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We present here the theoretical total cross sections for W-boson production in the reactions
v+Z— Z4+W+pand u+Z — Z+W-» for a variety of Z. The emphasis is on the energies and correspond-
ing W-boson masses pertinent to the National Accelerator Laboratory. The effects of the W’s anomalous
magnetic moment, the nucleon Fermi motion, the Pauli exclusion principle, inelastic channels (in particular,
deep-inelastic ones), and the problem of incoherent versus coherent production are all discussed. We also
give a critique of some recent high-energy compilations.

I. INTRODUCTION

HIS is the first in a series of three papers dealing
with the possibility that the W boson may be
found at the National Accelerator Laboratory (NAL).
Directing our attention towards neutrino- and muon-
induced reactions, and assuming that the 17 does not
interact strongly, we consider here the calculation of
total cross sections for W production, which is essen-
tially an extension of previous neutrino efforts'=¢ to
higher energies, and of the latest muon work? to the
general nuclear case. In the subsequent papers, we
shall discuss the theoretical angular distributions and
energy spectra of the W and the signature muons for
both real and virtual W decays. The muon distributions
for the virtual decay vis-d-vis the four-fermion predic-
tions may give us another way of discovering whether
or not the weak boson exists even if it is too heavy
to actually be produced.
Long after the first speculations® about its existence,
the present status of the W is that its mass Mw is
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probably greater than 2 or 3 GeV/c? if it really exists
at all. The principal experimental evidence for this
lower limit has been provided by the BNL and CERN
neutrino experiments® which looked for the reaction®

vA+Z =y W2, (1.1)

Here the signature for the process is two muons origi-
nating at a point, since the semiweak decay

Wt — ut+w, (1.2)

is very fast—the lifetime is probably less than 10~18
sec.!! The absence of such events for neutrino energies
E,$10 GeV implies that M w23 GeV/c2 At NAL, the
hope is to push E, up around 200 GeV, making it possi-
ble to consider M <15 GeV/c2. There is additional
strong evidence that the aforementioned experimental
lower limit is correct (or even too small) from nucleon-
nuclei collision studies!? and from cosmic-ray analysis.!

The theoretical raison d’étre arises initially from the
electromagnetic analogy.® The nonrenormalizable as-
pects of current-current interactions are not removed
by charged boson intermediaries but the feeling that
there ought to be a “carrier” of the weak force has
prompted considerable theoretical attention on its con-
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Fic. 1. Feynman diagrams for reactions (1.1) and (1.3).

sequences. Specifically, a number of models!* indicate
that the W’s mass ought to lie somewhere between 2
and 10 GeV/c2. At the very least, the NAL experiments
will put these models to the test.

The standard procedure in W searches via (1.1) has
been to compare its theoretically calculated values with
the experimental result assuming the W to be spin 1—
since it couples to V' —4 currents. In the same sense as
current-current calculations, one presumes lowest-order
perturbation theory to be a good guide if there is no
danger of violating unitarity limits. Taking into account
both incoherent and coherent possibilities and using a
numerical integration routine, Lee, Markstein, and
Yang! gave the first theoretical estimates for (1.1) with
E,<10 GeV andiron targets. In this situation, W’s of
around a GeV or less could be produced. Later, Bell
and Veltman? numerically inspected the effects of
different nuclear form factors and the Pauli exclusion
principle, while von Gehlen* performed some of the
integrations analytically taking into account the Fermi
motion of the nucleons. The latter author shows that
the asymptotic formula for the total cross section at
high energies given in Ref. (1) and the corresponding
Weizsicker-Williams (WW) approximations? are not
particularly accurate guides here for even extremely
large E, (2000 GeV). On the other hand, some WW
calculations of Uberall’s agree with those done by Bell
and Veltman.

The most comprehensive set of calculations and com-
parisons with other results has been done by Wu, Yang,
Fuchel, and Heller® for E,<10 GeV. This reference
serves as a standard for our paper (due to numerical
integrations, none of the previous work can be extrap-
olated to the higher energies of interest here). There
is a more recent paper by Berkov ef al.1® which reports
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Letters 19, 205 (1967); R. N. Mohapatra, J. S. Rao, and R. E.
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on larger (e.g., Serpukhov) energies but which is in
order-of-magnitude disagreement with what we have
found.

Two recent papers!®1” have dealt with an estimation
of the deep-inelastic contributions to W production off
of a proton by neutrinos. Their conclusions are in order-
of-magnitude disagreement with each other, compelling
us to give a third independent calculation. Our results
agree with those of Chen.!®

In addition to the neutrino work, we also perform the
analogous calculations for the muon-induced reaction

wr+Z -, +Wr+2', (1.3)
a reaction recently advocated!® as a means of W-
searching in view of the energy advantage of muons
over neutrinos. Our work considers the general nuclear
and deep-inelastic cross sections in addition to extending
the proton calculations of Berends and West.” The es-
sential result here, reported earlier by Mann and us,®
is that there is a general difference of two orders of mag-
nitude between (1.1) and (1.3) in favor of the neutrinos
for NAL energies.

We begin by writing the lowest-order matrix element
and the corresponding differential cross section for (1.1)
in Sec. II. Then those integrations which can be done
analytically are described in Sec. III, leaving a two-
dimensional integral to be done numerically. Section IV
contains the numerical results for nucleon and nuclei
targets. Section V is directed towards a discussion of the
coherent versus incoherent mixing problem and also on
the nuclear charge distribution effects as well as the
inelastic channels. In Sec. VI we discuss the total cross
sections for the muon-induced reaction. In Sec. VII we
conclude with a summary of our work. There is an
appendix included which contains a trace arising in the
spin summation and some intermediate steps in the
phase-space integrations.

Since the goal of our paper is to aid experimentalists
in future W searches, we have included many of the
kinematical details in the presentation and an extensive
set of figures and tables.

II. LOWEST-ORDER MATRIX ELEMENT

The lowest-order mechanism contributing to (1.1)
and (1.3) involves a virtual photon interaction between
the lepton-boson vertex and the target since we assume
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that the I does not interact strongly.2® This means we
must specify some electrodynamics: Our Feynman
rules?! follow from the interaction Lagrangian!-??

Line=tFe:PrHwd:
+ie:[0°W *(AW,—A,W°)
— W (AW ¥~ A, W*)]:
+iex: (0,4 ,—3,A4,)WerWe:
—ew:War (L —valp W™
Hoo(+v)rab W] (2.1)

to lowest order in e>0. Here, « is a constant signifying
the anomalous magnetic moment degree of freedom of
the W. In order that the weak interaction reduce to
the current-current form at low energies, we identify

gW2=GMW2/\/2, (22)

where G=10"5/M ,? is the Fermi coupling constant for
the weak vector current. Here M, is the proton mass.
One further remark about £i.¢ is that we shall try to
take into account all of the strong interactions of the
target by way of form-factor fits and accordingly do
not explicitly include the target’s electromagnetic
current in Eq. (2.1).

There is another degree of freedom in the spin-1
boson’s electromagnetic interactions that we have not
considered in Eq. (2.1) and that is the electric quad-
rupole ambiguity. A particle of spin S has 25+1 in-
trinsic multipole moments and the three here would be
the charge (electric monopole moment), the magnetic
dipole moment, and the electric quadrupole moment. It
has been difficult, however, to formulate a consistent
spin-1 theory which includes the quadrupole degree of
freedom?; on the other hand, the most reasonable
model may be the one which neglects it altogether.?*
Neglecting the extra freedom, the magnetic and quad-
rupole moments as defined in Ref. 22 are

pw=(¢/2Mw)(1+x), Q= —(e/Mw’).

With these preliminaries out of the way, the matrix
elements, in lowest-order perturbation theory, corre-
spond to the Feynman diagrams in Fig. 1. Our notation

(2.3)

20 We therefore assume the W to be pointlike in its electro-
magnetic interactions in spite of its large mass. This is related to
the idea that the nucleon and pion form factors are due to hadron
clouds whereas the muon without such strong interaction is more
like an electron than a pion (although m,~m,).

21 Qur basic notation and conventions are those of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill,
New York, 19643; and Relativistic Quantum Fields (McGraw-Hill,
New York, 1965). In particular, Z=c=1, a=¢?/4r, and p=~*p,.
The over-all sign on the interaction Lagrangian for spin-1 electro-
dynamics given in their appendix is incorrect—this leads to some
sign errors in their rules. We are indebted to Professor Alberto
Sirlin for discussions on this sign problem.

2T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962);
T. D. Lee, ibid. 128, 899 (1962). The fields W, ¢, and ¢,
refer to the W+, u~, and »,, respectively.

% Recently Aronson [H. Aronson, Phys. Rev. 186, 1434 (1969)7]
found that the inclusion of an arbitrary quadrupole moment would
not necessarily violate relativistic covariance.

% See T. D. Lee, Phys. Rev. 140, B967 (1965).
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for four-vectors is also given in the same figure; in
particular, we define the laboratory notation

kiE (Ei:ki) ’ Pi'E (Epiapi) ’ k= (Ek’k) )
and

q=ps—p1, p=patp1.

Then the square of the c.m. energy and the “momentum
transfer” to the target are given by

S= (P1+k1)2) Tzqz7

respectively. We shall often use M w=1 units in what
follows.

Our interest is focused on the neutrino reaction (1.1)
now; comparisons with the muon case are presented
later in Sec. VI. In the case of a proton target (we con-
sider targets at rest) for an average over the initial
proton’s spin and a sum over all of the final spin con-
figurations,

1 a%gw? d®k, d°k d%ps
— 84 (b1—q—ks—F)F. (24)
321!'3 ElMp Eg Ek Epz

&=

Here,

F= TP, K g, LPHe (2.5)

in terms of the proton trace (and hence the proton
electric and magnetic form factors)

PVM= (Tgvu—QVQu)Gl+PvaG2,

Gi=GuXT), G=[GeX(T)+Gu*(1)]/(1+7), (2.6)
r=—T/4M 2,
the W polarization sum
Kﬁa= —gga-f—kﬁka, (27)

and the lepton trace

Lbrwe=Tr{ky(1+vs)[v*(qy'+ 2k ) F ' — (v*(2k+ )
+(1+x)(gg” —gPv") +r(1—r) (¢°k*— k- gg»)
+uk(TgP —gP)) B~ J(katw)[ (v g+ 2k2*)yF
—((2k+ Pyt (14-x) (gg**—v*q*)+u(1—x)

X (k*q*—k- gg»*)+ux(Tgr>—q*q*)) B} .

The muon mass has been denoted by x and the denomi-

nators of the fermion and boson propagators have been
called

(2.8)

F=(kytq)*—u?=T+2ksq,

B=(k+q¢)?—1=T+2k ¢, 29)

respectively.

We now choose the five independent variables (after
integrating over k, and Ej via the & function) for the
spin-summed differential cross section to be

T, U=(p1—Fk)% F, B,and N=p-k.  (2.10)

Then F=%(T,U,F,B,N) which is discussed in the
Appendix. It was easily handled by an algebraic com-
puter program.
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We describe the phase-space integration in Sec. III.
But beforegetting into that, we ought to mention that
our choice of U as an independent is due to the resulting
simplification in the transformation to the muon beam
case. The two situations differ by k1 <> —k., or simply

U—S, F—F=(ki—q—u?=¢>—2kiq. (2.11)

The quantity F’ is the muon propagator denominator
in reaction (1.3).

III. PHASE-SPACE INTEGRATION

The usual procedure? (making use of Lorentz in-
variance) is to analytically integrate first over the final
boson-lepton pair in their c.m. frame. This leaves us
finally with an over-all two-dimensional numerical
integration.

In detail, for the proton target, consider the frame
where k;—q=0 for a given p,;. Then the argument of
the energy 6 function is independent of the angles k,
and k, and we obtain

. 1 a’gw? dspz[ | k|
0=
32w3 ExM , Ep L Es+-E;
X/koS(T,U,F,B,N):I 3.1)
k1—q=0 frame

All of the arguments of &, save T, depend on the W’s
angular orientation and, to make the dependence
explicit, we use rotational invariance and choose k;
along a z axis and p in the corresponding x-z plane; the
angles of W are defined according to the axes shown in
Fig. 2. Further details of the integration over { are
given in the Appendix. Besides S and 7', the remaining
independent has been chosen to be

S'= (k+ky)?=T—B—F, (3.2)

the energy squared of the Wy duo in their c.m. frame.

Thus the results of the k; and k integrations can be
given explicitly and transformed in the manner de-
scribed in the Appendix to the laboratory frame (p1=0).
Here, we can make use of the azimuthal symmetry
about the beam direction and, orienting the z axis for
the ps integration along this direction, the ¢,, part
merely yields a factor of 2.

% See, for example, Refs. 4, 5, and 7.
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The remaining integration variables £,, and 6,,
(with respect to ki) are changed into 7' and .5’; this
change, essentially that made by von Gehlen* and by
Berends and West,” is convenient in view of the pres-
ence of our form factors. So we now calculate the
Jacobian according to

Epz=Mp_T/2Mm

3.3)
S'—T(1+Ey /M)
€0S0 p, = .
2F: | ps|
We have
1/ agw \? [(S"—1—p2)?—4p2]12
d2<r=——( )d!T]dS’
327 \E.M , S’
XG(S,T,5"), (3.4)

1
9,,5 —'l:/dﬂkg:l .
4 k1—q=0

The T and S’ integrations are handled most simply—
and as accurately as necessary—numerically: We em-
ploy a Gaussian quadrature routine. For a given allowed
value of 7<0, the minimum value of .S” is when the
muon and boson are at rest in their c.m. system. The
maximum value corresponds to the final proton going
forward in the laboratory for fixed values of 7. Then

S,max:2Ellp2| +T(1+E1/Mp) )
S,min= (1+I-l)2-

We see that S'min checks with the zero in the phase-
space radical of Eq. (3.4). Equation (3.5) tells us directly
how to find the allowed T range, since the maximum
value of S’ falls below S'min if |7 is either too large or
too small. Therefore

(3.5)

{lT[mu} _ b:l:(bz—4ac)1/2, 66

lTImin 2a

a=S/My%, b=4E2—25mi(14+E/M,), c¢=Smi’.

The limits in Eq. (3.6) correspond to the vanishing
of the S’ phase space; alternatively, the maximum
arises from the kinematical situation where the proton
is going forward (along the beam direction) in the over-
all c.m. system and the boson and muon are going back-
wards together. (They would be at rest in their c.m.
frame.) The minimum is when the proton goes backward
and the forward-going boson and muon again have the
same velocity in the over-all c.m. system. This last case
still corresponds to the proton going forward in the
laboratory since it cannot be left at rest there (let alone
go backward) for nonzero M w and u.

Finally we note as a check that the vanishing of the
T phase space, i.e., the vanishing of the square root in
Eq. (3.6) occurs at the threshold value of E; for the W
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production:

(Mw+Mp+p)*—M

3.7)
2M,

Ell threshold =

The phase-space discussion and formulas necessary for
the neutron or infinite-mass target go through in the
same manner. We may now give the numerical results.

IV. RESULTS FOR TOTAL CROSS SECTIONS

Implicit in our form factor and kinematics discussion
is the fact that we have not allowed for the possibility
of target “breakup.” In the proton case, it is possible
to consider this by using the recent deeply inelastic
SLAC and DESY measurements,? while in the nuclear
case the problem is much more complex. Here, however,
we shall just give results for the scattering of a neutrino
off of a free nucleon target and for the ‘“coherent”
scattering off of several nuclei tragets, both with no new
final states due to breakup. Later on in Sec. V we will
discuss the mixing of the coherent and incoherent modes,
hadron inelasticity, and other nuclear effects.

A. Nucleon Targets

Here we assume the target is a free proton or neutron
with mass M, or M,, respectively. A W boson can be
produced from a neutrino collision off of these targets
provided Ej is larger than the threshold value given by
Eq. (3.7).

The form factors are approximated by the dipole fit

and scaling law
G u(proton) G u(neutron)
Gg(proton)= o
2.79 1.91

~

1 d N 4.1)
“( [o.71 (GeV/c)2]>’ ’

Gr(neutron)=0,

according to the most recent data.?” In order to make
comparisons with previous work, we have also employed
a number of different form-factor fits.

The numerical integration of Eq. (3.4) over the limits
given in Eq. (3.6) is shown as an allowed T region (as a
function of E;) in Fig. 3 for the representative masses
Mw=35 and 8. For large E.>>Mw, M ,,, the maximum
value of |T| [cf. Eq. (3.6)] is asymptotically linear in
the neutrino energy

| T| max 71:0* 2M p,nE;q, 4.2)

2% E. D. Bloom e al., Phys. Rev. Letters 23, 930 (1969);
M. Breidenbach et al., 1de 23, 935 (1969); W. Albrecht ef al.,
Nucl. Phys. B13, 1 (1969) B. D. Dieterle et al., Phys. Rev.
Letters 23 1187 (1969) M. L. Perl et al., ibid. 23, 1191 (1969).

Coward et al Phys. Rev. Letters 20 292 (1968);
J. tht et al Phys. Letters 31B 40 (1970); W. Bartel ef al., ibid.
30B, 285 (1969)
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Fic. 3. Momentum transfer in (GeV/c)? versus the incident
beam energy in GeV. The solid curves are for M w=35 GeV/c? and
the dashed curves are for Mw=8 GeV/c% The line at |T| =0.25
(GeV /c)? represents the cutoff on the nuclear Fermi distribution.

reminiscent of elastic lepton-nucleon scattering. (Recall
that here the boson and muon go off together backward
in the cm. system as if they were one particle of
negligible mass.) The corresponding asymptotic mini-
mum value is inversely proportional to E:2,

S,minzN (]‘IW2>2
Yo 4R \2E
The independence of this result of the target mass is
related to the fact that any target can be left at rest at
extreme energies offering the minimum momentum
transfer case. (The boson and muon go off together
forward in the c.m. system.)

While the larger values of momentum transfer will
not contribute much to the cross sections (since the
form factors suppress these regions), it is interesting
that the smaller values for larger E; according to Eq.
(4.3) do not correspond to contributions as large as one
might expect. This is because of an important cancella-
tion for small T due essentially to gauge invariance.
(This was stressed recently in the ete~ calculation of
Berends and West.”) We show here explicitly how this
comes about.

After the k, and k integrations, the most general
kinematic singularity- and zero-free invariant ampli-
tude expansion deriving from Kg,LF#e ig?8

(Tgr—ga)A(T,S)+ [Thrkt*— k1 g(kr'g*+g%1¥)
+(k1-9)’g*1B(T,S). (44)

If this gauge-invariant rank-two tensor is contracted
into P,,, we obtain for a proton target

—G2S"*M ,2B(T,S")+ (terms with an explicit
factor of T).
28 W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).

| T mi (4.3)

(4.5)
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3 INTERMEDIATE BOSON.

Therefore the leading terms must conspire to cancel
partially for small momentum transfers and any mass
target. Notice that the small-7" limit corresponds to
the vanishing of phase space and the phase-space factor
and further note that G, of Eq. (3.4) is O(u?) in that
limit [owing to the (R;+u) factor in (2.8)7].

The aforementioned role of current conservation is
especially crucial in electron-positron colliding beams
since there M, is replaced in (4.5) by the electron mass.
In particular, a calculation in the literature?® of the
reaction

et+e— et-+FW—p,

was incorrect by a factor of a million simply because
gauge invariance was not maintained; there then ap-
peared an anomalous linear divergence in the electron
mass squared. Berends and West” have since calculated
this more carefully obtaining the correct cancellation.
As a check of our programs it was not hard to convert
our situation to the ete~ c.m. case and good agreement
with their results was achieved.

In spite of this cancellation, the small-7" region is still
the most important and the numerical integration has
to be done carefully over this region. Bearing this in
mind, we have calculated the total cross sections o, for
an assorted array of energies, boson masses and anom-
alous magnetic moments. The o, values for E; between
30 and 1000 GeV, My =35, 10, and 15 GeV/c? and
k=0, 313 are listed in Tables I-III for the proton.3!
These tables also illustrate the neutron case. To get a
better idea of the o, energy dependence, the proton and
neutron results are plotted in Fig. 4 for k=0, =1 and
Mw=7 GeV/c% Also, Fig. 5 shows do/d|T| for both
proton and neutron at E;=50 GeV, Mw=35 GeV/c?,
and «k=0.

We see that if the beam luminosities will allow the
measurement of cross sections on the order of 10-38
cm?, a proton will be an adequate target for upwards
of 10-GeV bosons provided that 100-GeV neutrinos are
available. It should be noted that the unit variation in
x changes the results very little and even the most pro-
nounced variations, which occur at large energies and
small My, are never as much as 509. The neutron
cross sections are consistently a factor of 2—-10 smaller
for the range of energies and masses in our tables.

In order to check our numerical work, we have calcu-
lated o,(nucleon) for several configurations of masses
and energies that were also considered by Wu ef al.?
When we used their form factors remarkable agreement
for every combination was reached (within 19;). The
difference wrought by changing to the dipole fit (4.1)
was only a few percent. The computations relating to
the input considered by Lee et al.! were also performed

2 E. A. Choban, Yadern. Fiz. 7, 375 (1968) [Soviet J. Nucl.
Phys. 7, 245 (1968)].

% Since the cross section is quadratic in «, these three cases
suffice to determine the x dependence everywhere.

31 Other numbers are available upon request.
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15 GeV/e2.

TABLE III. Same as Table I with My
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Fi1c. 4. Neutrino and muon total cross sections off of protons and
neutrons with dipole form factors Mw=7 GeV/c® and x=0,%1.

and good agreement (using the form factors of that
paper) was reached as well.

Some other higher-energy results tabulated recently?!s
are apparently incorrect. Even when we use the same
form factors that Berkov ef al. employ, we find that our
values are consistently about a factor of 6-10 smaller
than theirs for all of the cases that they considered—
nuclei and nucleon targets.

B. Nuclei Targets

For a first approximation of coherent scattering, we
treat the nuclei cases in the static limit. The target
mass M, is taken to be much larger than anything
else around and so the beam energy threshold, M w+p,
is much lower here since the target acquires negligible
energy. As we shall see, however, the nuclei form factors
drastically reduce the coherent cross sections unless we
are far above threshold anyway.

The electromagnetic form factor employed corre-
sponds to the Fermi nuclear charge density3?

pr(r)=C/(14—R1%),
R=1.07413X10~1 cm),
b=0.568X10"1% c¢m,

where A is the atomic number and C is determined by
S ps(r)d*=Z with Z the total charge of the nucleus.

(4.6)

32 R, Herman and R. Hofstadter, High Energy Electron Scattering
Tables (Stanford U. P., 1960). See also Ref. 3.
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Specifically, the form factor is
F;(q?) =4=0(500 MeV/c—IqI)/ r2dr
0

sin(|q|7)
Xps(r)——,

la|~

where, as an added condition, the region |7'|>0.25
(GeV/c)?has been cut off.? (Of course, T'= —q?= —p,2in
the static case.) This distribution adds an extra inte-
gration to our computer program. In checking our pro-
grams with previous results, we have had occasion to
also employ the exponential density!

pe(l’) = pe(0)6~(“/12)7/a,
a=(v/2)X(1.34'3) X107 cm,

which in turn leads to the familiar dipole form factor

(4.7)

(4.8)

Z
P1e(q2) = N (4'9)

(14+q%a?/12)?

Generally larger than (4.7), this also serves an upper
bound as well. Since the proton trace (2.6) is

AM LG wX(T)6u0bn0+0(1/M )],

in practice we have just substituted our nuclei form
factors for Gg and Gu, using some large mass target
(say 10 000 GeV) in our numerical work. In this way we
would simply convert the nucleon calculation to the
nuclei case and also, by reducing this target mass, check
the recoil effects on a spin-zero target (which were small).
A plot of |F;| for the two nuclei, neon and uranium, is
given along with the proton electric form factor Gg in
Fig. 6.

As in the nucleon target discussion, the 7" limits as a
function of E; are plotted in Fig. 3 for the M., case
according to the M, limit of Eq. (3.6):

I T[ max ’ !
ITI =2E12E1—‘S min/zb‘l2
min -_:l-_-(].—"Slmin/Elg) 1/2], (4‘10)
Therefore,
I TI max 4E12
{ } { (4.11)
l T | min By (S’)}lin,/2El)2g(M¥V2/2E1)2'

These asymptotic values can be compared to Egs. (4.2)
and (4.3); this comparison and Fig. 3 together show the
expected result. A static source can absorb larger
momentum transfers than the nucleon can but their
minimum values are the same for high energies.

The previous nucleon discussion concerning the
important regions of the 7' integration apply here as
well—especially since we truncate the Fermi form factor
q2>0.25 (GeV/c)2. A plot of do,/d| T| for an iron target
is shown in Fig. 5 for Mw=3, k=0, and E=50.
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(with dipole form factors) and iron (with Fermi form factors).
Here, My =35 GeV/c?, E;=50 GeV, x=0.

-42
10 5 0.

We have calculated the coherent cross section o, over
the same energies and masses considered in the nucleon-
target configuration. Even though the threshold for a
given W can be much lower in the coherent case, the
resulting minimum momentum transfer is so large for
the lower energies that the nuclei form factors suppress
the cross section below any observable value (cf. Fig.
5). Some various nuclei target results for neon, iron,
and uranium are listed in Tables I, II, and III, respec-
tively. More results are plotted in Figs. 7 and 8 at the
typical masses M w=3 and 8, respectively, for k=0.
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F16. 6. Nuclear Fermi form factors and the proton dipole form
factor versus |T'[. The solid line is for uranjum and the dashed
line for neon.
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F1c. 7. Incoherent total cross sections (in cm?) off of protons
and neutrons and coherent total cross sections (per proton) off-
of neon and uranium for the mass Mwy=3 GeV/c? and x=0.
The solid lines are for the neutrino-induced reaction and the
dashed lines are for the muon-induced reaction.

The coherent results are not surprising. For a given
mass My, we need to go to very large energies before
the factor of Z in the cross section per profon overcomes
the rapid falloff of the Fermi form factor enough to be
comparable with the individual proton scattering. Note
that the coherent form factors, especially for larger 4,
drop off much faster than those for individual nucleons
and thus the over-all Z? does not come into play until
sufficiently small momentum transfers are available.
It is also interesting to note that the increase in nuclear
spatial extension for larger 4 produces more oscillations
in the Fermi form factor (4.7) as seen in Fig. 6. This in
turn produces some bumps in o, visible in Figs. 7 and 8.

Again, we have checked our results against Wu et al.?
and obtained nice agreement with their published data
for nuclei. Also it should be stated that using the dipole
fit (4.10), we found good agreement (within 5%) with
the results of Lee ef al.?

V. INELASTICITY AND NUCLEAR EFFECTS

The coherent and incoherent cases represent idealized
extremes and in reality we shall be dealing with more
complicated situations when we talk about an actual
experiment. Even for hydrogen targets, the problem of
inelastic channels comes to light in view of the recent
data? from deep-inelastic electron-proton scattering.
In scattering from nuclei, besides a complicated in-
elastic channel possibility, there is the nucleon-nucleon
interaction which leads to something between an in-
coherent constituent scattering and a tightly bound
coherent collision. We cannot pretend to treat these
things carefully but an attempt will be made to cate-
gorize and crudely estimate these effects.

A part of our effort will be to take other calculations
in the literature concerning the effects of interest and

R. W. BROWN AND 7]J.

SMITH 3

apply their approaches here. The important questions
to be answered are (1) whether the nuclear distribution
complications will reduce our incoherent cross sections
below a visible level, and (2) whether the inelastic
channel contributions will overwhelm our elastic results.

In Sec. V A, we address ourselves to the inelastic
channels available for hydrogen targets. Section V B
covers the case of nuclei: target recoil, nucleon motion,
and the exclusion principle.

A. Proton Target

In scattering from hydrogen targets, the individual
hadron inelastic channels (e.g., formation of resonances
at the photon-proton vertex) can, in principle, be taken
into account. However, we expect the resonance form
factors to drop off as fast as the nucleon ones®?; this
expectation coupled with the larger minimum momen-
tum transfers and higher-energy thresholds leads us to
believe that the resonance contributions will always be
quite a bit smaller than our nucleon ones. One main
source of worry, however, is that the deep-inelastic form
factors do not fall off so fast and might give a large
contribution. This contribution to the neutrino-induced
reaction has already been treated by two authors,®:17
but not with the same result. Chen!$ finds it is always
smaller than that for the single-proton final state and
Folomeshkin'? states that this contribution is an order
of magnitude /arger. In view of this serious disagreement
it is important to have another evaluation.

Therefore we now reconsider an estimate of this
inelastic process which presumably includes a large
number of undetected final hadron states at the nucleon-
photon-hadron vertices in Fig. 1. Utilizing the notation
of Breidenbach ef al.,? we find, for some p,?=12 that

T T T T T
10737
10738
=N
© ~39
g 10
bh
10-40__
=41 ] »
10 NEON,
4
o URANIUM
0

E; in GeV
Fic. 8. Same as Fig. 7 but with M =8 GeV/c?, k=0.

8 W, W. Ash et al., Phys. Letters 24B, 165 (1967); W. Bartel
et al., ibid. 27B, 660 (1968); W. Albrecht et al., tbid. 28B, 225
(1968); C. Mistretta ef al., Phys. Rev. Letters 20, 1070 (1968);
D. Imrie ¢t al., ibid. 20, 1074 (1968).
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the analog of Eq. (3.4) is
L agw \* (8 —1—u)2—4uT]2
$o= ~—( il ) awd| T|dS’
32r\EM, S
XGel(S,T,8", W),

(5.1)

where G,m¢! is discussed later and in the Appendix.
Except for S'min, the limits of integration are now
changed from the proton case given in (3.5) and (3.6).
For a given T and W,

S’max: ZEllql + T(1+ El/Mp) - (EI/MII)A )

S'min= (1+w)?, (2
and for a given W, (3.6) is changed according to
a=S/M,*,
b=4F2—25" min(14+ E/M ) —2(E,/ M)A, (5.3)
¢= 5" min(S min+2(E1/ M )4),
with , \ \ s
A=W2=M,2, |q]=(*—T)"2, (5.4)
y=q'= Pl.q= ! [A-TT].
M, 2M,

Finally, since W? ranges from the single-pion threshold
to the maximum value allowed at a given Ej,

Wax=/8)—1—u,

5.5
Wmin=Mp+m7r- ( )

In calculating G,ire! of Eq. (5.1), the target trace
(2.6) now reads, in thelanguage of Drell and co-workers,3*

Pminel = 2Mp Wl'# ,

1 p1°q
n )

p1q
1,— —qu |Wa(Tw). .
X(#= g W), 60

where

99
va = (gv,u - _'F“)Wl(T)V)_i—

Assuming scaling (for »I¥;) and neglecting the longi-
tudinal photoabsorption cross section,® we write

wWo(Ty)=F(w), w=-—2Muy/T

=T\ W,

Wy= s

—T /14+R

%S, Drell and J. D. Walecka, Ann. Phys. (N.Y.) 28, 18 (1964);

S. D. Drell, D. J. Lévy, and T.-M. Yan, Phys. Rev. Letters 22,
744 (1969).

3 Scaling, first discussed by Bjorken [J. D. Bjorken, Phys. Rev.

179, 1547 (1969)], is in agreement with the data accumulated so

far (see Ref. 20). The experimental results from DESY [W.

Albrecht et al., DESY Report No. 69/46, 1969 (unpublished)]
are consistent with ¢;/0,=0.

(5.7)

and

RE al/m%O. (5‘8)
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F16. 9. Total cross sections (in cm?) for scattering off of protons
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deep-inelastic total cross sections. Again the solid curves represent
the neutrino-induced reaction and the dashed curves the muon-
induced reaction.

Finally, the crude fit to the data? used is

1—e (w—1)
F(w)y=0.4——. (5.9
14w/20

The factor (1+w/20)7! is consistent with the slight
drop in the data for large w and, more importantly,
yields the kinematic zero known to be present in »W,
at 7=0. It should be emphasized that the calculation
here is rather insensitive to the details of the fit (5.9).
For example, removing the (1+4w/20)~! factor increases
the cross sections about 20%,. If R is changed to, say, 1
we find a 10-209, decrease.

The three integrals over (5.1) are done numerically
and it is found that this contribution to the total
neutrino cross section is always less than the proton-
target contribution. We list the values for this along
with the previous numbers in Tables I-IIT; a curve
showing the energy dependence for Mw=7 and k=0 is
plotted in Fig. 9. We therefore agree with Chen; our
values are within 209, of his. Using Folomeshkin’s
ﬁt,17

b

F(w)=20.3, (5.10)
the inelastic cross sections are increased from the values
we have presented by a factor of 3 but are not an
order of magnitude larger than our proton calculations.
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B. Nuclei Targets

Nuclear effects are very complicated and would have
to be considered in detail if the W boson is indeed found
in future experiments. Here we only give a rough treat-
ment designed to estimate two important effects;
nucleon motion and the exclusion principle.

Wehave a close parallel here to the inelastic scattering
of electrons from nuclei. Taking into account only the
proton’s static charge interaction (the nucleons are
treated as massive) and summing over all nuclear states
so that closure can be implemented, we can write3¢

‘4
dlgl* |

if all energy transfers for a given |q|? are integrated
over. The two-body correlation function f; is small for
momentum transfers larger than the inverse of the
average nucleon separation, implying incoherent addi-
tion of the individual proton scatterings. For very small
momentum transfers, f» approaches unity and we obtain
coherent scattering. Inclusion of the N neutrons in the

TR IR D

36 S, D. Drell, in Proceedings of the International School of
Physics “Ettore Majorana,” Erice, Italy, 1969, edited by A. Zichichi
(Academic, New York, to be published); SLAC Report No.
SLAC-PUB No. 689 (unpublished). Kinematic refinements can
be found in S. D. Drell and C. L. Schwartz, Phys. Rev. 112, 568
(1958).
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nucleus to first approximation involves an addition only
to the incoherent part such that in our case, we could
say, in terms of the coherent cross section o,

o(total)=Zo,+No,+(1—1/Z)0.. (5.12)

However, (5.12) is too crude even for us. The Pauli
exclusion principle, being a many-body correlation,
prohibits small momentum transfers to the individual
nucleons and, furthermore, nucleon motion will lower
the threshold needed for a given M. To investigate
these effects on the incoherent cross section, we shall
use the Fermi gas model as a framework and incorporate
into our programs the exclusion principle effects of Bell
and Veltman® and the Fermi motion approach of von
Gehlen.4

We shall combine these two approaches in the follow-
ing simple fashion. The nucleon motion serves mainly
to lower the threshold for a given Mw. So, where the
slope of our cross sections is very large as a function of
E;, the cross sections are increased appreciably. On the
other hand, we have already seen for large Ei, that the
slope becomes more gradual and thus the motion effect
is negligible. But it is precisely where this becomes less
important that the exclusion principle (which in the gas
model suppresses the final nucleon momenta inside the
Fermi sphere) begins to play a role—since very small
momentum transfers are now realized. As an example,
we have plotted the changes in the proton and neutron
cross sections due to these two mechanisms for Mw=3
and k=0 in Fig. 10, and indeed they operate in mutually
exclusive regions. (We refer the reader to Refs. 3
and 4 for the details of this computation but it
should be noted that we do a four-dimensional integra-
tion now for the nucleon-motion effect.) The incoherent
results in Figs. 7 and 8 include these effects.

As a result of the noninterference between the two
nucleon effects, we have combined them into one cor-
rection and call the resulting total cross section ¢’ in
our tables and figures—hence we have not attacked the
problem of the motion effect on the exclusion suppres-
sion.’” Listing the values for the same array of masses
and energies that were considered in the previous calcu-
lations in Tables I-III, we see that the exclusion
principle effects a reduction of roughly 509 at high
energies for protons and 209, for neutrons. The Fermi
motion increases the probability of scattering near
threshold by factors of 2 or 3 as expected but only
where the cross sections are small to begin with. Also
this effect decreases as we increase the incident beam
energy. A total cross section including incoherent cross

sections would be something like
o(total) = Zo,’+ No,'+o.(nucleus) (5.13)

in the gas model. We have not explicitly listed this com-
bination but merely note that (5.13) is in some sense a
refinement over (5.12) and is probably to be preferred.

37 In this regard, see the remarks in Ref. 3.
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Nuclear recoil effects have been taken into account by
varying the “mass” of the nucleus in our coherent cal-
culation. If we take the actual masses rather than a very
large mass, we find very little change (less than 19;) in
the total cross-section values. This is presumably a re-
sult of the fact that the energy transfer is still effec-
tively zero due to the sharp form-factor cutoff [cf. Eq.
3.3)].

One might wish to add the (deep) inelastic calcula-
tions in some way to (5.13); here the exclusion-principle
effect is difficult to simulate by the lack of identification
of the final state. Although the motion of the initial
nucleons can be taken into account here in the same way
as in the ¢’ calculation, it involves five integrations and
is most simply estimated by analogy with the nucleon
case. As a result of recent conjectures,? our inelastic
calculation is probably a good first approximation for
the neutron inelastic cross section as well.

VI. MUON REACTION

We shall parallel our discussion here with what has
already been said about the neutrino reaction (1.1).
The Feynman diagrams for the muon reaction (1.3) in
lowest-order perturbation theory are also included in
Fig. 1. Here, k; refers to the initial muon and %, to the
final-state neutrino; then F of (2.5) differs from this
case by the substitution &y <> —k,.

We have in the laboratory

a?gw? dk, dk d°py
23208 k| M, Ey Ei E,
X 54(k1'—q—k2_‘k)g(T,S,F’,B,N) ,

S=M,*+2M ,E+p?, (6.1)
for an unpolarized muon beam and proton target. We
discuss polarized beams later in this section. Relegating
a more detailed discussion of & to the Appendix, note
that we have now chosen 7', .S, F/, B, and N as our in-
dependent variables in this section. Moreover, F’, de-
fined previously in (2.13), does not depend on the angles
of the W in the Wv c.m. frame:

Fr=8—u. 6.2)
This means that the procedure outlined in Sec. III is
even better suited for our situation here and, in fact,
was the method used in Ref. 7.

We will divide this section into four parts. Section
VI A will deal with the nucleon targets and their con-
tribution to the incoherent part of a nuclei cross sec-
tion, while Sec. VI B is devoted to the coherent
calculation. We give the results for the deep-inelastic
case in Sec. VI C. Finally the differences between the

3 ]. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975
(1969); S. D. Drell, D. J. Lévy, and T.-M. Yan, Ref. 34; H.
Harari, Phys. Rev. Letters 24, 286 (1970).
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analogous muon and neutrino cross sections are dis-
cussed in Sec. VI D.

Before this presentation, it is expedient to write here
the muon limits corresponding to Egs. (5.2) and (5.3):

S’ max= 2 I kll Iq‘ +T(1+E1/Mp) —(EI/MP)A+N27

S =1 (6.3)
and
a=S/M,?,
E, E; u2
b=4|k| 2—-2F'm;n<1+ ——>—2———A—2—A,
My M, Mp?
Ey u?
c=F’min(F’min+2———A)+ A. (6.4)
M, Mp

One can see that these are identical to (5.2) and (5.3)
(note that F/min=1—u?) in the limit x=0. We could
just as well have neglected the muon mass here, but it
is convenient to keep the general form for ease in trans-
forming to positron targets in other calculations.
Evaluated for the appropriate target and final hadron
masses, Egs. (6.3) and (6.4) fulfill the needs of the cases
which follow.

A. Nucleon Targets

The threshold for E; is effectively the same here as
in Eq. (3.11),

(MW+Mp,n)2—Mp.n2_.u2
Ell threshold = 5

2M 5,0

those changes due to the motion in some nucleus being
taken into account as before in von Gehlen’s approach.
Of course, the phase space is approximately the same
in the two reactions since we address ourselves only to
ultrarelativistic muon beams. The only difference is one
of principle; those limits which heretofore corresponded
to the final-state muon at rest in the Wy c.m. system
now are related to the final-state neutrino with zero
energy (e.g., S'min). As before,

l Ti max -E—l:: ZMP.nEl,

(6.5)

l T] min E’ F,min2/4E12-

The differential cross section for a proton takes the
form here

9’-" (S, T’ S’) 3

_— S'—1
)d{TldS’ (6.6)

1 g
20':———-—-—( [P
232x\| k| M, S

to be compared with (3.4). Notice that G, is the result
of integrating (6.1) over k; and k in the manner de-
scribed earlier and in the Appendix.



220

R. W.

1000

500

Llllllll

T IITTI[

T
1

I
300

E, in GeV

1 1 1 1
[} 100 200 400 800

F1c. 11. Values of the ratio a,/0, for scattering off of protons
with dipole form factors for boson masses of Mw=1, 3, 5, §,
and 10 GeV/¢2 Also, k=0.

We have carried out the computations for more or less
the same sets of (Ei;,Mw,) that were considered in
Secs. IV A and V B, i.e., the nucleon motion and ex-
clusion principle are treated in order that the incoherent
nuclei cross sections can be estimated. These results
are listed along with those from the neutrino reaction in
Tables I-III. We have also added the analogous muon
curves to those neutrino figures which show the effects
of varying « (Fig. 4), and which show the change wrought
by the nuclear motion and exclusion effects (Fig. 10).
Figure 5 displays do/d| T'| for the muon off of a proton
for Mw=5 GeV/c?, E1=50 GeV, and x=0. Finally,
Figs. 7 and 8 show the incoherent contributions of the
proton and neutron for M w=3 and 8 GeV/c? with x=0.
Our free-proton calculations are in excellent agreement
with Ref. 7.

A general conclusion drawn from the numbers and
curves is that for 40< E;<400 GeV and 3<Mw<15
GeV/c?, the muon results are smaller by two orders of
magnitude on the average—this factor diminishing for
larger energies at the same M w and increasing for larger
masses at a given F;. Both k=21 correspond to larger
cross sections than «=0 in agreement with the low-
energy calculations (albeit coherent) by Uberall.®

B. Nuclei Targets

Strictly speaking, we have the very low threshold of
;=M. But as in the neutrino reaction, the nuclei
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form factors cut off the cross sections drastically at the
corresponding large momentum transfers so that the
coherent is dominated by the incoherent until quite a
bit above threshold.

Our procedure in this part of the calculation is again
the same as in the neutrino program, Sec. IV B. The
target mass M., is considered much larger than anything
else; on the other hand, there is practically no change
in our results if the actual nuclei target mass is used.
In the static limit, (6.4) yields

{ITIM

=2|ky|[1—3F min/ | k1| 2
lTlmin}

(1 =F i/ | k| 2)12],

to be compared with (4.10).

To Tables I-III are added the muon coherent results
for neon, iron, and uranium. Also we illustrate the
energy dependence of the neon and uranium cross sec-
tions for Mw=3 and 8 GeV/c? in Figs. 7 and 8. The
qualitative statements that were made in Sec. VI A
apply here. An even greater discrepancy is found be-
tween these results and the analogous neutrino calcula-
tions—as much as three orders of magnitude difference
in many cases.

(6.7

C. Inelasticity

We apply the same fit (5.9) to the muon reaction in
order to estimate the deep-inelastic contribution to
reaction (1.3). The three-dimensional integral arising
in the cross section,

4

11 agw 2 S'—1
d3a=~———< >dW2d|TldS’

2 32x\k:iM ,, N
XG,inel(S,T.8", W), (6.8)
has the limits given by (6.3), (6.4) and
Wax=S)—Mw,
WS)—Mw 69)

I/I/min*_“ MW'+ My .

We refer back to Sec. V A for a description of the calcu-
lation and only remark that the question we try to
answer is with respect to the importance of such a con-
tribution compared with our nucleon contributions.

Our findings are that (deep) inelasticity leads to
roughly the same cross-section values as the single-
proton final state. This can be seen in Tables I-III and
in Fig. 9 which displays the four cases: neutrino and
muon, elastic and inelastic. Thus there is yet an average
difference of two orders of magnitude between the
neutrino and muon cross sections off of protons when
the estimated inelastic contributions are added.

D. Discussion of Neutrino and Muon Difference

It is clear from the start that we would not expect the
same cross-section values at a given beam energy for the
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neutrino and muon reactions. Besides the spin average
factor of one-half for the initial muon, the propagators
in Figs. 1(a) and 1(c) have different momentum de-
pendence. On the other hand, the approximate equality
of phase space and the appearance, in both cases, of
essentially the same boson-photon interaction [see
Figs. 1(b) and 1(d) ] would seem to say that these values
would not be terribly different.

A closer look reveals that an important enhancement
of the neutrino cross section over the muon cross sec-
tion can occur for nonasymptotic beam energies. This
arises because the virtual muon in Fig. 1(a) can get
much closer to its mass shell than the corresponding
virtual muon in Fig. 2(a). The propagator denominator
F in the former case vanishes as 7" does (neglecting u?)
when the I is parallel to the neutrino in the Wu c.m.
system. However, F'> M w?—u? in the latter case and,
moreover, |[B|>Mw? in both reactions. Therefore, of
the four diagrams in Fig. 1, the final-state muon elec-
tromagnetic interaction stands out until we get to
sufficiently large energies (where the W and g begin to
share the energy more equally).

In detail, when k|| k; in the Wy c.m. system, one can
show that

F=(Mw*/S)T+0(). (6.10)
Furthermore, F is generally small; in the laboratory
frame,

F=—2FEy(—T)"2 co86r,e+0(T\u?).  (6.11)
Therefore, since Ey/E; is very small (it is u/Mw at
| Twmin|) in the region of interest, |F|<<Mw? on the
average. Provided the numerators are comparable in
the two reactions, this displays the origin of the differ-
ence. That the numerators are of the same order follows
from gauge invariance: The ko/F and k;/F’ parts of the
neutrino and muon matrix elements cancel with the
k/B boson term. As a result, the denominator differ-
ences are crucial since the numerators in each matrix
element are effectively terms in ¢.

We can now explain the general features of our results
in terms of the previous remarks. First of all, the ratio
0,/0, increases with My for a given energy if we are
not too close to threshold, as seen in Fig. 11; for a free
proton with k=0, the relation is almost linear. Next, for
a given M w, the ratio decreases with an increase in Fj,
except near threshold where the size of | 7| is significant.
Presumably there will be a slow asymptotic decrease to
a factor of 2 (from the spin average). This is illustrated
in Figs. 11 and 12.

The ratios for the coherent calculation are much
larger and drop more slowly with larger E;, since the
nuclear form factors limit the ¢? region even more
severely to the minimum values. Here E,/E; increases
very slowly as a result and |F| remains much smaller
than M w? until even higher energies. We refer to the
iron curve at M =35 in Fig. 12 as an illustration of this.
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F16. 12. Values of the ratio o,/0, for scattering off of protons
and neutrons (with Pauli principle in the form factor), protons
with inelastic form factors, and iron with Fermi form factors.
The dashed curve shows the ratio for the total cross sections
calculated according to Eq. (5.13). Here, M w=35 GeV/c2and k=0.

It was important to see if the inelastic contributions
would show this large ratio since they might swamp
the elastic channels via the milder form factor. Although
the larger-¢? region is not cut off here, the propagator
enhancement mechanism continues to be important—
an inelastic ratio plot in Fig. 12 still shows a factor of
10-100 in our energy region. Furthermore, the deep-
inelastic channels do not swamp the elastic according
to our results.

Finally we note that at the higher energies where the
nucleon elastic and inelastic ratios begin to drop to
approximately 10, the coherent cross section is domi-
nant. Since the difference remains at two orders of
magnitude for E£; 51000 GeV in the coherent case, the
total cross sections for (1.1) and (1.2) off of any nucleus
appear to remain a factor of 100 apart. The total cross
sections, calculated according to Eq. (5.13) for iron in
the two reactions, lead to the ratio curve shown in Fig.
12.

The error made in averaging over the muon spins
makes matters even worse for reaction (1.3). Since the
higher-energy muons from pion decay in flight have the
wrong helicity for the initiation of W production, the
muon’s energy advantage over the neutrino is further
vitiated.?

VII. CONCLUSIONS
We have endeavored in this first paper to give a

reasonable estimate of the neutrino and muon dissocia-
tion into W bosons via an electromagnetic recoil from
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various nuclei at the NAL energies. In order to analyze
its experimental signature, the spectra of the W and the
“prompt” muon in (1), a study of the W polarization
and the spectra of its decay muon [cf. (1.2)] will be
presented later.3®

It is interesting that the muon propagator enhance-
ment of reaction (1.1) over (1.3) led to an average differ-
ence of two orders of magnitude in all effects and chan-
nels considered as far as the NAL region of interest is
concerned. There is still an order-of-magnitude differ-
ence even if we take into account the energy advantage
of the muon beams provided by pion decays.!® This
means, in particular, that even for those M w too large
to be produced by a given neutrino energy, initial
muons of two or three times this energy will see ex-
tremely small cross sections.

We have not looked at the problem of the Coulomb
field correction®® for the final-state muon in (1.1). As
mentioned in Ref. 2, this may be important and might
change the total neutrino cross section significantly.
The recent calculations of Nachtmann#' indicate a
correction of order Za/[ E,X (nuclear radius) ] in the re-
action v,+Z — u+2'.

After completion of this work we received a detailed
total cross-section study of reaction (1.1) performed by
Chen,*2 pertaining to cosmic-ray analysis and “standard
rock” nuclei. His work on the incoherent cross sections
paralleled ours and his results are consistent with the
results presented here. Moreover, he considered the
N*(1236) channel and found that, indeed, its contribu-
tion was never more than 209, of the proton-channel
cross section. On the other hand, if final-state pions are
not significantly vetoed in a given experiment, such a
contribution is on the same level as the neutron cross
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section. This should give some indication of the size of
effects not included in our work.

Note added in proof. Since the completion of our
manuscript, we have received two relevant papers.
Berends and West [F. A. Berends and G. B. West,
this issue, Phys. Rev. D 3, 262 (1971)] have exhibited
the difference between muon and neutrino W produc-
tion by way of a scalar model in covariant Weizsicker-
Williams approximation. Reiff [J. Reiff, Nucl. Phys.
B23, 387 (1970)] has performed neutrino and muon
calculations for Mw=3 and 6 GeV which are in good
agreement with our results.

ACKNOWLEDGMENTS

We thank C. N. Yang for introducing us to this
problem. We benefited greatly from many discussions
with A. K. Mann concerning the experimental aspects
of this work. Thanks are also due to R. L. Schult for
useful conversations and R. H. Hobbs for a careful
reading of the manuscript.

APPENDIX

We describe here the way in which the integrals over
k, and k were performed for both reactions (1.1) and
(1.3). Since most of the calculation was handled by
combining Veltman’s CDC 6600 algebraic program
with our own FORTRAN numerical integration routine,
the description here is mostly that of work the computer
has done for us.

The expression for § [Eq. (2.5)] is the input. After
taking the trace and substituting in terms of our set of
independents (2.16), a lengthy intermediate result for
the neutrino reaction is obtained:

§(T,U,F,B,N)
1/ 16 8B 16 10F 2Fr 2F? 16 16 1 1y 8 16
=Gl[—< ——————— —+2F———~+——————-—+B—15>+T<~+——>—-———~—
T\ FBL F F B B: B B B B: B/ F* FB
2F  2F 2 12 1/ 16U 32UM2 32UN 16U 4UFN
+— —————+~+2]+Gz[——<— - — ——— —2UF—4UM?
B2 B B B T2\ F? i FB  F B
16M* | SINMP AGBM? 16M' APNM: FMC 2PN 8FM?  2F°N
— + —_ —_ —_ — —_— —
P FB F F B B B
1 16N 16N ) 1/ 16U> 8U* 4U* 16U +32U N
“Fr— —— 42BM?—30M*42M ~4)+ —(— ——— ——
T T T\ FB B B F FB
32UM* AUFN S8UF 4UF 8UN 16UM* 4UN 8UM® 16U 32N M?
+ - + - —42U—
FB B2 B B B B B B B FB

39 R. W. Brown, R. H. Hobbs, and J. Smith (unpublished).
4 M. Veltman, Physica 29, 161 (1963).

410, Nachtmann, Nucl. Phys. B18, 112 (1970). It is asserted here, however, that a typical correction is less than 59, for
uranium and E,>1 GeV. We thank J. Cruncher for pointing out this reference to us.

2 H. H. Chen, Nuovo Cimento 69, A585 (1970). We thank Dr.

Chen for sending these results to us.
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16N 16N2 32M* 16M* 4B 8 4FNM?* 4FN 4FN®* 4FN 4FM? 2F
- - — —_— - — 4 — —F
FB FB FB FB F F B? B? B? B B B
2F?N F* Q8NM? 2N? 16M* 8M* A4ANM? 16N 2N? 4M* 4AM* B
- — S T R sl ————|—2M2+7.5)
B? B B2 B? B? B? B B B B B 2
<2U 4 F 2N 2M?* 235 + 1 1)-—{-—]‘21 1 202 16U 2UF 4AUN 4UM?
B FB B* B? B? B2 2B 2 B? B? FB B? B2 B B?
8U 4U 16N 16M? 8 4FN 2FM* 2F 2F F? ANM?2 4N 2N? 10M?
e +—+ T T
B2 B FB FB FB B? B2 B2 B 2B2 B? B? B? B2
2M¢ 4 2N 2M?* 5 1
bt —m— o] A
B2 B? B B B 2

where the muon mass was neglected? and the « terms
omitted.** Here, Mw=1 and for the proton case,
M=M, and [cf. Eq. (2.6)]

GIE GM2 )
G=[Gr*+Gu*]/(1+7).

For the muon reaction, one need only make the replace-
ments U — .S, F — F'. The trace for the deep-inelastic
estimates is somewhat lengthier but again easily
handled.*

The integration over dQ in (3.1) thus involves an
array of integrals each of the form (recall we are in the
Wu c.m. frame)

(A2)

1 1
Imm)=— d costy
-1

2T
/ g F'BmN™  (A3)
]

for various integers /, 7, and #. In terms of B and N,

U=2M*+u*—S—3(T+B)+N+4, (A4)
and in terms of 6; and ¢,
F=T+2¢"FE>+2|q] | k|cosby,
B=T+2¢°E;—2|q]| | k]| cosby, (AS)

N=pOE;,— | k| (p, sinfy cosei+ p. cosby).

4 Qur calculations have been done keeping all u? terms. How-
ever, one can neglect these terms in the region considered by us
with the resulting changes only of order 19,. This is presumably
due to the fact that u?2<M 2, Mw? the fact that the important
small-T" region is characterized not by kT]m;n but rather by
something between |7 |min and the form-factor cutoff, and the
fact that the terms in each order of u? must undergo some cancella-
tion themselves, according to Sec. IV.

“ The complete trace with all masses and « terms is available
upon request.

Of course, the situation is simpler in the muon case since
S and F'=S$"—pu? are independent of these angles.

The assortment (A3) were done by hand in a straight-
forward manner; the special-frame results were made
covariant with the following substitutions:

{(5'—u2+1)/2E', v

(S'+1)/2F, /t
|k| =(Ex2—1)12;
Ey=E'—E,

|ks| = |k|;

(—(s+D)2E,
qo—{—(5'~#’+T)/2E', b

lq| =(g*—T)V%

[S—-W2—4(S'-T))/FE, v

Po= {ES—Wz—%@'w—T)]/E', v

Ip| = (pe+T— 20 2 —2W2)1i2,
p-=(pogo—24)/1q|,

p2=p2—p,2.

These have been generalized to include the inelastic as
well as the muon elastic cases. Nowhere do we need the
sign of p, and everything now is a function of S, T, and

S'= (k+ k)’ =E'. (A7)

The result of the k; and k integrals thus imply the g’s
mentioned in Egs. (3.4), (5.1), (6.6), and (6.8).
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