been stated®® that the radiative widths found
by OSRG favor mass mixing models. Actually, from
Table I we see that the current mixing model (5) fits
the radiative widths very well [as well as the mass
mixing model (2)7. The real test for the type of mixing
is whether 6 and 6y are equal or not and experimentally
they seem to be different, favoring current mixing. For
another comparison between these models and experi-
ment, we can plug into Eq. (8.7) the theoretical 6
and experimental®s T',=4.24-£0.28 MeV, which give
o(ete™— K+K™) =(2.284+0.30)X10-% cm? for model
(5) and (1.594-0.21) X 10730 cm? for model (2), as com-
pared with the experimental (2.5324:0.16) X 1030 cm2,35
Had we used for T', the world average?” 3.940.4 MeV
we would have obtained (2.7040.54)X10-% cm? for
model (5) and (1.88240.38)X 1073 c¢cm? for model (2).

Model (5), which comes closest to the OSRG experi-
mental results, is a current mixing model which agrees
with our findings in Sec. IV that only the current mixing
is consistent with Gell-Mann’s algebra.

On the other hand, the octet breaking in model (5)
originates in the mass matrix, with the consequence
that some current commutators are of the form (6.11).
These conclusions are, of course, valid in the framework
of gauge-field models. Then, in a sense, experiments
like the one by OSRG test the combination of gauge-
field algebra and vector-meson—-dominance hypothesis.
It would be very interesting to see whether further
(higher-precision) experiments still favor a model like
(5) over the Oakes-Sakurai model (1) or Das-Mathur-
Okubo model (7), which as we have shown in Sec. VI
should be preferred on theoretical grounds. Note for
instance that the largest discrepancy between the
Oakes-Sakurai model (1) and the experimental results is
in the radiative decay of w, for which the world average
is reported with an error as large as 279,.37

37 A. Barbaro-Galtieri e/ al., Rev. Mod. Phys. 42, 87 (1970).
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APPENDIX: NOTATION FOR VECTOR-
MESON DOMINANCE

Operator relations like j,=RS®, used in the text are
rigorously valid in the sense

(O] j,() | v.mn.) = (RS) o6(0| 88, () [ v.:n.) ,

where |v.m.) is a vector-meson state. For the elements

KIMEL ' 3

of RS=gp~'TM? [Eq. (3.1)], we employ the notation
(0] 7.0 [ p°) =m,2 [, e,
(0] 7%0) | (V5 (K*O+K*0)) =ms f ey,
(0} 7%.(0) | ) =3V3(0| 77,.(0)| 0) =3V3m,2fy™" cosby e,,
(0] 72(0) [ 0) =3V3(0] 5¥,(0) | )

=—5V3m,2fy ! sinfy e,,
(01 7%(0)| 0)=v/300] 720) | @)=/ B2 571 sinds s,
(0] 74O o) =(vB01 7,0l

=(V$m 5" cosbp €y,

where ¢, is the polarization vector of the corresponding
vector meson; j¥, and jB, are the hypercharge and
baryon-number currents.
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Consistency of Hard-Pion Theorems in K;; Decays*

RoBERT OLsSHANSKY AND KvYUNGSIK KANG
Physics Department, Brown University, Providence, Rhode Island 02912
(Received 30 November 1970)

The K3 scalar form factor is studied by the hard-pion method in the framework of a (3,3*)+ (3* 3)-
symmetry-breaking model using a modified pole-dominance approximation. A set of consistency relations
is found which provides a test of the reliability of the quadratic-smoothness assumption as well as of the
symmetry-breaking model. In particular, we find that the solution for the symmetry-breaking parameters
which fit the data is inconsistent with the quadratic-smoothness assumption. In addition, the status of other

theoretical models is briefly reviewed.

I. INTRODUCTION

HE semileptonic decays of the K meson have been

the subject of much attention! both because of

their accessibility to experiment and because they

provide a simple process for testing the ideas of current

algebra, pole dominance, and symmetry breaking.

Owing to some experimental uncertainties concerning

the determination of the parameter £(0) as well as un-

certainty about the existence of the x meson,?3 an

adequate theoretical understanding of these decays has
not yet been achieved.

In a recent survey of the experimental situation,
Gaillard and Chounet! have found that a world average
on Kt decays gives £(0)=—0.854-0.20. Should this
value for £(0) survive additional measurements, a

* Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-233).

1 See, e.g., M. K. Gaillard and L. M. Chounet, CERN Report
No. 70-14 (unpublished); M. K. Gaillard and L. M. Chounet,
Phys. Letters 32B, 505 (1970).

2 D. J. Crennel, U. Karshon, K. W. Lai, J. S. O’Neall, and J. M.
Scarr, Phys. Rev. Letters 22, 483 (1969).

37T, G. Trippe, C. Y. Chien, E. Malamud, J. Mellema, P. E.
Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys.
Letters 28 B, 203 (1968).

discrepancy will exist between it and the predictions of
the conventional theoretical models.*

In Sec. II, the results of these models are briefly
reviewed. It is argued that within a dispersion-theory
approach the experimental result for £(0) implies that
the idea of x dominance must be modified. The predic-
tions of current-algebra calculations are dependent on
the pole-dominance assumptions for current divergences
as well as the type of SU(3) X SU (3)-symmetry-breaking
interactions that are assumed.? Again the most straight-
forward approach based on pole-dominance approxima-
tions gives results in contradiction with the experimental
valué of £(0).

Accordingly in Sec. III, we carry out a study of the
hard-pion method® which provides a means for including

¢ For conventional theoretical models, we refer to those papers
quoted in Ref. 1 as well as C. G. Callan, in Proceedings of Topical
Conference on Weak Interactions, edited by J. S. Bell (CERN,
Geneva, 1969).

5S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968) ; M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).

¢ For earlier references, we refer to S. Weinberg, in Proceedings
of the Fourteenth International Conference on High-Energy Physics,
Vienna, 1968, edited by J. Prentki and J. Steinberger (CERN,
Geneva, 1968).



