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Relativistic Calculation of Nucleon-Nucleon Phase Parameters*
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An approximate Bethe-Salpeter equation is used to calculate the X-E phase parameters. The one-boson-
exchange (OBE) hypothesis is invoked to approximate the left-hand singularity. A good fit to the existing
data is obtained, and certain phase parameters ('D2, 'D2, and 'P2), which are not fitted well by existing
OBE-potential (OBEP) models, are much improved. The observables are not fitted directly, but rather an
approximate procedure suggested by MacGregor et al. is used to minimize th'e experimental X . Comparisons
are made with the nonrelativistic OBEP used in conjunction with the Schrodinger equation.

I. INTRODUCTION

~~URING the past decade, generalized forms of the
one-boson-exchange potential (OBEP) have been

partially successful in describing a rather large ac-
cumulation of Ã-A" scattering data up to the 300-MeV
region. " The E-S potential, according to these
models, arises from the exchange of pseudoscalar,
scalar, and vector mesons. The present work is an
attempt to extend the OBEP model by using a rela-
tivisitic formalism which has been presented by one
of the authors' and is based on the Blankenbecler-
Sugar4 reduction of the Bethe-Salpeter' equation. It is
hoped that it will be possible to extend the model into
the 400-MeV region. An attempt to include relativistic
eBects using the two-particle Dirac equation was
initiated by one of the authors, but this study is not
complete. '

The linear integral equation used to calculate the
scattering amplitude in this work is known to introduce
a spurious lef t-hand singularity' at s =4m' —4(m+ mg) ',
where mg is the exchanged boson mass. However, for
the A-A system, this singularity is very far removed
from the physical region and should not therefore play
an important role in the calculation.

In the previous derivations of OBEP, the Ã-E
potential is expanded in terms of V/m, and terms of

~ Supported in part by the U. S. Air Force Once of Scienti6c
Research under Contract Nos. AFOSR-68-1397 and AFOSR-69-
1817.

)Present address: University of b, ijmegen, Nijmegen, The
Netherlands,

f. Present address: Department of Physics, Drexel University,
Philadelphia, Pa. 19104.

~ T. Ueda and A. E. S. Green, Phys. Rev. 1'74, 1304 (1968).
~ R. A. Bryan and B.L. Scott, Phys. Rev. 1'7'7, 1435 (1969).
3 Richard H. Thompson, Phys. Rev. D 1, 11.0 (1970). The

formalism used in the present work is worked out in Thompson's
paper, which is referred to here as I.

4 R, Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
6 T. Sawada and A. E. S. Green, Bull. Am. Phys. Soc. 11, 383

(1966); UF-Nuclear Meson reports, 1968 (unpublished).

3

order higher than (V/m)' are neglected. ' ' In the
preceding paper7 we examined this question, and found
the approximation to be unreliable for the case of the
one-pion-exchange potential (OPEP). Therefore, the
V/m expansion should be circumvented. Hence in
this work the calculations are carried out directly in
momentum space.

The short-range part of the interaction is param-
etrized using a phenomenological form factor" which
cuts off the interaction at small Ã-E separations or,
alternatively, at large momenta. This particular type
of form factor has been used in the past in fitting to
E-lV data. "The calculation is insensitive to the cutoQ
mass A. as long as it is taken to be relatively large
(h. 1500 MeV); however, the 5 waves do depend on
this parameter and hence must be thought of as es-
sentially phenomenological.

The exchange mesons used are the m, p, ~, q, ~, and 5.
Kith the exception of the e, the masses are taken from
the Rosenfeld tables. ' This ~ is the broad mass scalar
in the J=T=Om-x system located at 740 MeV. Since
its mass is not well known, it was treated as a parameter
in this work and is searched on to obtain a best ht to the
data. The coupling constants are not well known and
are all treated as adjustable. One of the more encourag-
ing things to come out of this work is that the coupling
constants and masses used. all seem to be compatible
with other estimates of these parameters.

IL EQUATIONS
\

The details of the reduction of the Bethe-Salpeter
equation to its three-dimensional form are given in I.

7Richard H. Thompson, Alexander Gersten, and A. E. S.
Green, preceding paper, Phys. Rev. D 3, 2069 (1971).This work
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Hence, only the relevant equations are given in this
work for completeness.

The three-dimensional equation for the scattering
amplitude M derived in I is given by

where

g'(+,k,s) =n4x'~'/E'(k) LE(k) —l&s])
and I' denotes that the principal value is to be taken.

M(p, q) =W(p, q)+ dk W(p, k)E2(+&(k,s)M(k, q), (1)

where E&&+) is the two-particle Green's function given by

4w'm'A(i) (+'(k)A (gi '+'( —k)
E,(+'(k,s) =

E'(k) LE(k) ——,'Qs —ie]

E(k) —(k2+~2) it 2 s —4(q2+~2)

A(, i(+~(k) is the positive-energy projection operator
for the ith particle, and W(p, k) is the interaction kernel.
In this work, IF(p,k) is approximated to order ge',
where g~ is the nucleon-boson coupling strength.

In practice one wishes to calculate phase parameters
rather than directly solve Kq. (1).This is accomplished

by projecting the partial-wave amplitudes from Eq.
(1), resulting in

I'"(p, /f; q, l')

Z=l J+Sl
= W (p /f, q, /;)+ Q dk k'W (p, /r, k, l)

Z=l J—Sl ()

Xg(+,k, s)&"(k, /; q, l;), (4)

where J is the total angular momentum, S is the spin
angular momentum, l; and lf are the initial and 6nal
orbital angular momenta, respectively, Ts e(P, /r, q, /, )
is the off-energy-shell partial-wave scattering ampli-
tude, W (P,/f, q, /;) is the partial-wave projection of
the interaction kernel W(p, q), and

III. PARTIAL-WAVE PROJECTIONS

In this section most of the details of projecting the
partial-wave amplitudes from the interaction kernel are
presented. More specifically, the amplitudes due to the
exchange of vector, scalar, and pseudoscalar mesons
are treated.

The helicity formalism of Jacob and Wick'e is used
as an intermediate step in going from matrix elements
between plane-wave states to matrix elements between
states of good J, l, and S. Basically our method is very
similar to that used by Goldberger et a/. " in their
fundamental paper on the application of dispersion
theory to the E-E interaction. However, because the
matrix elements involved in the present work are oB
the energy shell, the helicity formalism application
must undergo modifications. Therefore, the authors of
this article felt that it would be worthwhile to present
some of the details of this aspect of the work.

The matrix element relating helicity states with a
definite total J to plane-wave states of good p is given
by"

(p~&2'l i'
I pl(2l i) =L(2~+1)/4x]"'», ~~ »i~i

XD~,s(e, (/, —((), (g)

where M is the projection of J onto a Axed s axis,
X=X..—X~, 0 and p are the polar and azimuthal angles
de6ning the direction of y with respect to the s axis,
and. Dsri, s((/i, 0, —4) is the usual rotation function. "
Using the completeness relation and Eq. (8), it is
straightforward to deduce the relation between the
interaction kernel in the y, X2,P i representation and in
the p,J,X&,X& representation. This result is given by

g(+,k,s) =4m'm'/E'(k) LE(k) ——,'Qs —ie]. (5)

For calculational reasons it is more convenient
to work with the real E matrix which is related to
T (p, /f, q, /;) algebraically. This relation is given in II
and also E is related to the bar phase parameters in II.
The K matrix satisfies Eq. (4) except that ie must be

replaced by a principal-value singularity, i.e.,

Es e(p, /f, q, /, )

Z=l J+Sl
=Ws s(p, /f, q, /;)+ Q dk k'W~ e(p, /f, k, l)

Z=l J—Sl

Xg'(+,k,s)Es e(k, /; q, lf), (6)

Xd&,&,s(e)W(p, l(„l(3, q, l(„l(&), (9)

where gf ——X4—P, 3, g;=/((2 —Pi, and

di, if'(e) =e'" &Di, ~is(4, 0, 0)e '"»—
In general there are 16 helicity amplitudes Ws(P4X3,'

qX2Xr) necessary to describe the fq 1V interaction. If we-
denote X=&~ by &, then the helicity amplitudes are
given by the following matrix for a given value of J, p,

M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) V, 404 (1959).
"M. L. Goldberger, M. T. Grisaru, S. %. MacDowell, and D.

Y. Wong, Phys. Rev. 120, 2250 (1960)."M. E. Rose, E/ementary Theory of Angglur 3fomentum
(Wiley, New York, 1957').
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and g:
'(+ +

(helicity matrix) =

.&
—+

++) (++
++) &-—
++) &+-
++) (—+

——) (++
——) /'+-

(—+

+ —) (++
+ —)
+ —

& (+-
+ —

& &
—+I

—+)—+&—+&—+&,

where the indices J, p, and q have been suppressed;
e.g. , (+ + I + +)—=W~(p+ +; q+ +).Invoking time-
reversal invariance and the conservation of parity allows
one to relate many of these helicity matrix elements.
Because of time-reversal invariance, the matrix of
Eq. (11) must be symmetric with respect to inter-
changes of pairs of helicity indices; i.e., if T denotes
the time-reversal operator, then

&PJy,y, lwl qJy, y,&=&PJy,y,
l
2&zwz tTlqJp„y, &

=&pJ~,x,
l
w'I qJ~,z,)*

=&qJ~,~,
I wl PJ/4~, &. (12)

Note that since the matrix element in Eq. (12) is off
shell, one must also interchange p and q when inter-
changing X2P i and X4P ~."Application of the conserva-
tion of parity leads to the result that

&pJl ~ra
I wl qJx2x&)

=(p J —x —x
I wl q J —7, —x ). (l.3)

Then using the properties of Eqs. (12) and (13), the
following relations hold:

Since no scattering can occur between singlet and triplet
states, the matrix elements (J, P =J&1IJ, I' =J)s and
r(J, 2'= Jl J, P=J)s must be iclentically zero. These
conditions lead to (+ +I+ —) =&——

I

—+), which
is one of the previous conditions, and (++I+ —)
=&+ + I

—+), which means that c(p,q) =d(p, q).
Hence the helicity matrix of Eq. (11) reduces to

o'(P, q)
f'(q P)
c~(q,p)

.c (q,p)

f '(P, q) "(P,q) ~'(P, q)'
a (p,q) c (p, q) c (p,q)
i'(q, p) ~'(p, q) f'(p, q)
~'(q, p) f'(q, P) ~'(P,q)

(16)

thus, there are five independent amplitudes.
The fundamental relationship between the helicity

and the J/5 amplitude is given by

(J~)SIJ~yg/2& —[(2i+1)/(2J+1)]&/2
XC(-,'—,'S; 4 —4)C(/'SJ) OX), (17)

where X=A.i—A.2 and the C's are the standard Clebsch-
Gordan coefficients. " Then the interaction kernel in
the J/$ representation is given by

a'(P q)=(++I++)=&——
I
——

& (14a) w~ s(p, f,,; q, t,)
f'(P,q)—=&++I ——&=&——I++&, (14b) = p [(2/ +1)|/&(21,+1)&/2/(2 J+1)]
"(P,q) -=&++I+ -&=&- -I-+&,
d'(P, q) = &

—I+ ——
&
=—&+ + I

—+), «4d)

'&P,q)
—=&+ —I+ —&=&—+I —+&,

f (P,q)-=&+ -I-+&=&-+I+ -&. «4f)

'AIX2X3&I, 4

XC(-,' gS; X/ X2)C(—/fS J; OXf)

XC(-,' —,'S; X3—X4)C(l,SJ;OX,)

xw~(p~, x„q/, x,), (lg)

Assuming the conservation of isospin leads to the direct
conclusion that there can be no scattering between spin-
triplet and spin-singlet states. The usual singlet and
triplet states may be formed from the helicity states. '0

These states are also states of the parity operator I'
and are given in the following expressions:

(triplet)

IJ, J'=J+1)=(I++)+I——»/~2, (»a&

I J, 2'=J—» =(I+ —&+ I

—+&)/~2 (15b)

I J, J'= J&r = (I+ +&—
I

——
&) l~&, {13c)

(»ngi«) I J ~=J&s=(I+ —
&
—

I

—+&)/~~ (led)

"This is the essential difference between the on-shell and oG-
shell formalism. Although this is a straightforward result of the
formalism, failure to interchange p and q leads to the result that
g ~'~(p, 7+1; q, J—1)=g J'(p J—1 q, J+1), which is not
true and has led to some confusion in the literature Csee, for
example, J. Goto and S. Machida, Progr. Theoret. Phys. {Kyoto)
25, 64 (1961)J.

where Xf =P 4
—'A3, X;=X~—Xi. Evaluating the sum

appearing in Eq. (18) using the explicit values for the
Clebsch-Gordan coeScients, " the following results are
obtained:

(singlet) W~ '(p, J; q,J) = a~(p, q) —b~(p, q), (19a)

(triplet 1=J') W~ '(p,J; q,J) =e~(p, q) f (p,q), (19b—)

(coupled triplet)

W~ '(p J+1;q, J+1)
=((J+1)[a'(p, q)+b'(P, q)]+JL"(P q)+f'(P q)]

—2[J(J+1)]'/'[c(p,q)+c(q,p)]}/(2J+1), (19c)

W~'(p J—1;q, J—1)
=(J[o'(p,q)+b'(p, q)]+(J+1)[e'(P,q)+f'(P, q)]

+2[J(J+1)]'/2[c(P,q)+c(q,P)]}/(2J+1), (19d)
w~ '(p, J+1;q, J—1)

= {2Jc(q,p) 2(J+1)~(p,q)+[J(J—+1)]"'["(Pq&

+f'(p, q) (po, q) f/'(p, q)]—}/(—2J+ 1) (19e&
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W~'(p J—1; q, J+1)
= {2Jc(P,q) —2(J+1)c(q,P)+[J(J+1)]'~'[e~(P,q)

+f'(p, q) ~'—(p, q) &'—(p,q)])i(2J+1) (19f)

Integration formulas which are useful in performing
the integration over cos8 in Eq. (9) are given by

where g is the nucleon field operator, P~=P~ yo, ge ist
N

14the coupling strength, and Qe is the scalar-meson field.
Using the rules described in I, the interaction kernel to
order gq' is determined to be

W(qli4X3,.kh24)

k(1+~)&»' —2(1—~)d-»'
dp

2

k(1+@)dii +k(1 ii)d—»
dy

—1 S p

=Q~(s), (20a)
where

ge'[ ~(q) .(k)]L i.(-q) i(-k)]
(22)

(2 )'[(q —k)'+ms']

~(q) =I
/E(q)+my 'i'- 1

2m / 2'/[E(q)+m]
=5[(J+1)Q~-i(s)+JQ~+i(s)], (20b)

1 I (1 ii2) i/2diOJ

dp,
2 1 S P

is the Dirac four-spinor, ~&,(q) =~&, (q)yo, and

(X+-,') cos-,'8+(X—-', ) sin-', 0 e +
x X

(li+-') sin —',tt e'& (X —,') co—s-',—tt
(24)

2 -1

[J(J+1)]i&2[Q~+,(s) —Q~ i(s)]
(20c)

2J+1

p8p
[(J+1)Q~+i(s)+JQ~-i(s)]

(20d)
s —p, 2J+I

where Qg(e) is a Legendre function of the second kind
of order J, and s is a parameter to be defined later.

I-et us now turn to the specific cases relevant to this
work, i.e., the partial-wave projections from the inter-
action kernel plane-wave matrix elements arising from
the exchange of one scalar, pseudoscalar, or vector
meson.

Scalar meson. The interaction Hamiltonian coupling
the nucleon and scalar-meson fields is given by

is the Pauli two-spinor. Here 0 and p are the polar and
azimuthal angles defining the direction of q with re-
spect to the fixed s axis.

Writing out the specific components of Eq. (22) using
Eqs. (23) and (24) and employing & for ii=&2, the
following results are obtained:

W(q++ k++) =-' '(++)(1+~) (25a)

W(q+ —k+ —) =-'n(+ +)n( ——) (1+@), (25b)

W(q+ + k ——) = —k~'(+ —)(1—~), (25c)

W(q+ —;k —+)=-',n(+ —)n( —+)e "~

X (1—p), (25d)

W(q+ + k+ —) = ',n(+—+—)n(+—)e'~

X (1—p') '", (25e)
g SpÃQNA S p (21) where

[E(q)+m]'i'[E(k)+m]ii2 —Q,,&,kq/[E(q) Pm]i&2[E(k)+m]i&2

nulli

1

2(2n.) 'm(s —p) (2qk)

s = (k'+q'+me')/(2qk), and p =cosg.

(25f)

(25g)

Equations (25a)—(25e) are then inserted into Eq. (9)
and using the integral formulas expressed in Eqs.
(20a)—(20d) the quantities W (ql~4X, ; B.,X,) are cal-
culated. Then using Eqs. (14a)—(14f) and (19a)—(19f),
the partial-wave projections of the interaction kernel
are determined as

W~ '(p,J;k,J)=e(p —s)Qg(s), (26a)

W"(p J k,J)= {Q.(s) -[(J+1)Q.—(s)+JQ..+i(s)]/
(2J+1)), (26b)

'4 In this work it is assumed that all interactions are invarient
under rotations in isospin space. However, no explicit isospin
d dence is shown in the interaction Hamiltonian for simplicity.epen n
The e8ect of exchanging an isovector meson zs to multiply e
interaction kernel by z& z~, where c; is the isospin operator for
the ith nucleon (analogous to the Pauli spin operator e).

and

E(p)+m k E(k) —m p
p= +

E(k) —m 2p E(p)+m 2k

E(p)+m k E(k) mp—
E(k) m2p E(p)+m 2k—

=esg' I/2(2~) 'm']

(26e)

(26f)

(26g)

W~ '(p, J+1;k, J+1)
= e{Qg~g(s) [2J(J+1)P+P+2yJ(J+1)]+2J(J+1)

X (P—y) QJ +i(s) —(2/+1) 'Qz(s) )/(2 /+1) ', (26c)

W~ '(p J&1;k, J&1)
=~[J(J+1)]'"(P—v) [Q~-i(s) —Q~+i(s)]/

(2J+1)' (26d)
where
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g ply'v5$Ã4p y (27)

Terms involving the Kronecker 8 have not been in-
cluded in these formulas, since these terms cancel when
a form factor of the type used in this work is introduced.
Also it is easily verified that these results reduce to the
usual on-shell results when p =k."

I'seldoscalar meson. The interaction Hamiltonian is
taken to be the standard direct coupling case,

E(y)+m k E(k)+m p+
E(k)+m 2p E(y)+m 2k

(29e)

W~'(p, J+1&k, J+1)= ~[aQJ(s) aQ&+&(s) 57/

(2J+1), (29c)
W~'(p J&1;k, J&1)

= [J(J+1)7'"[(~~&)Q—( ) —2Q ( )
+(~~p)Q; (s)]/(2J+1), (29d)

where

where p5 =pop&p2p3 and the p„'s obey the rule
The interaction kernel to order gI' is

given by

Z(y)+m k Z(k)+m p

E(k)+m 2p E(y)+m 2k
(29f)

W(qz, x„.k;~,X,)

g"[~.(%)75~"(k)]l ~~ (-q)75~. (-k)]
(28)

(2~)'[(q-k) 2+m +2]

Since the partial-wave calculation is precisely analogous
to the scalar-meson case, only the results are given
here: 0'.=(v v.-v.v )/» (30b)

As in the case of the scalar meson, these results also
check with the usual on-shell results when p=k."

Vector meson. The interaction Hamiltonian is taken
to be

IJr =g ~~p,P~y «'y (f«/2m) 4 x~„„4~f"", (30a)

W o(p J k J)=.(s—~)Q, (s) (29 )
(30c)fl""= BQ"/Bx„—8$~/Bxp.

where q„=(y —q, 0).
Define the quantities

A (pa,z, ; ka, ~,) = —2 '
fg v'[T(y) T(k)+4pkx, z,][T(y)T(k)+4pkl, X,]+(2f«a v/m)

X I 16[T(y)+T(k) 744XBX4p'k' —T(y) T(k) LT(k)p'+ T(y)k'] I + (2fv/m) '
X[T(y)X&k —T(k)X3p][T(y)~,k —T(k)PA&7(~3P —»k) (~4p —7.k)
—(f /m)'[T(y) T(k) —4X X pk][T(y) T(k) —4a,),pk][2(X,a,+X,X,)pk ——,'m, ']}/

[8pk T(y) T(k)], (32a)

B(PX4X&, k4&&) =2&'(4g v'[T(k) p&3+ T(y) k&,7[T(k)p&4+ T(y) k47+ (2fvZ v/m) [T(y)T(k) —4~~~ipk]

X[T(k)X4P+ T(y) X~k]p 3p+X~k) + (2fvg v/m) [T(k)X3p+ T(y)Ark][T(y) T(k) —4P 2X4pk](X4p+P &k)

+(fv/m)'LT(y) T( )—47 1~3pk](l ap+~lk) [T(y)T( ) —4~2~4pk]( 4p+~2k) }/[8pkT(y) T(k)], (32b)
where

8'~ '(p, J;k,J)=a[(2J+1)6QJ(s) —(J+1)Qg r(s)
—JQ~+,(z)7/(2J+1), (29b) The interaction. kernel to order gv' is given by

~(y~4~~ ql 2~r) = —(gv'[~~, (y)v.~~ (k)7[~~ (—y)v"~ (—k)7+i(f gv/2m) I[~~.(y)~.~~,(k)]
X[~~,(—yh'~~, (—k)]—[~~,(y)v"~~ (—k)7[~~ (—y)~"» (—k)]It"

+(fv/2m)'[~~, (y)~"~~,(k)][~~ (—y)~""~~,(—k)]ev~} I (2~)'[(y —q)'+mv']I ' (31)

T(y) =E(y)+m and e' = 1/[2(2m)'m'7.

Then using Eq. (9) and Eqs. (14a)—(145),the following relations are obtained:

o'(P, k) = [(1+s)Q.(s) —~~, o]A(P+ +; k+ +)+(s—3)Q~(s)&(p+ +;k+ +),
&'(P,k) =[(s—1)Q~(s) —~~.o]A(P+ +; k — )+(s+3)Q~(s)&(P—+ +; k ——),
~~(p k) = [A (p —+; k —+)+B(p +; k —+)][JQJ+l(s)/(—2J+1)+Q (s)+(J+1)Q (s)/(2 J+1)],
"(P,k) = —LJ(J+1)]'"LA(P++;k —+)+~(p+ +; k —+)7[Q.+~(s) —Q~-~(s)],

(32c)

(33a)

(33b)

(33c)

(33d)

f'(P, k) =LA(P —+; k+ )+&(P +; k+ ——)7([JQz+—~(s)/(2J+ 1)]—Qz(s)
+[(J+1)Q —( )/(2J+1)]} (33 )

"S.Ogawa, S. Sawada, T. Ueda, %. %'atari, and M. Vonezawa, Progr. Theoret. Phys. (Kyoto) Suppl. 39, 140 (1967).
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In order to obtain the partial-wave amplitudes these
expressions are then inserted into Eqs. (19a)—(19f).
Because these resulting expressions are unwieldy, no
attempt is made to display them here. However, as a
check, the on-shell limit of these expressions was taken,
and a numerical comparison was made with the result
of Amdt et al.";it was found that our matrix elements
agree with theirs.

F(t) =h.'/(h. '+t'), (34)

where t=p —q, and A. is the cuto6 mass. Hence the
procedure used here is to insert a factor of F(t) at each
vertex of the irreducible diagram. This results in
multiplying the g&' interaction kernel by LF(t)j'. This
does not complicate the partial-wave projections be-
cause the quantity LF(t)]'(ms+t') ' can be written
in terms of partial fractions and then each of the three
resulting terms treated separately. "

V. NUMERICAL METHODS

Equation (6) is solved. numerically to obtain the E
matrix and hence the phase parameters. The numerical
methods and techniques are given in detail in II.
Basically, Eq. (6) is reduced. to a matrix problem using
quadrature formulas of the Gauss type and the princi-
pal-value singularity is eliminated using the Kowalski-
Noyes method. ""Much time and effort was spent in
ensuring that our numerical methods are accurate. In
the limit of small momenta our equations reduce to the
Lippman-Schwinger equation with OBEP as the
potential. Hence as a check on the numerical methods
this limit was taken and the phase parameters were cal-
culated using the parameters of Bryan and Scott' and
Ueda and Green. ' Agreement with their results was ob-
tained to approximately 0.1/o with 20 integration
points. Since in this work we wish to carry out a machine
search on the parameters of our model, it is desirable
to use as few integration points as possible. It was
found that it is possible to obtain accuracy to better
than 1% using only eight integration points. Hence
our procedure was to do the search with eight points
and then check the results with 20 points.

VI. SEARCH PROCEDURE

In order to obtain a best fit to the experimentally
measured observables, i.e., di6erential cross sections,

"R. A. Amdt, R. A. Bryan, and M. H. MacGregor, Phys. Rev.
152, 1490 (1966). Several mistakes in this article concerning the
vector-meson partial-wave projections were pointed out to use by
R. A. Bryan (private communication).

'7 See II for details on the inclusion of the form factor.
'8 K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965).
"H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).

IV. FORM FACTOR

In this work, the form factor given in the following
equation is used':

polarizations, etc. , it is desirable to minimize the
following X':

X expt P [(P empt P theor)/+P expt$ (35)

where p'.„,t is the measured observable, p'tt, „,is the
same calculated observable, and Ap', „ is the error
assigned to p',„,t. In practice, if one were to attempt to
minimize X, ~t directly using Eq. (35), the necessary
amount of computing time would be extremely large.
Therefore, what has been done frequently in the past
is to minimize the X' defined by

L(tt & tt th o.)/~tt'. hj'
phases

(36)

where 6'~i, is the phenomenological phase parameter
determined from experiment, b'ti, „, is the same cal-
culated phase parameter, and 68'ph is the error as-
signed to b'». Phase-shift analyses based on a large
number of experiments centered around laboratory
energies of 25, 50, 95, 142, 210, 330, and 425 MeV have
been performed by both the Yale' and Livermore"
groups, and the two analyses now appear to be in good
general agreement. Thus, the adjustment of OBEP
models with the aid of Eq. (36) usually leads to similar
coupling constants or parameters, regardless of whether
the Yale or the Livermore phenomenological phase
shifts are used.

A difficulty, however, with the use of Eq. (36) is that
it does not take into account correlations which might,
for example, account for the differences in a number of
the Yale and Livermore phase assignments. Such cor-
relation problems can cause considerable difhculties in
testing theoretical models which implicity have phase-
shift correlations. In an attempt to circumvent this,
we made use of a method based upon the Livermore
second-derivative matrix" which was available to one
of us (A.G.). These matrices are based upon 1292 pieces
of experimental data. %ith these matrices one calculates
an approximate experimental X' for a model using

'" expt='~ expt min

~ ~ expt
+2 Z . (tt ph ~ theot)

h~~ h min

This expression gives an approximate description of the
experimental X' as a function of the calculated phase
parameters near the minimum.

VII. RESULTS OF SEARCH

The mesons used in our relativistic-model calcula-
tion are given in Table I. Apart from the mass of the e

'0R. E. Seamon, K. A. Friedman, and G. Breit, Phys. Rev.
145, 779 (1966).

2'M. H. MacGregor, R. A. Amdt, and R. M. Wright, Phys.
Rev. 169, 1128 (1968};182, 1714 (1969).
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TABLE I. Mesons and coupling constants. Rel denotes relativ-
istic model. NR denotes nonrelativistic OBKP based upon masses
used in relativistic model. Also shown are f,/g„ the regularization
parameter A, and x', ~~ per datum. The last column gives external
values of coupling parameters.

Sym

P

fl /R'I

X (MeV)
x'/datum

'yg

T (MeV)

0 1 138.7
0 0 548.5
0+ 0 570*
0+ 1 960
1 0 782 8
1 1 763

Rel N.R. Ext.

14.19 13.03 14.6
3.09 5.07 2

6.97 7.32
0.33 0.48
9.92 11.05 9.1
0.43 0.48 0.65
6.38 5.53 4

1414 1366
4.6 5.3

and the regularization parameter A which were varied
in the search, all meson masses were taken at values
given in recent tables of Rosenfeld et al. ' Mesons with
masses heavier than 1 BeV were omitted since our
regularization procedure already parametrizeh such
short-range effects.

Using Eq. (37) and the second derivatives of Mac-
Gregor et cl."we found a minimum X2 per datum of
4.59 at the coupling parameters given in the column
headed Rel. The theoretical phase parameters are given
by the solid curve in Fig. 1 in relationship to the single-
energy results of I ivermore (points with error bars)
and the energy-dependent phase shifts of Breit et al. 20

(open circles). Also shown in Fig. I by dashed curves
are the phase parameters based upon a nonrelativistic
OBEP with the same coupling constants and masses
used in our relativistic model. The comparison is meant
only to show that the relativistic model gives sig-
niicantly different results than OBEP with the same
input parameters in the energy region of interest.

If, using the same set of meson masses, we readjust
the nonrelativistic OBEP by the matrix method, we
find the coupling constants in the column headed OBEP
in Ta,ble I. This gives a X. per datum of 5.3, which is
not as good as our relativistic model. We should note,
however, that certain less-restricted variations of the
nonrelativistic OBEP models" do achieve better fits
than the restricted OBEP model specified in Table I.
However, it would appear in general that the rela-
tivistic model helps improve fits to certain phase
parameters ('D2, 'E2, and 'D~) which have character-
istically been hard to fit with nonrelativistic models.

In this work Coulomb effects have been allowed. for
on the basis of earlier OBEP work in which accurate
Coulomb corrections were made by including the
Coulomb potential for the T=1 states and matching
to Coulomb wave functions at some large distance. "

2'R. Vil. Stagat, F. Riewe, and A. E. S. Green, Phys. Rev.
(to be published).

"The original OBKP code due to T. Sawada was modified by
him and one of the authors (A. Gersten) to include Coulomb
effects.

The Coulomb correction was found to be significant

only for the '50 state, as was shown by running the
OBEP code with and without the Coulomb potential.
In the present work we simply added the Coulomb cor-
rection as determined from the OBEP code (see
Table II) with the U.G.I parameters' to our 'So state.
This procedure is approximate but should be accurate
enough beyond 25 MeV.

In this work the lowest energy considered in our
data-fitting procedure is Ei,b=25 MeV. Because of
this it would not be surprising if the deuteron param-
eters calculated from our model did not agree precisely
with experiment. Using effective-range theory, '4 our
deuteron binding energy is estimated to be 3 MeV
as opposed to the experimental value of 2.2 MeV. In
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4 Alexander Gersten and A. E. S. Green, Phys. Rev. 176, 1199
(1968).

Fro. 1. N-E phase parameters are shown vs laboratory kinetic
energy. The solid curves are calculated from the relativistic theory,
the dashed curves are calculated from OBEP with the masses and
coupling constants taken from the relativistic calculation. The
experimental points indicated with error bars are from the energy-
independent phase-parameter analysis of MacGregor et al. (Ref.
21). The open circles are the energy-dependent phase shifts of
Breit et ul. (Ref. 20).
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TABLE II. Coulomb corrections used for the 'So state.

El. b (MeV) 25 50 95 142 210 330 425

8 g, (np) —5 8, (pp) (deg) 2.0 1.5 1.9 2.4 3.2 4.2 5.0

smaller than the g„'. In view of the lighter mass of e

we still preserve the essential feature of OBEP models
in the approximate cancellation of the static effects
of the scalar and vector mesons.

our previous experience with OBEP models, " small
changes in the parameters were found to be sufFicient
to correct a moderate discrepancy in the deuteron
binding energy.

VIII. DISCUSSION

The last column of Table I gives values of the cou-
pling constants obtained from experimental or theoreti-
cal investigations not involving X-S scattering. For
example, g„-'is predicted to be 0.65 by Sakurai" and

f,/g, is known to be approximately 4 from form-factor
data. "These are not far removed from the values 0.43
and 6.4 found in our work. According to the calculation
of Oakes and Sakurai, "the ratio of g„' to g, ' should be
14, which would give g '~9 if f,/g, =4 and g„'=0.65.
This is quite comparable to 'our value of 9.9. The
constant g„'=2 is based upon SV(3) predictions. It is
not too far removed from our g„'=3.09, although
characteristically E-E predictions are rather insensitive
to this constant. The x-meson coupling constant 14.6
is based upon x-nucleon scattering studies. It is in
reasonable accord with the value 14.2 which we find.
The 8, a newly discovered scalar meson, ' does not play
a large role in the X-X interaction except perhaps for
the 5 waves. Thus there is considerable uncertainty as
to its coupling strength.

The e meson has perhaps been the most controversial
of the recent resonances but now appears in the Rosen-
feld tables. ' It appears that this resonance has a very
broad mass distribution. This broad distribution has
recently been found to be helpful in explaining certain
features of the E-E interaction in nonrelativistic treat-
ments of OBEP."In the present work the mass of the
e is taken as an adjustable parameter. The effective
value (570 MeV) obtained is quite reasonable in view
of the actual resonance value ( 740 MeV) and the
broad width. The coupling constant g, ' is somewhat

"For a review of the coupling constants and masses used in
various models of the S-E interaction, see G. Breit, in Inter-
national Conference on Properties of Nuclear States, Montreal,
1969 (unpublished)."R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).

T. A. Gri&y and L. I. Schi8, in High Energy Physics, edited
by E. H. S. Burhop (Academic, New York, 1967), Vol. I.

IX. SUMMARY

In this work we have attempted to amend some of
the deficiencies in the OBEP model of the E-S inter-
action. Specihcally, the interaction is not expanded in

powers of the momentum divided by nz, but rather the
momentum dependence is treated by solving the integral
equation for the scattering amplitude directly in the
momentum space. Also by working with a covariant
approximation to the Bethe-Salpeter equation, rela-

tivistic effects are included in the calculation.
The fact that the X', ~t, per datum of our relativistic

treatment is somewhat lower than that given by the
nonrelativistic treatment is probably not of great
importance. More remarkable is the over-all re-

sernblance of the parameters obtained in the two

treatments; Furthermore, the fact that the parameters,
i.e., masses and coupling strengths, obtained in this
work as a result of searching on the data, are com-

patible with independent estimates and measure-

ments of these parameters lends credence to it. This

property has been lacking in some models of the 1V-X

interaction. "
In the future, the relativistic calculation performed

here should be particularly- useful for extending the
OBE hypothesis into the higher-energy region where

relativistic effects become more profound. Of course,
the application to higher energies requires the inclusion

of inelastic effects. This could be approached through
the coupled-channel formalism or in a more phe-
nomenological way, say by introducing complex po-
tentials. The Los Alamos meson factory should provide
data in the high-energy region which might enable one

to pursue such an approach.
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