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Charap has found a particular system of pion coordinates leading to chiral-invariant amplitudes, if the usual
Feynman rules are applied. It was shown that this system is determined by the condition det(gx) =1, where
gir is the metric tensor of the pion space. In the general case the Feynman rules are modified by a counter-
term that can be derived from an invariant measure in function space. The counterterm vanishes for g=1.

N a recent article, Charap! has discussed the pertur-
bation theory of the chiral-invariant Lagrangian for
pions. Although we do not believe that it is likely to
be useful from”a’physical point of view to pursue the
perturbation theory of chiral-invariant Lagrangians
beyond the tree approximation, we would like to make
some technical remarks which answer the questions
posed by Charap’s article in a completely satisfactory
way.
The pion Lagrangian invariant under the nonlinear
realization of SU(2)XSU(2) may be written in the
geometric form?

L(=)=4gix(x)durdin", 1)

where ¢ (i=1, 2, 3) are the components of the pion
field. They are components of an isovector. Hence the
metric g is an isotensor with the general decomposition

gik<7€) =a(ﬂz)5ik+b(ﬂ2)7r7;1rk. (2)

The Riemann space associated with the metric is the
homogeneous space SU(2)®@SU(2)/SU(2), which can
be identified with the three-dimensional sphere S;2
This leads to the further condition

Ri= 2/ f:*)girs ©))

where Ry is the Einstein-Ricci tensor, and fr is the

radius of the sphere. It may easily be checked that
relation (3) is satisfied, if we express @ and b in terms
of Weinberg’s® function f(=?):

22 4x2(f12—4ff'—1)
N )
f2+ﬂ2 f2+ﬂ2

After all, we are free to choose an arbitrary function
f(=?), put it into the Lagrangian, and start perturba-
tion theory. Charap' calls a change of f a gauge trans-
formation. We prefer to speak of coordinate trans-
formations, because any change of f may be achieved
by a transformation of the pion coordinates

1r"'=11'"¢(ﬂ2), 1’=1; 2: 3 (5)

(¢ arbitrary), as has already been shown by Weinberg.?
To apply perturbation theory one has to expand the
functions a, b, and f into powers of =2/ f.2. We use the
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same notation as Charap,’

a(xt)=} 5 a(l)
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Relations (4) can then be used to express a, and B, in
terms of @y, @1, ..., . Having looked at the graphs
up to order (1/f.)%, Charap arrives at the following
conclusion: If we just use the simple Feynman rules,
the resulting amplitudes do not satisfy soft-pion
theorems like Adler’s condition,* nor are the amplitudes
independent of the choice of pion coordinates on the
mass shell. In fact, Adler-type conditions are violated
by the most badly divergent terms. But there is a
unique choice of coordinates, for which the soft-pion
theorems hold for all amplitudes. The corresponding
function f has been given by Charap' up to order

Wi 2 =? 9 /m2\?
f("2>=f“[1‘3};‘1"73(}§)
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which gives to this order
g=det(ga)=1. ®)

One wants to know why the soft-pion theorems hold
only in the coordinate system with g=1. This can best
be understood by functional methods. Let us first
consider the trivial case of the free-field pion Lagrangian

L(W) =%5ika“7ria"7rk. )

The measure in function space, which has to be used to
calculate the generating functional of the time-ordered
Green’s functions, reads

[d=]= —;— exp(i / & L(«))I} d=(x),  (10)
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where

(11)

Z= / exp(i / d L(n))I;I dm(x)

and the product is to be extended over all space-time
points x. The measure (10) is correct only if we use
Euclidean pion coordinates for which

gt =0k (12)
Let us now transform to curvilinear coordinates,
7r,i=7r”(”) ’

™ Ir™

(13)

gik,(ﬂ,) = an - .
or't 'k

The functional differential is transformed as

I1 d='(x) =detD I d=(x). (14)

Here D is the functional transformation matrix
om(x)
on'*(x')

ot
Dy (x,x") = =d(x—x') —a—Tk(x)
m

= 6(x-—-x')A.,-k . (15)
In order to calculate the determinant of this matrix,
we use a method given by Boulware.® We start with the
general formula

detD=¢TrInD (16)
and define the matrix InD by
[InD(x,x") Jix=06(x—«') (InA) ;.. W)

Hence,

detD=¢Tr D = exp<6 0) / d*x Tr InA >
=exp(5(0)/d4x ln\/g'), (18)

or®

01r"‘> . (19)

Dropping the primes, we obtain the functional measure
for curvilinear pion coordinates,

where

Vg =detA= det(

[d=]= % exp(i/d“xL(n)—f— 5(0) /d‘*x Inv/g )
XII d=(x), (20)
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where

L(z) =3gux(m)dymidra®

Z= / exp(i / d*x L(=)+5(0) / d4x1n\/g>

XIT d=(x). (21)

This measure is invariant under general coordinate
transformations in the pion space.

The chiral-invariant Lagrangian (1) is related to a
pion space of constant curvature.? In this case we may
also use (20) as an invariant measure in function space.
As is seen from (20), we should obtain an invariant
perturbation series, if we apply the simple Feynman
rules to the modified Lagrangian

L' (m)=L(=)—16(0) In/g(m). (22)
We write

L'=5(0um)*+Ly, (23)

and use the expansions (6) to calculate the total inter-
action Lagrangian L;:

L= (1/f+*)3[a1=*(3,m)?
+B1(= - 9u=)2—16(0) Bar+B1) =* ]+ (1/f+*)
X3{az(2)2(0um)?+Bs (- 0um)?- =2 —i5(0)
X [Baz+B2—3 (34201814812 J(=2)2} + - - - .

It is not difficult to check that the most divergent
terms violating the soft-pion theorems are in fact
canceled by corresponding terms of —5(0) Iny/g. In
second order of 1/f, we have

(24)

%

1
%i-——(Sal—I—ﬁl)wzi/ s
I (2m)*

as the most divergent contribution to the pion self-mass.
It is canceled by

—35(1/ f+3) Bar+B1) =5 (0) .

In fourth order, the constant term violating Adler’s
condition for the pion-pion amplitude is given by

a‘k

1
Yi-—(3antB) (=9
tfw“( Aa)l) l/ (2m)4

4

1
+5§:2 };;2(3a12+2a161+612)(ﬂ2)2i2/ (21)4-

Again it is canceled by ,
—34(1/ f+*)[3eatB2—3 BarP 420181481 ] (=2)%5(0)

etc.
We have thus seen that the most divergent terms in
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perturbation theory can be removed by a counterterm
originating from the invariant functional measure. The
counterterm vanishes in the coordinate system uniquely
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defined by the condition g=1. The question of renormal-
izability is not affected by this result. The arguments
against renormalizability® remain untouched.
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The significance of the condition on the metric detg;;=1, found in an earlier paper to lead to the elimi-
nation of the most divergent parts of the amplitudes, is explained on the basis of a paper by Salamand

Strathdee.

N a recent paper' we reported the result of applica-
tion of naive Feynman rules derived from the chiral-
invariant Lagrangian density for zero-mass pions,

L=30,$igii(¢)0u;, 1)

to closed-loop contributions to invariant amplitudes.
We remarked on the presence of contributions which
appeared to violate the equivalence theorem, in that
they depended explicitly on the choice of pion “gauge,”
or Weinberg’s function f(¢?). The contributions are
the most divergent parts of the amplitudes. They also
fail to vanish in the soft-pion limit, in violation of
Adler’s condition. It was shown by explicit calculation
that for the choice of gauge®

f(¢2)=f,,|:1_ g(};{;)_ ]%(%2)2

184 /¢2\3
——(5)+) @
15 750\ 1,2
these contributions vanished, and the Adler conditions
were satisfied.

In a note added in proof we remarked that the same
choice of gauge leads to the condition

8= detgﬁ:l (3)

on the metric, although we could offer no interpretation
of this condition.

We have since seen a paper by Salam and Strathdee?
in which may be found the missing explanation. Suppose
that for a general interaction one starts with a generat-
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ing functional given in a canonical formulation by
2(t,7)= [ @o)am

Xexp{i/dx[wé—H(¢,V¢,7r)+]¢+]w] , (@)

where I and J are external source functions, and ¢ and
are a set of fields and canonically conjugate momenta.
Then, in passing to the manifestly covariant Lagrangian
formulation by setting J=0 and performing the func-
tional integration over , there results

2= [om) expli [ ilLoo0+161], ©

in which occurs a factor M(¢) which is not usually
included. This factor is given explicitly by

M(p)= / (du) exp{ —1 / dx[H (¢, Vo, motu)

oH %, Vo, mo

_H(¢; Vd),’ﬂ'o)] _M_M} ) (6)
To

and in fact is unity for theories in which the interaction

has no more than one field derivative. '

As shown by Salam and Strathdee, in the case of the
chiral-invariant theory with Lagrangian density as in
(1), the functional integration in (6) is Gaussian and
leads to '

) =exp] 1590) [ o) | @

In fact, it plays the role of a measure on the space of
the fields, so that (d¢)M (¢) is a chiral invariant.
Now it is clear that the generating functional becomes

2(1)= / (@6) exp / llwon o], ©



