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If the symmetry breaking in nonlinear Lagrangian theories depends on derivatives of boson fields, then
the covariant derivatives D, ¢, lose their nice transformation properties.

N the construction of nonlinear chiral Lagrangians!
the following procedure is universally followed:
Using covariant derivatives of boson and fermion fields,
and the fermion fields themselves, but #of the boson
fields, one constructs a Lagrangian density £o(x) in-
variant under SU, (n=2, 3). As shown, for example,
by Coleman, Wess, and Zumino,? such a Lagrangian
density will then be covariant under SU,XSU,, also.
One now adds a symmetry-breaking term e£’(x) in
order to obtain partial conservation of axial-vector
current (PCAC). The constant ¢ is the symmetry-
breaking parameter. If the initial symmetry is realized
in terms of Goldstone bosons, as is the case for a
Lagrangian density £, independent of the boson fields
¢a, and if PCAC is taken to mean the dominance of all
matrix elements of 9,®.*(x) by the corresponding boson
pole, then £'(x) need not be a function of the fields ¢,
only, but can depend on boson and fermion fields as
well as their derivatives.? Lam and Lee* have used this
freedom in order to obtain an SU3X.SU3; Hamiltonian
density breaking term J¢’(x) with the transformation
properties suggested by Gell-Mann, Oakes, and Renner,?

3¢’ (%) =uo(x) +cus(x) , 1

and depending on the boson fields ¢,, the fermion fields
¥, and the covariant derivatives of ¢, Dypq, in the
following way:

GC,('”) = g(‘Pu,‘p)‘*'gabDu(PaD"ﬁﬂb. (2)

As Okubo® has pointed out Lam and Lee* as well as
the authors whose work was alluded to above assume
that the objects

Dyoo=das(0)dues, (3a)
Dyy=0u~+iMo(0)(0upa)¥ (3b)

defined to have formal covariant transformation
properties in the initial, symmetric theory, continue to
have these properties in the case of broken symmetry.
This, however, is not obviously true since, in order to
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find the functions d.s(¢) and M.(p), one! uses the
interchangeability of the vector and axial-vector
charges V, and 4, with d,, which one cannot do when
the symmetry is broken and the 4, are time dependent.

In fact, we show below that D,¢, and D,y retain the
correct transformation properties

[46,Dues]=—1vac(¢)ccraDuea, (4a)
[Aa:Dn\b]:vab(‘P)thu‘l/ (4b)

in the case of time-dependent A, only if the theory
satisfies’
(5a)

a(au@a")/a‘i’:o; (Sb)

where w3 is the field canonically conjugate to ¢s. The
notation is close to that of Ref. 1; v,,(¢) is the fermion
field transformation function

[A a,lﬁ] =vab(¢)tb¢ )

where /; is the isospin matrix appropriate to ¥, the ¢,
are the structure constants of SU,XSU, (=2, 3), and
@.*(x) is the ath component of the axial-vector current
density. It is clear® from conditions (5) that if one
wants the transformation properties of D,p, and Dy
to be those of Egs. (4), then neither the breaking sug-
gested by Lam and Lee, Eq. (2), nor that by Dashen,?
in which

(9, Q")/ 91y =0
and

anaa“(x) &< 5';757'(1‘[/ ’

is acceptable. In fact, if “covariant derivatives” are to
remain covariant in the broken theory, we must have
conventional partial conservation of axial-vector

current (PCAC),?
IuQa*(x) =€pa(x). 6)

7 All commutators in this paper are assumed to stand for equal-
time commutators.

8 We can clarify this a little more by noting that for a general
type of breaking in which £’ =&'(¢,¥,0,¢,0.4), one has

9L 9L AL AL
a¢bfab a(a“%)aufab ) Yabinl a(a“‘p)au(hbfm//),
where f4,(¢) is defined by Eq. (8). Here £=£¢+ £, and one
?houh; be referred to D. K. Campbell, Nuovo Cimento 58A, 547
1968).

® Two minor points should be made here. First, the right-hand
side of Eq. (6) is not unique in that any function of the field ¢,
with appropriate transformation and normalization properties
can replace it. For us this merely amounts to a redefinition of the
boson field. Second, it is implied that we are working with the
fields ¢, and ¢ only. If canonical commutation relations are as-
sumed, one can add anomalous terms depending on fields other
than ¢, and ¢ to the right-hand side of (6) without affecting the
covariant derivatives D, ¢, and Dyp.
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We now proceed to show how Egs. (5) follow from
the demand that Eqgs. (4) should hold when the 4, are
time dependent. Using (3a) in (4a), we find

[A a>dbc(¢)]an¢c
+dbc(‘P)6M[A ay ‘Pc] _dbc(<ﬂ)|:auA ay‘Pc]
= —104,(0)CcradacOupe. (7)

For p=1, 2, 3 this leads to

dds, ac
cfaeau¢c+dbc'——au(Pe='uacccbdddsau<ﬂe; (8)
dp. 0@,

since in that case 9,4,=0. In Eq. (8), faus(¢) is the
boson transformation function satisfying

(4o eu]=—ifu(e). ©)
For u=0, Eq. (8) becomes
ddp. 0fac
' fue¢c+dbe _'dbc[Aa)<Pc]_vacccbddde¢e' (10)
d¢e a¢e

Factoring out d,¢. in (8), one gets

0 fae
ae be

dpe. Ao,

adlzc

= 7)accel)dddc y

and using this in Eq. (10), one ends up with
dy[A a0, ]=0.

It can be seen in general? that ds.(¢) is a nonsingular
tensor!® so that d=',3(¢) can be defined, and we are

led to .
[de,05]=0

[[AG:H]a¢b]=07 (11)

where H is the Hamiltonian of the theory. If one writes

or

H= / d*x3C(x),
then the equation
34 Qat(x) =i[3C(x),44]

(which is due to Gell-Mann,'*% and shown by Campbell?
to be valid independently of the type of breaking used)

10 A tensor Tas(¢) is nonsingular if 7'45(0) =const X 8.
11 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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allows Eq. (11) to be rewritten as

/ 49,8a4(2), 0o(5)1=00. 12)

The integrand of (12) is an equal-time commutator and
can be expanded as follows:

[9,Ga(x),05(y)]

a( w@a®) (

——Le®), o0 ]+ —— [rc(x),sob(y)]

Pe

(#a)

—— @), eI+ -+, (13)

where the dots stand for commutators of ¢, with all of
the remaining independent fields participating in the
construction of 9,@.*(x).2 If canonical commutation
relations are assumed, all but the second term vanish
and we are led to condition (5a). Equation (5b) is
derived in a completely analogous fashion.

Using the fact that the Lam-Lee theory does not
satisfy Eq. (5a), it is now a straightforward matter to
show that their Hamiltonian density actually does not
have the transformation properties (1), as they assumed.

It is 1nterest1ng that condition (5a) was obtained by
Gottlieb' in an independent way. He demands that a
broken chiral theory produce conventional time-
component-space-component current commutators
starting from the wusual time-component-time-
component commutators

[@/ao(x)) @bo(y):, =i6abc@co(x)53(x ‘y) )

and finds this possible only if 9,@.* is independent of
field derivatives.

We emphasize that, even though the use of breaking
terms which are functions of field derivatives is, in
principle, possible, they lead to a change of the trans-
formation properties of most of the objects in the
theory; thus, as an example, £, will no longer be chiral
symmetric, but will have a variation proportional to
the symmetry-breaking parameter e.
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