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Extension of the Mass Operator in the Symmetric Quark Model for
Negative-Parity Baryon Resonances
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The two-body mass operators 3518&'& ', M»&'&L', and three-body mass operators M»z' ', M»zp ',
are considered in fitting the negative-parity baryon resonances in the SU(6) &&O(3) multiplet (70, 1 ). The
latter operators split the degeneracy of the 6 resonances in the decuplet. A least-squares fit to the latest
experimental data is performed, and the results are in excellent agreement. It is suggested that a search be.
made for the two 0 *'s.

I. INTRODUCTION

'T was erst suggested by Dalitz' that the negative-
~ - parity baryon resonances could be fitted in the
(70,1 )=(SU(6),J~) multiplet. Employing the sym-
metric quark model with orbital excitation, ' Greenberg
and Resnikpff 3 carried out a detailed calculation and 6t
of the seven negative-parity baryon resonances which
were known at the time. With the same two-body mass
operators, Divgi and Greenberg4 reanalyzed the results
one year later with a best 6t to 14 baryon resonances.

It is reasonable to ask whether yet another analysis
of the negative-partly baryon resonances is required, so
we start with a justification for this article. There now
exist 20 established baryon resonances' ' in the energy
range 1400—2000 MeV; the possibility arises, therefore,
of predicting the remaining ten isomultiplets of the
supermultiplet (70,1 ) with a greater degree of preci-
sion. In addition to the number of new resonances which
have been established since the publication of Ref. 4
and the revised values of the masses of the old reso-
nances, there is now clear experimental evidence for
the existence of two 6 resonances' with J = —,

'—,—,
'—at

1650 and 1670 MeV, respectively. As was pointed out
in Ref. 4, the two-body spin-orbit (or tensor) forces
will not split the j=2, 2 d (or 0) resonances of the
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decuplet. The three-body spin-orbit operators M»~~'~
and M35D' ', however, do split these resonances, and
are calculated in this article. For completeness, we have
also calculated the two-body spin-orbit mass operators

898&L s and M&898sL s which are npt cpntained in
Refs. 3 and 4.

A ht of the 14 established resonances contained in
Table I is attempted with both a seven- and eight-
parameter mass formula, the 4 $=0 antisymmetric
mass operators M~', %35', &~89', the two spin-orbit
mass operators 3f35' 's and &35' ', and the spin-orbit
operators ~xs9' L' %~89'sL M 'L' and &35~
acting separately or in pairs. Though the two-body spin-
prbit pperators ~&89 L s pr ~$898sL s prpduce a gotxI
Gt to the experimental resonances, either separately or
together with the three-body operators, they also predict
Z resonances at 1588 MeV or below. (A possible Z~
resonance' PI~ exists at 1560 MeV with positive
parity. ) The next highest Z resonance, a hm. enhance-
ment at 1618, is 30 MeV above the lowest predicted Z
resonance; hence we reject the 189 spin-orbit operators.
We 6nd that a small three-body spin-orbit contribution
from the 35' or 35~ operators provides an excellent 6t

TABLE I. Experimental data for resonances in the ('70, 1 ).
The partial wave, JP assignments, and mass values are from Refs.
5 and 6.

M

Resonance

D13' (1520)
S11'(1535)
D„(1670)
S1j"(1700)
D13"(1700)

S31(1650)
D33 (1670)

1635
1930
1815

JP
3—
1—
2
5—
2

3—
2
1—
2
3—
2

5 —p

3-9
2 ~

Resonance

Sp1 (1405)
Dpg'(1520)
Sp1'(1670)
Dp3" (1690)
Do (1830)
1618
D (1670)
1690
S1 (1750)?
D»(1765)

JP
1—
2

3—
2

I—
2

A linear combination of the two M183'L s mass operators has
also been calculated by D. R. Divgi, thesis, Part I, University of
Maryland, 1969 (unpublished).' L. Armenteros et al. (CERN-Heidelberg-Saclay collaboration)', ,
in Proceedings of the Lund Internatzonal Conference on Elergentary
Particles, 1969, edited by G. von Dardel (Berlingska, Lund,
Sweden, 1969); also referred to in Ref. 6.
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with the data. Thus, one new spin-orbit operator and
parameter is added to the previous results.

We also note that the method of calculation and Gt
with the experimental data differ from Refs. 3 and 4.
Extensive use is made of SU(2) 6-j coe%cients, and
SU(3) and SU(6) isoscalars, rather than Bose annihila-
tion and creation operators. The derivation is more
transparent and the results can be presented in com-
pact form. The required coefficients and isoscalars are
presented in tables, but the explicit calculations are not
carried out in this paper. The mass formulas are fitted
on the CDC 6400 with a program which minimizes the
sum of squares of the differences between the experi-
mental and theoretical numbers. This represents an
improvement over previous calculations in that the com-
puter rapidly Ands the best fit, to the accuracy desired.
It is established that the solution is not a local minima
of the least-squares function.

Since the results agree so well with experiment it is
important that the missing masses of the ('70, 1 ) be
found. To this end, we discuss in some detail the proper-
ties of the 0 ~ resonances.

In Sec. II we derive the general two-body and three-
body spin-orbit mass formulas, and apply them to the
special cases under consideration. In Sec. III, we discuss
the experimental situa, tion and predictions of the sym-
metric quark model, with specia, l a,ttention to the 0 *

resonances.

II. DERIVATION OF MASS FORMULAS

In this section we derive the required mass formulas
for the symmetric quark model in the (70,1 ) multiplet.
We briefIy summarize first the assumptions of the sym-
metric quark model: (a) symmetric statistics for the
spin-2 quarks, (b) the predominance of two-body forces,
and (c) octet dominance for the mass operators. Argu-
ments for assumption (a) have previously been pre-
sented. ' ' The most reasonable assumption regarding
the ground-state space wave function of a three-particle
system is that it has orbital configuration s', I.= 0, and
that it is a symmetric state. ' This is supported by the
experimental fact that the neutron and proton form
factors are smooth and always positive, ' "wherea, s an
a,ntisymmetric wave function implies a zero in the form
factor. " Since the spin-unitary spin part of the wave
function, the 56 representa, tion of SU(6), is a,iso com-

pletely symmetric, the total (56,0+) wave function is

syiiimetric under permutations of the quarks. We con-
clude that the quarks obey Bose statistics" and that

'o S. Ishida, K. Konno, and H. Shimodaira, Nuovo Cimento
46A, 189 (1966);A. N. Mitra and R. Majumdar, Phys. Rev. 150,
1194 (1966).

» W. Albrecht et at. , Phys. Rev, Letters 17, 1192 (1966).These
latest data show a positive form factor up to 245 F '."R. E. Kreps and J. J. de Swart, Phys. Rev. 162, 1729 (1967).
By introducing four parameters and a rather complicated anti-
symmetric wave function, it is possible to push the zero beyond
the experimental region, though the form factor is no longer
"smooth. "

"Instead of parastatistics (Ref. 2), it is possible to use the

Ig) s

(a)

8 p

6 L= 1

(b)

I I IC I.I. I

2l L~O 2I
I)R lslvl

Lac= 1

S—8—
P

L„=1

FIQ. 1. One-body and symmetric two-body states (ab). The
boxes represent Young tableaux.

where
(ab) c (70,1))
nag &c

is the SU(3) XO(3) coupling coefficient and n represents

TABLE II. SU(6) recoupling coeffjcients
from the state (ab) Xc to aX (bc).

21X6
15X6

6X 15 6X21

three-triplet model of M. Y. Han and Y. Nambu, Phys. Rev. 139,
B1006 (1965).

the wave function for the (70,1 ) multiplet must also
be completely symmetric. Assumption (b) is also physi-
cally reasonable, but it must be relaxed to include a small
three-body spin-orbit contribution in order to break the
mass degeneracy of the j= 2, 2, 6 (and 0) resonances of
the decuplet. Assumption (c) is a restriction on the
SU(3) tensor properties of the mass operators, that they
transform only as SU(3) singlet and octet representa-
tions, and that contributions due to the 27-dimensional
representation are ignored. This requirement leads to
the Gell-Mann —'Okubo formula for unmixed states.

Under assumption (a) then, we proceed to construct
a completely symmetric wave function for the (70,1 )
multiplet. By analogy with nuclear calculations, we
must determine the fractional parentage coeKcients for
symmetric states of the group SU(6) &(0(3). With no
loss of generality, let us label the three single-particle
states in the orbital configuration s'p, a= b= (6, 3= 0),
and c=(6, /=1). The possible symmetric two-body
states (ab) [and (ac)$ are listed in Fig. 1. Assuming
relative coordinates with c.m. motion removed, only
two kinds (not three, as in Fig. 1) of space states may
occur: /= 0, symmetric in space, and l= 1, antisymmetric
in space. We take this fact into account in the evalua-
tion of the mass operator 3f(70,1;n,n'), Eq. (2.5a). An
unsymmetrized wave function for the (70,1 ) multiplet
may be written
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the SU(3)XSU(2), O(3) row labels, n= (p,ii,y; ss„5&5),
and p is the SU(3) representation. The symbol (ab) here
represents the coupled state (ab) =(21, L,b ——0), and

~
(ab); n, 5)13 represents the coupled state of particles 1

and 2,
~
c,n, )3 the state of particle 3. Contained in the

coupling coefficien of Eq. (2.1) is the fact that we have
6rst coupled three quarks to obtain a state of the 70,
and three single-particle'4 angular momenta l;, i = u, b, c,

to obtain total I.= i, and then coupled total I. to S of
the 70 to give the spin J. This will be made clearer in
the derivation of the mass formulas below.

To construct the completely symmetrized wave func-
tion of the ('70, 1 ) representation, we permute the par-
ticles i, 2, and 3, then employ the recoupling coeffi-
cients for SU(6) XO(3) to write the symmetrized wave
function in the form

i 21,/=0 c
~
70,1;n),s

K3 &(5b c Q b Q

70,i
121,n~5)»Ic n )8

(bc) a 70,1
+ p (6-j)(5 ) I (bc),ne. &13I a,n.&3

(bc)2&b&prxa Qbc Qa Q

(ca) b 70,1
+ 2 (6-j)(-) I (ca),n-)19I b,n5)3,

(cQ) ~ cx c(5, r&/b Qg~ Qb Q

where (6-j)(5,&
and (6-j) („& are the SU(6) XO(3) recoupling coeffrcients listed in Table II. The coefficient (6-j)(5,&

takes us from the coupling (aXb) Xc to (bXc) Xa, or, in Young tableau form,

()(b)=(')8()+( )(), (2.3)

where (i)—(iii), (a), and (b) are given in Fig. 1 and the coupled state (bc) represents the two possible L5,= 1 states
on the right-hand side of Eq. (2.3).

We first consider the scalar 5=0 two-body forces. The mass operator M(») which acts on the two-body states

~
(ab),n, 5)13 [or (bc)j is constructed from the direct products 1515*, 21821*and is of the form

~(12) IV1+IV35 +1V405 +~405 +/V189 +~189 (2.4)

assuming octet dominance, where i = I'=0 and L=S=0. The matrix elements of the mass operator (2.4) between
states of the ('70, 1 ) may be immediately set down using the results of Beg and Singh" to determine the two-body
matrix elements

21 0 c 70 i 21 0 c 70 i
(70,1;n~bf(13&~70,1;n)=&V(70,1;n,n) =9 (21,01' (») l» 0I

&e|52&C Qgb Qr; Q Qgb Qg Q

15 i a 70 i 15 1 a 70 1
(15,11/(2I(13) i 15,1), (2.5a)

&ba9~a Qbc Qa Q Qbc Qa

where
(21,0

~
M(13&

~
21,0)= 910+9551F+5933[2S(S+1)+C9(3&]+9&53[i(i+1)——,

' V2j,

(15,1
~
3II(13&

~
15,1)= tn0'+5&51'F+ 4&3[32 (S+S1)—C3(3&)+9&33'[i(i+1)——,

' I'3$,
(2.5b)

and the 3&5,, 9&5,
' are linear combinations of the reduced matrix elements (21, /=0~

~
(/5, p)

~
(21, /=0), (15, /=1&

X
~ (541p) ~

[15, /= 1), respectively. Because of parity considerations, the matrix element (15, /= 1~ xV(»& (21, E= 1)
vanishes; the matrix element (21, /=1) cV(»& (21, E=1) is set equal to the matrix element (21, /=0)IV(»& (21, /=0),
since there exists only a symmetric l =0 relative space state. The four reduced matrix elements m; are determined
from the multiplet (56,0+) by a least-squares fit to the experimental data. The values 4&50= 739.23, 5&51= —336.163,
m& ——49.707, and me= 104.4 yield a sum of squares between experimental and theoretical numbers of 204.3 MeV' or
a rms di6'erence of approximately 5 MeV. The four reduced matrix elements m;, and those due to spin-orbit e6ects,
will be adjusted to give a best fit to the (70, 1 ) data.

The mass operator IV(»& [Eq. (24)7 has i= I'= 0 and L=5= 0, and the twobody matrix elements (25b) do not
depend on the row labels (i„s.,4&5) of SU(6) XO(3).We may therefore perform a trivial sum over the SU(2) coupling
coefficients, and only the product of SU(3) and SU(6) isoscalars remain,

(
(ab) 6 70 p 5 3 'p 1& (ab) 6 70

(II), (IV). (II)J (p, 23+1), (3,2) (p,23+1))
(2.6)

"The single-particle states are somewhat artificial, but the exact relative states may be found rather easily (see Ref. 3).
» M. A. B. Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964).
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where p is the SU(3) representation, and (ab) represents here the 15 or 21 representation. To determine the masses
in terms of the parameters m; and m;, it is necessary to know the appropriate SU(6) and SU(3) isoscalars which are
listed in Tables III and IV, respectively. The absolute phase convention of the SU(6) coupling coefficients is chosen
such that

!
~ (sb) 6 '70

~&ah l max. s'c o'
l mcx

is positive for each [SU(3), SU(2)j multiplet, where ul, = (p,ii Y, ; ss, l), with i being that isospin associated
with the maximum y value. The relative phase convention for SU(3) states is the same as de Swart's, "for SU(2)
states the same as Condon and Shortley'sir; the relative phase between a state and its conjugate is (—1)'s+ si Y for
SU(3) states. The two-body spin-orbit mass operators split only the relative 4,= 1 space state, or the antisym-
metric space state 15, lb.= 1. The possible spin-orbit mass operators occur in the direct product 15X15,

L s M IL s+M 8L s+M spIL s+M ssL.s (2 7)

The mass matrix element can be written as

(70,1;nlM&I2)L' l70, 1 n') =-',
15

abccaa, abc', a~'

6 70 L= 1 S j IS 6 70 L= 1 S' j

X(l lsp~& c)I2pM(I2) l l~p~~c')I2). (2.g)

The spin-orbit mass operator M&»)L's may be factored into the product of SU(6), 0(3) components

(5 I. I (—1)L-I*
M c'= p M. &c»MI &')l, M c'=—M cL'=+M &cL)MIL

c cic ks, f, Mg ic (2I+1)"'
(2 9)

Since the mass operator M~q2)
' has i= 0, F=0, and is a scalar in L,S space, it is clear that the mass will not depend

on the row labels i„s„m,and that they may be summed over. If we write the SU(6) coupling coefficients as a product
of SU(6), SU(3) isoscalars and SU(2) coupling coefficients, we may sum over the SU(2) coefficients; this yields
a product of two SU(2) recoupling coefficients. "The result is

6 70
70 1 n M p ' 70 1 a' =my' Q

k(p, 2s+1). (3,2) (p, 2s+1})
70pab 3 p 15 6 Pab

(IY),&, (IY), (IY) (p', 25'+1),i, (3,2) (p', 2S'+1) (IY),(,

15 15* P P,b' P,b*

X
(p', &&'+&). (p",2&+&). (p,3)~((&~). i&, —~).

3 p

( .) ( )')

f(SI SI')
(2.10a)

(cc))(21„+1)"'

15X6 20 70

TABLE III. SU (6) isoscalar factors 15&36, 21 6.
The phase convention is explained in the text.

where f(SI,SI') is

f(SI,SI') = (—1)s'+"' '[(25+1)(25'+1)]"'

S 1 j
X X

Sg' Sg —,
' 1 S' 1

S S'
(10,2) (1,2) (8,2) (8,4)

—1 0 Q-', 0

(1,4) (8,2)

0

(2.10b)(3*,3) (3,2)

(6,1) (3,2)

21)&6 56
(10,4) (8,2)

0 gl
y1

70
(10,2) (1,2) (8,2)

0
1 0

(3* 1) (32)
(6,3) (3,2)

(
p~b p~b 1

(IY),)) (I Y),I, (00)—' J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).The highest-
weight state is maximum isospin I, I,=I and associated F.

E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge U. P., London, 1935).' A. R. Edmonds, Angular 3fomentumin Quantum Mechanics
(Princeton U. P., Princeton, N. J., 1957), p. 90.

becomes (2i, &,+1)'" The four co.efficients m),
' represent

the four reduced matrix elements for the four mass
operators in Eq. (2.7). The braced coefficients are

and p=1 or 8, if the operator is singlet or octet. If p=1,
then p, b= p, b', and the isoscalar

0
1
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TABLE IV. SU(3) isoscalar factors 3*X3,6X3. The phase convention is explained in text.

(0,-', )

3*X3 (1,0)

10

(0,0)

0

Ql
0

(l —1)
1

(0,0)

0

V'3

0

6X3
(i, l)

(o, -8)

(l 1)

1

0
0
0
0
0

(1,0)

0

0
0
0

(l —1)

0
0
0

0

(0, —2)

0
0
0
0
0
1

(l, i)
1

0
0
0
0
0

(1,0)

0
g2

0
0
0

(o,o)

0
0

+1
0
0
0

(Yp 1)

0
0
0

—V'8

TABLE V. SU(6) isoscalar factors 15X15*.The phase
convention is explained in the text.

15X15*
35

(8,3) (1,3) (8,1)
189

(8,3}g (8,3)g

SU(2) 6-j coeKcients. To evaluate the above matrix
elements, the isoscalar factors in Tables III—VI are
required.

As we have previously noted, the two-body spin-
orbit mass operators do not split the unmixed j= 2, ~3

states of the decuplet, the 6 and 0 resonances. The
reason can be seen directly from Tables III and V. To
construct a state of the decuplet in the 70 representa-
tion, we require a (6,1) multiplet of the 15 in the direct
product 15&&6=70+20. However, no spin-orbit mass
operator can be constructed from (6,1)X (6*,1).It is an
experimental fact that the j=2, ~ 6 resonances are
split; thus it will be necessary to consider three-body
spin-orbit mass operators.

The three-body spin-orbit mass operators occur in
the direct product 70)&70*,

70&(70*=1+35r+35o+189+280
+280*+405+3675. (2.11)

We choose the operators M35yr y 3E35D '8, which
have diagonal matrix elements in the decuplet; higher-
representation choices, of course, are possible. We take
matrix elements of these operators between states of the
('70, 1 ).These operators act on the three-body state and
it is not required to decompose the wave function into
two-body symmetric states. The symmetry of the wave
function is not a consideration here. The operators may
be written as in Eq. (2.9), and a summation performed
over the magnetic quantum numbers. The resultant

matrix elements may be written

( 1)al
(70,1;n i

M8gr'L
i 70,1;a') =m,

(2S'+1)"'
70

(
35 70

x
(1,3) (p, 2S'+1) (p, 2S+1)i

S' 1 j
X (2.12)

S 1

TABLE VI. SU(3) isoscalar factors 3*X6*.The phase
convention is explained in the text.

(8,0)

(—l, 1)

g2

0
0
0

(0,0)

0
0

—1

0
0

0
0
gl

0

(—i, l)
0
0
0
0

—1

and the same equation with F replaced by D. The re-
quired SU(6) isoscalar factors" appear in Table VII;
only the lower four rows of the table are required for the
calculation. We note that the 35+ operator has only
diagonal matrix elements, whereas the 35~ operator has
o6-diagonal matrix elements between the octets.

Configuration mixing between superrnultiplets (56,0+)
and (70,1 ) would a priori be expected. ""The average
of the experimental masses of the isomultiplets in the
(56,0+) is 1299 MeV, with a spread from E(939) to
0 (1673), and of the calculated masses of the isomultip-
lets in the (70,1 ) is 1734 MeV, with a spread from

(3*,3) (3,3)
(3g 3) (6Q 1)
(6,1.) (3,3)
(6,1) (6*,1) 0

1

0 0
0 0
0

0
gl

0

Q3

0

» An independent calculation of the SU(6) isoscalar factors in
the direct product 70X70*=2(35)+ ~ ~ was first performed byE. Golowich, Phys. Rev. 184, 1815 (1969).

'o Configuration mixing was ignored in Ref. 3 (see Ref. 28)."Ithank Professor Roland Good for a useful discussion on this
point.
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TABLE VII. SU (6) isoscalar factor 35 &('70.'

35X'70

(8,3) (10,2)

(8,3) (8,4)
(8,3) (8,2)

(8,3) (1,2)

(8,1) (10,2)

(8,1) (8,4)
(8,1) (8,2)
(8 1) (1,2)

(1,3) (10,2)
(1,3) (8,4)
(1,3) (8,2)
(1 3) (1,2)

(10,2)

40
26v2

—7'
0

—4'
0

11+6
0

—20
0
0
0

70')
(8,4)

—65V2

55+5, —35
10v2, 20+10
9+10
0

—55+3, 7+15
0
0
0

10V2

22+5
0

(8,2)

7+5
4+5, 40

22+5, —26
15

—11+15
0
4'

—11&3

0
2202

—2%2

0

(1,2)

0
6
5
0
0
0

—11/V3

0
0
0
0

(10,2)

2

+8
g8
0

—2@3

0
0
0
1

0
0
0

(8 4)

—g5
+10

—1, +5
—1

0

0
0
0

+V'5
0
0

701:

(8,2)

+10
—+10, V2

v2
—V2

0
0

0
0
0
1

0

(1,2)

0

4
0
0
0
0
0
0
0
0
1

a For normalization purposes, the isoscalars for 70@ must be multiplied by the factor 1/&33; the isoscalars for 70D must be multiplied by the following
factors: 1/8+66, 1/16+165, 1/16+33, —,'(3/22)'», in the columns (10,2), (8,4, (8,2), and (1,2), respectively. Where two numbers appear in the same
column, they represent the isoscalars for the symmetric, antisymmetric octet in the SU(3) direct product 8)&8, respectively. The phase convention is
explained in the text.

h(1405) to 0 "(2012). Thus, there is a large overlap
between the two supermultiplets, the splitting between
supermultiplets comparable to the splitting within
supermultiplets. Nevertheless, under the same assump-
tions employed to derive the two-body ma, ss formulas,
there is no configuration mixing by the two-body mass
operators, as we now show.

We write a state of the (56,0+) in the following trans-
parent form:

+(56,0+) = X(i)X(a), (2.13a)

where (a) and (i) are the one- and two-body states,
respectively, in Fig. 1. A state of the (70,1 ) may be
written

4 (70,1) = x.(i)x(b)+x(ii)x(a)+x(iii)x(a) . (2.13b)

operators is 28 MeV, and the configuration mixing is
smaller and can therefore be ignored.

m. RESULTS AND D~SCUSSroN

The mass formulas, Eqs. (2.5), and (2.10) and (2.12),
are fitted to the 14 established (with no question marks)
resonances listed in Table I. Isomultiplets with the
same l, I', and J values are mixed. In the case of the

, and A. resonances, 3&&3 matrices are explicitly
diagonalized, and expressed as functions of the reduced
matrix elements m~', the 2X2 matrices of the X reso-
nances are treated similarly. The J"=

~ octet and the
6, 0 * resonances are unmixed. The sum Of the squares
of the differences" between the calculated and experi-
mental masses,

14

The explicit form of Eq. (2.13b) is given by Eq. (2.2).
The states (ii) and (iii) have L„=1. The matrix ele-
ment of the two-body mass operator, M~ &„,b,z~, either
Eq. (2.4) or (2.7), between (56,0+) and (70,1 ) becomes

where

I'(~~') = Z(~.)',

D,=M, ~.,i, —M;~,„p,

(3.1a)

(3.1b)

(+(56,0+),M
~
i„,b.g,%'(70, 1 ))= (lt (i),M ~

i„.b.gyX(ii))

+(X(i),M
~
t„,b,z X(iii)), (2.14)

using the fact that the mass operator acts only on the
two-body state and the single-particle states with l= 0
and /=1 are orthogonal. The matrix element of the
non-spin-orbit mass operator LEq. (2.4)j, with I =0,
vanishes, using the Wigner-Eckart theorem on the space
wave function. The spin-orbit two-body mass operator
LEq. (2.7)j acts only on the antisymmetric space state
(iii); this matrix element has already been eliminated
in the derivation of the two-body mass formulas [Eq.
(2.5b)] by parity considerations.

There remains configuration mixing due to the three-
body spin-orbit ma, ss operator since the 56 representa-
tion is contained in the direct product 35&'70. As we
shall see in Sec. III, the maximum splitting within the
(70, 1 ) multiplet due to three-body spin-orbit mass

(M;~„i„. and M;~,„~i are the calculated and experi-
mental masses), is then minimized by adjustment of the
reduced matrix elements. The computer program PMcG,
an IBM subroutine, finds the minimum function F;„,
to the accuracy desired, by adjusting all the parameters
m~' in the direction, in nzA,

' space, of the greatest change
in the function F towards the minimum F;„.For an
eight-parameter fit, summed over 14 resonances, the
average required CDC 6400 time is 15 sec. The reso-
nances were first fitted with six parameters, the same
mass formula as in Refs. 3 and 4; the 6t with eight
parameters was then attempted with the six parameters
as input values, and also with arbitrary input values.
The number F;„was identical, though the amount of
machine time, of course, varied. We therefore believe

"If the errors in the mass values were more precisely known,
it would be possible to weight the terms in the sum inversely with
the errors.
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TABLE VIII. Least-squares fit to experimental masses. '

F; (mI, ') (Mev')

~
&'~. ~ (M«)

Lowest calc. Z res. (MeV)

1949
11.8

1606

1320 1448 1124
9.7 10.2 9.0

1603 1612 1562

M &+III M+IV 3/I+I M+II DE+I+III M+I+IV M+II+III M+II+IV
1505 949 894 1448 1138

10.4 8.2 8.0 9,1 9.0
1581 1560 1556 1577 1588

«FIIn(mg') is the minimum of the function F (ma') = Z~ i"(d ~)', where d,c =(mifaaIo —szitexpc) and m~[oaie and ms]exi c are the calculated and experimental
masses. M is the mass operator, M =M&1~)+M3~1L S+M358L S and I =M189I~L S II =MissesL S, III =Max pL S IV'=M3~DIL S

TABLE IX. Masses in the ('70, 1 ) multiplet. Three-body operator M3$yr.

JP—

1906 (1930?)
1809 (1830)
1765 (1765)
1689 (1672)

4I'

1828 (1815)
1811
1670 (1670)
1700 (1700)

1—
2

1787
1797
1640
1705 (1700)

0
H

Z

2012
1936 (1930?)
1847
1673 (1670)

1775
1679 (1690)
1620 (1618?)
1530
1528 (1520)

2P
1—
2

1991
1921
1824
1651 (1650)

1662 (1655?)
1682 (1670)
1603 (1618?)
1525 (1535)
1405 (1405)

Fit of 14 resonances with seven-parameter mass formula including a contribution from the three-body mass operator Mrs''L'S. The left-hand columns
are the calculated masses; the right-hand columns (in parentheses) are the experimental masses. The masses with question marks (not included in the 14
masses fitted) are placed closest to the calculated mass (or masses).

TABLE X. Masses in the (70,1 ) multiplet. Three-body operator M3&&1L s.a

JP—

h.

N

1904 (1930?)
1810 (1830)
1761 (1765)
1691 (1672)

4I'

1831 (1815?)
1811
1674 (1670)
1699 (1700)

1—
2

1794
1797
1646
1702 (1700)

3-
2

2015
1934 (1930?)
1840
1670 (1670)

1772
1677 (1690)
1619 (1618?)
1525 (1520)
1531 (1520)

2P

1997
1925 (1930?)
1825
1652 (1650)

1677 (1635?)
1683 (1670)
1612 (1618?)
1532 (1535)
1405 (1405)

a Fit of 14 resonances with seven-parameter mass formula including a contribution from the three-body mass operator M35D'L'S. The left-hand columns,
are the calculated masses; the right-hand columns (in parentheses) are experimental masses. The masses with question marks (not included in the 14 masses
fitted) are placed closest to the calculated mass (or masses).

that the solutions obtained represent the best fit, and
not a local minima. The minimum function F;„, for
the various mass operators, and combinations of such,
is listed in Table VIII.

We note that the best fits" for the mass formulas,
Eqs. (2.5), (2.10), and (2.12), vary from

~
6;~, ,=11.8

MeV to 8.0 MeV. Also listed in Table VIII are the
lowest predicted Z resonances. The lowest experimen-
tally observed Z resonance'4 in the h.~ and A~~ channels
has mass 1618 MeV with uncertain spin parity. (There
does exist a P'11 partial-wave Z7r resonance at 1560
MeV with J~=2'+.) Since the rms difference of 6; is
at most 10.4 MeV for the last six columns of Table VIII,
and the difference 1618—M,

~
„~,is, at the least, 30 MeV

for the last six columns, we reject them as fits to the

2'This represents a considerable improvement over Ref. 4,
where the rms difference was 18 MeV.

~ D. J. Crennell et al. , t Phys. Rev. Letters 21, 648 (1968)|
report a mass of 1619 MeV; also summarized in Ref. 6,

data, and retain for consideration columns 2 and 3.
This criterion eliminates the two-body spin-orbit mass
operators ~1ses~L s and M&sgssL s and is consistent.
with the expectation that the higher-dimensional repre-
sentations do not contribute to the mass operator.

The calculated and experimental masses for the re-
maining cases of the three-body spin-orbit operators,
&35~' ' and &35~'L', are listed in Tables IX and X,.

respectively. It is not possible to choose between these
two solutions with the present experimental situation,
particularly with regard to Z and resonances. The
predicted large overlap may make it dificult to resolve
the Z and resonances experimentally.

Let us consider Table IX. We note that the greatest
differences between calculated and experimental masses
for the established resonances is 21 and 17 MeV for the
J =~ A and E resonances, respectively. The rms
difference 6; is 9.7 MeV for the 14 established reso-
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nances in Table IX. This compares favorably with the
mass fit of 5 MeV diGerence for the eight isomultiplets
of the (56,0+), where the particle masses are well
established. Ke further note that the resonances at
1635, 1815, and 1930 MeV, respectively, have a place
in the table, and similarly for the Z(1618). However,
the Z(1690), J~= ss, which strongly overlaps the
Dis(1670) Z resonance, and which may not exist, "has
no obvious place in the table. The Sit(1750) Z resonance
also has no convenient location. Considerable experi-
mental e6ort is underway to resolve the Z, and reso-
nance ambiguities.

The resonances are fitted well with the three-body
spin-orbit mass operator &35„'L's. It had been previ-
ously noted' that a three-body operator would be re-
quired to split the 6 resonances. The relative contribu-
tions of the two-body spin-orbit mass operators M35'~*s

and M3&8 ' and three-body spin-orbit mass operator
can be determined by multiplying the reduced

matrix elements by the change in mass eigenvalues for
the three mass operators. The splitting AM (in MeV)
for the three mass operators in this seven-parameter
fit is

~M„» s= —42.6, ~BI„-8"=98.S,
A%35~'L'S ———28.8.

The three-body spin-orbit contribution to the mass
splitting is the smallest of the seven mass operators in
the ('70, 1 ); the largest contributions come from the
non-spin-orbit mass operators, 3' as expected. Con-
figuration mixing between the (56,0+) and (70,1 ) due
to this three-body operator is a much smaller effect.
We observe that the contributions to the splitting of the
two-body spin-orbit mass operators in the six-parameter
6t is

~M35'L'S= —74.7 63XI35'~ 8——97.5.

It appears that the splitting due to the two-body spin-
orbit mass operator 3fg5'L's is taken up by the three-
body spin-orbit operator M»~ L's in going from the six-
to seven-parameter fit.

While the experimental situation clarifies itself with
regard to the Z and resonances (and the two missing

FIG. 2. (a) Topology of the 0 weak decay. Note the three-kink
track and two V's. (b) Topology of the 0 * strong decay. The
0 ~ decay has three V's and no 0 * track.

"P. Eherhard el ol. LPhys. Rev. Letters Z2, 200 (1969}g
report two Z(1660) states A. C. Amm. ann et al. Jibed. 24, 327
(19'l0)$ report a A~ resonance at 1642&12 MeV, difterent from
either of the Z(1660) states on the basis of the branching ratios
to +m. , Z~, and A(1405)~. However, the double Z(1660) states have

A resonances), an important test of the symznetric
quark model in the ('70, 1 ) multiplet is the existence
and discovery of the two 0 *resonances required by the
model. The 0 ~'s of J"=~, 2 are predicted at 1991
and 2012 MeV, respectively (Table IX) and should be
produced in the reaction E p -+ Q *E'E+, as with the
Q (1673). The topology of the weak decay" of the
Q (1673) is diagrammed in Fig. 2(a). The Q *(s ) can
decay strongly in the channels ™Eand gKx, since the
thresholds for these decays are 1815 and 1950 MeV,
respectively. The topology of the K s wave, highly
favored over the ™E7rp wave because of the greatly
reduced phase space for this latter channel, is given by
Fig. 2{b),and features no Q *kink or track. The partial
width for the K decay may be calculated using the re-
sults of Divgi" and of Mitra and Ross," with th
prediction

I'g-+(;-) =g=68 MeV, s wave.

Kith the input value chosen, this is probably an over-
estimate, but the predictions of the decay model are
not reliable for s-wave decay, '7 and may be o6 by a
factor of 2. Possibly the width of the Q *(-,' ) is too wide
to be readily visible as claimed by Mitra and Ross."
The threshold of the channel *(1530)E,2025 MeV, is
above the predicted mass of the Q *(s ). The partial
widths" for the decay of the Q *(-,' ) are

I g +(z ) g= 10 MeV d wave

I'g-+(a-) +g=0.38/ MeV) s wave,

where q is the momentum, in MeV/c, of the emitted
meson. The p-wave E7r channel is assumed to be
small. The Q *(—,

' ) is predicted at 13 MeV below *E'
threshold, but the predictive error, from the experimen-
tal input error, is, of course, much larger. The width is
sensitive to the ~E threshold, '8 but it is possible that
the Q "(s ) is visible. The discovery of the Q * reso-
nances would provide an important test of the sym-
metric quark model and it is hoped that experimentalists
could check their E p film for observation of these
particles.
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