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perturbation theory can be removed by a counterterm
originating from the invariant functional measure. The
counterterm vanishes in the coordinate system uniquely

HONERKAMP AND K. MEETZ 3

defined by the condition g=1. The question of renormal-
izability is not affected by this result. The arguments
against renormalizability® remain untouched.
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Closed-Loop Calculations Using a Chiral-Invariant Lagrangian: An Addendum

Joun M. CHARAP
Department of Physics, Queen Mary College, Mile End Road, London, E.1, England
(Received 26 October 1970)

The significance of the condition on the metric detg;;=1, found in an earlier paper to lead to the elimi-
nation of the most divergent parts of the amplitudes, is explained on the basis of a paper by Salamand

Strathdee.

N a recent paper' we reported the result of applica-
tion of naive Feynman rules derived from the chiral-
invariant Lagrangian density for zero-mass pions,

L=30,$igii(¢)0u;, 1)

to closed-loop contributions to invariant amplitudes.
We remarked on the presence of contributions which
appeared to violate the equivalence theorem, in that
they depended explicitly on the choice of pion “gauge,”
or Weinberg’s function f(¢?). The contributions are
the most divergent parts of the amplitudes. They also
fail to vanish in the soft-pion limit, in violation of
Adler’s condition. It was shown by explicit calculation
that for the choice of gauge®

f(¢2)=f,,|:1_ g(};{;)_ ]%(%2)2

184 /¢2\3
——(5)+) @
15 750\ 1,2
these contributions vanished, and the Adler conditions
were satisfied.

In a note added in proof we remarked that the same
choice of gauge leads to the condition

8= detgﬁ:l (3)

on the metric, although we could offer no interpretation
of this condition.

We have since seen a paper by Salam and Strathdee?
in which may be found the missing explanation. Suppose
that for a general interaction one starts with a generat-

1]. M. Charap, Phys. Rev. D 2, 1554 (1970). .

2 An algebraic error in Ref. 1 has been corrected to give the
new coefficient of the last term. We are grateful to J. Honerkamp
and K. Meetz for pointing out our error.

3 A. Salam and J. Strathdee, Phys. Rev. D 2, 2869 (1970).

ing functional given in a canonical formulation by
2(t,7)= [ @o)am

Xexp{i/dx[wé—H(¢,V¢,7r)+]¢+]w] , (@)

where I and J are external source functions, and ¢ and
are a set of fields and canonically conjugate momenta.
Then, in passing to the manifestly covariant Lagrangian
formulation by setting J=0 and performing the func-
tional integration over , there results

2= [om) expli [ ilLoo0+161], ©

in which occurs a factor M(¢) which is not usually
included. This factor is given explicitly by

M(p)= / (du) exp{ —1 / dx[H (¢, Vo, motu)

oH %, Vo, mo

_H(¢; Vd),’ﬂ'o)] _M_M} ) (6)
To

and in fact is unity for theories in which the interaction

has no more than one field derivative. '

As shown by Salam and Strathdee, in the case of the
chiral-invariant theory with Lagrangian density as in
(1), the functional integration in (6) is Gaussian and
leads to '

) =exp] 1590) [ o) | @

In fact, it plays the role of a measure on the space of
the fields, so that (d¢)M (¢) is a chiral invariant.
Now it is clear that the generating functional becomes

2(1)= / (@6) exp / llwon o], ©
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where we have introduced
L=L—%i5“(0) Ing(¢). ©)

The usual derivation of Feynman rules from the
generating functional integral would treat L rather than
L as the Lagrangian density, and so would include
additional highly singular contact interactions con-
tained in the term proportional to Ing(¢). These terms,
although Lorentz invariant, are not chiral invariant
but they are needed to make the theory chiral invariant.
The situation is similar to that which was described by
Matthews? for gradient couplings, where the presence
of non-Lorentz-invariant contact interactions is neces-
sary to maintain Lorentz covariance of the theory.

We have checked that these extra terms do indeed

P, T. Matthews, Phys. Rev. 76, 684(L) (1949); 76, 1419(L)
(1949); 76, 1657 (1949).

1999

cancel explicitly the most divergent parts of the
amplitudes we had calculated previously. The equiv-
alence theorem is also restored since the amplitudes
after this cancellation do not depend on f(¢?). And
the Adler conditions are satisfied because, after this
removal of their most divergent parts, the amplitudes
vanish in the soft-pion limit.5

It is a pleasure to thank Professor Salam for drawing
my attention to Ref. 3.

® Note added in proof. Similar results to those described in this
addendum have been independently derived by other authors. At
the time of writing I am aware of the following papers: J. Honer-
kamp and K. Meetz, preceding paper, Phys. Rev. D 3, 1998
(1971); 1. S. Gerstein, R. Jackiw, B. W. Lee, and S. Weinberg,
Phys. Rev. D 3, 2076 (1971) ; cf. also, D. G. Boulware, Ann. Phys.
(N. Y.) 56, 140 (1970); V. Ya. Fainberg and R. E. Kallosh,
P. N. Lebedev, Phys. Inst. Report No. 170, Moscow, 1970
(unpublished). -
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Rapidly Rotating Pulsars and Jacobi Ellipsoids*
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In connection with the evolution of a rotating Jacobi ellipsoid through the emission of gravitational
radiation, we discuss the possibility that rapidly rotating pulsars can assume such triaxial, nonaxisym-

metrical configurations.

HE evolution of a rotating Jacobi ellipsoid by
gravitational radiation has recently been con-
sidered by Chandrasekhar'? and the possible bearing
of the results on gravitational collapse and pulsars
has been discussed.® We have also looked into the
problem* and besides obtaining similar conclusions
with regard to time scales and possible sources of
energy dissipation (i.e., just rotational kinetic energy
and gravitational potential energy in the present
context, though of course internal energy will also
contribute for the more realistic case), we show it is
highly likely that rapidly rotating pulsars can actually
assume a triaxial Jacobi configuration.
Classically, it is known that break-up of an object by

* Research supported in part by a Canadian NRC operating
grant.

1 Ontario Graduate Student Fellow (1969-70).

I Work done in partial fulfilment of the requirements of the
degree of M.Sc. in the Physics Department, Queen’s University,
Kingston, Ontario, Canada.

LS. Chandrasekhar, Phys. Rev. Letters 24, 611 (1970).

2S. Chandrasekhar, Astrophys. J. 161, 571 (1970).

3 For studies on the relation between gravitational radiation
and neutron stars, see, e.g., J. A. Wheeler, Ann. Rev. Astron. and
Astrophys. 4, 428 (1966); W. Y. Chau, Astrophys. J. 147, 664
(1967); W. Y. Chau and R. N. Henriksen, 4bid. 161, L137 (1970).

4 P. Srulovicz, Queen’s University Research report, Astronomy
Group, Physics Department, 1970 (unpublished); see also P.
Srulovicz, M.Sc. thesis, Queen’s University, 1970 (unpublished).

fission or equatorial mass loss could set in before the
object can attain a large enough angular momentum for
the triaxial configuration to be energetically favorable.
While such factors as viscosity, differential rotation,
etc., complicate the problem tremendously, it turns
out that for the case of a uniformly rotating, inviscid
gaseous mass with the pressure P and density p obeying
a polytropic relation P«p™ (the constant # is called
the polytropic index), a simple answer is available.5
There exists a critical index #,~0.8 such that for
objects with #<m,, a triaxial configuration can be
realized. With #>#,, on the other hand, break-up
would set in first.

Neutron stars probably cannot be described in terms
of a complete polytrope (a single # for the whole object),
but we should still be able to gain some insight by
assigning an effective polytropic index. We have done
this by taking the recently published equations of state
describing matter at nuclear densities® and trying to
fit a curve of the form P=4p? to the values of P and

®R. A. James, Astrophys. J. 140, 552 (1964).

¢J. M. Cohen, W. D. Langer, L. C. Rosen, and A. G. W.
Cameron, Astrophys. and Space Sci. 6, 228 (1970); B. K. Harrison,
K. S. Thorne, M. Wakano, and J. A. Wheeler, Gravitational
Theory and Gravitational Collapse (Chicago U. P., Chicago, 1965);

W. D. Langer and L. C. Rosen, Astrophys. and Space Sci. 6
217 (1970). P P
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