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The S-matrix calculations for the P-wave scattering process of pions on nucleons are carried out with the
help of the N/D method. According to the Halizs method the numerator function N is considered in the
three-pole eEective-range approximation. We choose one of the poles in the nucleon pole, where the residue is
known. The remaining two residues (b;, i=1, 2) are to be calculated. We use the following input values:
the p-meson and pion-nucleon (3,3) isobar N discontinuities and the high-energy contributions in the
crossed channels, and the nucleon pole in the direct channel. The matching procedure is the usual one: The
right-hand side of one of the determining equations for the effective-range parameters b; is analytically
established by the projections of the invariant amplitudes with the aid of the fixed-s dispersion relations
in a regular point sz in the unphysical region. Then the complete determining equations are obtained by
comparing these projections and their derivatives, respectively, in the matching point sz. Having thus
determined the parameters b; and the effective-range N/8 amplitude of the state I=-';, I= ~, we compute
the scattering length a» on the basis of the noncorrelated physical parameters (g', m, Wz33,p). Its magnitude
a» ———0.019 is in excellent agreement with the experimental value of Harnes et al.

I. INTRODUCTION
' 'N some earlier papers on strongly interacting par-
- - ticles, ' ' the S-matrix calculations of the low-cnergy
partial-wave amplitudes, which are consistent with the
requirements of analyticity, elastic unitarity, and cross-
ing symmetry, have been carried out. For special
processes, which generally depend on physical quanti-
ties at the input and output, the natural requirement of
self-consistency in these calculations must be added.
However, the 1V/D method used here usually leads to
integral or intcgro-differential equations which may, as
a rule, be solved only numerically.

An approximation scheme which enables us to obtain
expressions for the partial-wave amplitudes which are
more suitable for analytical evaluation and consistent
with the aforementioned requirements, in a certain
region, has been worked out by Halazs. 4 In contrast
to the former approach, the nearby singularities of the
left-ha, nd cut in this scheme —called the effective-range
approximation —are replaced by several (in our case
two) poles.

The N/D equat:iona are treat:ed therefore in such a
way that the numerator function iV is given in the form
of a sum of fractions P; b~/(s s;) in which s; —denote
the chosen poles in the s plane and the effective-range
parameters b; coincide with the corresponding residues.
The essence of this method, a modihcation of which is
used here, consists in the determination of the residues.
The detailed procedure for that purpose is described
below. To check all these assumptions thc resulting
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.'t'/D part. ial-wave amplitude is then applied in deter-
mining thc P-wave scattering length a1~.

Thc equations and their effective-range parameters
(residues) b; in our approach are determined by com-
parison with thc theoretically given input values in the
point. sR in thc unphysical region. For morc details, we
have to say that the basic idea of the present paper lies
in thc special choice of these va, lucs. We use the analyti-
cal continuation of expressions which rcprescnt the con-
tributions of the discontinuities of the p meson and pion-
nucleon (3,3) isobar A'" in the crossed channels and the
nucleon pole in the direct channel. These expressions
are well known for the low-energy region and arc dis-
cussed by Frautschi and Walecka. ' The high-energy
contributions in the crossed channels are also taken into
account and expressed by the relationship between the
states in various channels, i.e., between the high-energy
states of the high angular momenta in the crossed
channels and the low-energy resonance in the direct.
channel. Thc corresponding contributions to the direct
channel are then added in the sense of their analytical
continuations into the regular point s~~.

The choice of the matching point sg is important in
two respects: (1) The contribut. ions of the other singu-
larities not considered on the input must be relatively
unimportant, so that thc residues may be dctcrmined in
a suSciently high approximation. (2) It is necessary
that the expressions for the partial-wave amplitude are
convergent. The point must lic in the unphysical region
where the unsubtractcd dispersion relations are valid.

After carrying out the corresponding projections into
thc point s~~, which represent the input values, the
residues b; for the 3 /D partial-wave amplitud'e I=-', ,
I=-.'„arethen found by the following method.

Thc system of the n determining equations for m un-

'S. C. I'rautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).
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known parameters b; is represented in the point sz by
equations (X/D)"'= f"'(ss), j=o, 1, . . . , e —1, where

j denotes the degree of the derivative. We use three
poles at one of which (the nucleon pole) the residuum
(b3) is known, and therefore we ha; e to determine only
two unknown parameters b;, i =1, 2.

The described procedure is carried out in Sec. II.
Then to verify the correctness of the calculations of
the P-wave S/D partial-wave amplitude with the iso-
spin I=—, in this approximation, we calculate the pion-
nucleon u«3 scattering length, which we compare with
the experimental value.

%e use the fol.lowing noncorrelated physical con-
stants as the input values: coupling constant g, the
nucleon mass m, the mass 8"g, and the width y33 of the
(3,3) resonance E~. Further, we chose the magnitudes
of the x-meson mass equal to unity, and the natural
system of units, i.e., A =c=p =1.In these units the nota-
tion is the same as in Ref. 6.

II. S-MATRIX CALCULATIONS
AND NJD METHOD

In the 5-matrix theory of strong interactions we want
to calculate here the e6ective-range formula for the
scattering of m mesons on nucleons for the state J=-', ,
I=~. Of special interest to us will be the determinations
of the parameters in the formula and then with the aid
of it, the calculation of the scattering length a«3.

In order to avoid a cut along the imaginary axis, we
work with the 1V/D method in the complex plane of the
total energy squared W'(=s). The barycentric system
is used for two independent variables of the pion-
nucleon scattering as the energy s and angle 8. Because
of the chosen units A=c=p, =i, where p is the pion
mass, we denote the nucleon mass as m, which is iden-
tical with what is denoted 3E/p in Ref. 6.

The leading idea of our approach is the comparison
of the integral E/D representation on the one hand with
the partial-wave projections rf&(s), (I=J——,'), derived
theoretically on the basis of the S-matrix theory, on
the other hand. Meanwhile, the former is a function of
the effective-range parameters 6;, which are to be de-

termined; the latter we shall construct in the spirit of
the pole theory with the aid of invariant Mandelstam
amplitudes IA )+, IBg+.

'&~(x,&')/'D~(~, &') ='f~('~~'(~), '&~'(~)). (1)

On the basis of the pole theory of the process under
consideration, the invariant amplitudes ~A &+, IB&+ may
be derived here from the fixed-s dispersion relations in
a known way. In particular, limiting ourselves to pion-
nucleon scattering, some of the projections rf&(s) (given
in terms of the invariant. amplitudes IA~", IB~+) are
identical with those given in Ref. 6. However, contrary
to these authors, our approach is more general, owing
to the fact that the high-energy states of the high
angular momenta in the crossing channels t and I are
also included.

The approximations we shall make in the JV/D
integral representation of Eq. (1) are the following:
On the left-hand side the numerator function cV is con-
sidered in the framework of the effective-range theory
and generally in the e-pole approximation, as a sum of
e fractions

n

"~'~(&) = 2 1
p

2 $$ ~

e'' '1+ sin' «+ )

which is the same as that of Ref. 6. Here q denotes the
three-momentum of the pion-nucleon scattering and is
given below by Eq. (8).

In two-particle unitarity the specification of symbols
in the E/D representation in Eqs. (1)—(3) is the
following:

~ For the details of the used method see Ref. 4.

Here s; are the poles in the complex s plane which need
to be chosen, and the parameters b, are the unknown
residues which belong to them.

For processes whose amplitude ful61 the requirement
of analyticity in the energy variable and which are ex
pressed with the aid of dispersion relations with one sub-
traction, the denominator function D, in the elastic
approximation, may be written as

s —s, " p(s')
rDi(s) = 1 — — ds'— ' V~(s'), (3)

sg S —Sp S —S

where the numerator function rlV&(s) is defined by Eq.
(2),' sg is fhe square threshold energy, so is the subtrac-
tion point, and p(s ) is the discontinuity on the right-
hand cut, free of kinematical singularities, which begins
at sg.

Suppose now that we know the right-hand side of Eq.
(1) expressed analytically in a part of the physical
region. By an analytical continuation into the neighbor-
ing unphysical region, in which the inhuence of uncon-
sidered singularities has become very small, it represents
a satisfactorily high approximation for the physical
partial-wave amplitude rf&(ss). In this way we can ob-
tain from Eq. (1) the determining equations for the
unknown parameters b;.

In the m-pole approximation~ for the numerator func-
tion rE&(s), we generally get the equations for the
parameters 6; by taking the derivatives up to the
(e—1)st order on both sides of Eq. (1).

By means of the cV/D amplitude analytically con-
tinued back into the energy range of the physical region,
we may obtain the partial-wave amplitudes which fulfil
all the above-mentioned requirements.

Further, we limit ourselves to the elastic scattering of
x mesons on nucleons speci6ed by the quantum num-
bers 7=32and I=2 (/=1+).

We use the normalization of the amplitude '~'fq+ in
the form
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We choose the poles s; in the three-pole approximation
for the 'I2Eq+ function in the points

sc = —m' s2 ———16m2 s3 ——m' (5)

where m denotes the nucleon mass. The parameters b;
are then the corresponding residues.

The residue b3 of the nucleon pole is, however, well
known in the literature,

b3=(8/3) f'm' 't'D)+(m') f'=(g/2m)'=0. 081 (6)

so that we have two unknown residues b~ and b2 which
completely determine the E/D amplitude in the low-
energy region.

In the '~'D&+ function (3), the threshold energy of the
pion-nucleon scattering is s~=n+, a+=(m~1)', and the
subtraction point may therefore be suitably chosen in
so=a . The discontinuity —p(s), which is also related
to the imaginary part of the amplitude 't'f~+(s)
='t'A&+(s), is given in pion-nucleon elastic unitarity as

Im "'A)+ '(s) = p(s) =—9'(s)/s— (7)

Here the square of the three-momentum q'(s) may be
derived in an explicit form:

q'(s) =(4s) '(s —n+)(s —u ), u~=(m&1)'. (8)

Note that Eq. (8) is identical with (2.9) of Ref. 6.
On the right-hand side of Eq. (1), the invariant am-

plitudes rA' (=—rA+ SB+) fu161 the Axed-s dispersion
relations represented by

R' 1 "A„'(u,s)
+ +—

m' —s m' —I x ~+ I —I,
1 "A'(t', s)

+ — dt'. (9)
4

Of all states in channels I and t in the low-energy region
we retain only the states described by the quantum
numbers J=~» I=~ in the I channel and J=1, I=1
in the t channel. They are well known from the previous
study. '

The contributions of these states are well represented
by the 6rst and second integrals in Eq. (9) with inte-
gration limits restricted to the low-energy intervals in
the corresponding crossed channels u and t, i.e., by the
(3,3) resonance and the p meson, respectively. The re-
maining parts of the integrals may be expressed in terms
of the low-energy resonances in the direct channels as

high e

A„(u',s) 1
—du'+—

A~(t', s)

R,' E„'
rA'(s, u, t) ——+ +-

m' —s m' —I
A„,'(u', s)

dN
II —I

1 Ag'(t', s) 1 A, '(s', t)+ — — dt'+ — —— ds'. (11)
$ —$

Analytical continuation into the point s=n =(m —1)'
in the unphysical region and projections of the invari-
ant amplitudes A' yield then a suKciently high ap-
proximation for the amplitude 't'f)+(s) LEq. (11)]:
) 2f .(s) —112f N (s)+(2f (N+)(s)+) Rf p (s)

+"'f) (")(s); s=s"=a . (12)

Here the particular contributions to the amplitude
come from the nucleon pole 1V in the direct channel s,
the (3,3) resonance E*, the p meson, and the high-
energy contributions in the crossed channels I and t.

Their explicit forms have been partly derived. ' We
express them by the analytical formulas (s=x')

"'f~+(")(x)=sa'((x m)P+Q)(~))/—'t'

+(x+m)P Q2(ng)/g'], (13)

1 A, (s', t)
ds' ~ (10)I

7l (3 3) $ —$

Thus we get the amplitude (9) distributed into all three
channels s, I, and t as follows:

Q)(~2)
"'f~+( '(x) = — f'q, ' [3x*(Ws+2m x)P~+ —'+(Wg 2m+x)—P~ ']P+

18

Q'(~2)
+L3x*(W~+2m+x)Ps+ '+(W~ —2m —x)Ps ']P—

4

3 72"'f (»(x) = (+x-'t~—m' 1) —(x —m)(—y&+—2y2) P.
16m m g

(14)

7' Q'(~3)+ —(x'+-', 4—m' —1)+(x+m)(y)+2y2) p —
) (15)

m 4

f' Wz' p+
)/2f (~)(x)—

3W~ —xPs'
' G. P. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

(16)
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aa = r8/q'+1, 2)3= tii,
—x*=rg/q, '—1, (19)

where Wii indicates the position of the (3,3) resonance
with the width ya3 =-,'f' and tii is the position of the n.-n.

resonance. For the factors y~ and y~ we take theoretical
values from the study of the electomagnetic structure
of the nucleon, y~= —4.91 and y2 ———11.7.'

Substituting relations (13)—(16) into Eq. (12), we
obtain one of the determining equations for the un-
known quantity b&. Then we get the second one for the
parameter b2 by differentiation of both sides of Eq. (1).

By the analytical continuation back to the low-
energy range of the physical region, we find the Ã/D
E-wave amplitude of the state I=—', . It is determined
by the effective-range parameters bi and b~ and by Eqs.
(3) and (2) supplemented by Eqs. (6)—(8).

The numerical calculations have been carried out
using the noncorrelated physical quantities

g' = 14.97, m =6.7974, Wig ——8.9674 (y = 1) (20)

given by experiment.
To make sure about the validity of the derived formu-

las in the low-energy range of the physical region, we
may test them by means of the pion-nucleon scattering
length of the state J=~, I=—,'.

Generally, the scattering length for the pion-nucleon
scattering process is defined with the help of the Ã/D
amplitude Lsee Eqs. (1)—(3)]

~i2r, 2z='1V&(a~)/a~'Di(a~), a~=(m+1)' (21).
Formula (21) applied for the 8-wave amplitude, I=-'„

yields, with the aid of Eqs. (2)—(7) and computed values
of the parameters b, (i =1, 2, 3),

aig = "'1Vi+(a+)/ap '~'Di+(a+) = —0.019. (22)

This value is in excellent agreement" with the experi-

' V. Singh and B. M. Udgaonkar, Phys. Rev. 128, 1820 (1962).
MAlthough there are also other less accurate measurements

and evaluations of the scattering length a» by different, even less
direct methods (see Refs. 10 and 13), it is necessary to say that
our value a» always lies within the limits of observational errors.

Here the three-momentum q is given by Eq. (8), as well
as the quantity q„.in the latter case the variable s is
replaced by the square W&', i.e., the position of the (3,3)
resonance in the complex s plane. The quantities
Q;(a;) (i =1, 2) are I egendre polynomials of the second
kind, of order i. The symbols Pz~, P~, a;, &; (i = 1, 2, 3),
and x~ denote

pimp
——(Wii&m)' —1, p~=(x&m)' —1, (17)

ay=Pi, /q' —1 (k=1, 2),
2)i ——x' —m' —2, 2)2 ——x' —2m' —2+Wing', (18)

mental value of Barnes et al'. "
ai3 = —0.016 (&0.008) . (23)

It is necessary to note that the 5-matrix calculations
of scattering length (22) have been based only on the
axioms of the 5-matrix theory and, of course, on several
postulates of quantum field theory on which this theory
is established, on the assumption about elastic unitarity
of the amplitude, and on the approximation (10) for
the high-energy states of high angular momenta in the
crossed channels. Besides that, the only physical input
quantities taken from experiment are the nucleon mass,
coupling constant g', and the position of the (3,3) reso-
nance in pion units. Otherwise there are no free param-
eters in the theory and no cutoff is introduced.

By means of the same procedure the other quantities
of the state J=—,', I=-,' may also be determined. "From
the iV/D partial-wave amplitude it is possible to derive
the general formula for the position of the (1,3) reso-
nance. This will be dealt with elsewhere.

According to the simple theoretical relations of the
partial-wave amplitudes I=~ and I=~3, the analogous
quantities of the state J=2, I=2, may be calculated. "
In this respect two remarks are important.

The same input values for both states I=2 and I=2
may fail to yield the same degree of approximation
unless the inelastic processes are sufficiently taken into
account. "

In the calculation of the (3,3) resonance, another
difficulty arises —the problem of self-consistency. The
input and output values 8"» and y33 in this case must
be equal and thus correlated with the input value
throughout the calculations.

We assume here that theoretically and especially by
including higher inelastic processes it would be in prin-
ciple possible to obtain the limiting values of these quan-
tities 8'33 and y33. For this reason we have started in
this paper from sufficiently verified experimental values.

"S.W. Barnes et a/. , Phys. Rev. 11'7, 116 (1960};11"I, 238
(1960).

"V. I'. Sachl, Nuovo Cimento (to be published).' I. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

'4 S. K. Bose and S. N. Biswas, Phys. Rev. 134, B635 (1964).
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