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P= ln(m, '/m') . (B1)

We are interested in the large-P behavior of Eq. (3.2).
It is convenient to introduce $=XP. Equation (3.2)
becomes

In the following we are interested in Eq. (3.2) only
for Rek(0. I.et us define

We expand (B2) in a power series of t/P around the
point zero and keep only the leading terms in 1/P
(because eventually we will let P approach infinity).
We obtain

(B3)

2RI 2(P/P)(1+$/P) (1+$/2P) 2 sin(~$/P)

12e—&

The solutions of Eq. (B3) can be found easily in the
limit of large P. They are

or
(5/0) (1+ill) (2+5/P)(3+(/P) (1 5/0—)

1 1 1 3 2

Rek = ——(2eIr) ' ——+ — +
2 P' I 2

~k/P

~i&P& (1+5/0)(1+$/2P)»n(~klo)
Imz = + (2~~)(1/P)+ ",

24e & where denotes higher-order terms in 1/P and
is~any positive integer. It is clear that for large

(1+]/P)(2+(/P)(3+$/P)(1 —]/P) P= ln(—m, '/m'), Rek can be larger than —2.
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Source theory is used to derive a representation for the propagation function of a unit-spin meson. The
asymptotic behavior for large momenta resembles that observed in electromagnetic form factors.

' ' ' ADRONIC electromagnetic interactions are
usually pictured as proceeding through the

intermediary of the known 1 mesons. In this model,
electromagnetic form factors are linearly related to the
meson propagation functions. Electron-positron collid-
ing-beam experiments have confirmed the implied
resonant behavior. But form-factor measurements for
large momentum transfer seem to be at variance with
the idea. Instead of the simple asymptotic dependence
on momentum transfer, 1/p', experiment indicates a
more rapid decrease, (1/p')", d&2. It is therefore
particularly significant that the modified propagation
functions derived from source theory' do show an
asymptotic decrease that is at least as rapid as (1/P')2,
and can approach (1/p')'.

To sketch how this comes about, consider p for
definiteness. The associated vector and tensor fields
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' Various aspects of source theory are described by J. Schwanger
in (a) Particles and Sources (Gordon and Breach, New York,
1969), and (b) Particles, Sources, and Fields (Addison-Wesley,
Reading, Mass. , 1970).

The action principle supplies the field equation

P P""(P)+m'u" (P) =~"(P) (3)
which can be analyzed into longitudinal and transverse
components relative to the momentum vector, as
indicated symbolically by

PP& PP
p'+w (~ lp+==

P2j P2

are designated as p„and p„„,while the vectorial source is
J„.The initial description of this particle, appropriate
to such time intervals that its instability is not in
evidence, is given by the vacuum amplitude expression

«+I 0-&'=exp&+'(J)3, (1)

where, stated in momentum space for convenience,

(dp)

(2Ir)'
Lp'(-P) J.(P) -la""(-P)p"(P)

2m'r "( P)p.(P)j-, (2)-
r "(P)=~P.u (P) iP p.(P). -
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As a purely mathematical example, we take (o, =-', )The nominal width of the resonance is

r =r(m') =~ma(m') . (20) 1 Ms —m, 'q s/' I'
/r(M') =—X ~, X=—1—

m' & m m'
The contact terms will now be picked to guarantee

what we have just taken for granted. The mass of the
unstable particle, initially measured as m for short
time intervals, must retain that value as the description
is extended to longer times Lcertainly to relative order
I'/m; the mass of an unstable particle is intrinsically
ambiguous to the order (I'/m)', as reflected in the
difFiculty of assigning the p mass with that degree of
accuracy). One must therefore choose the contact term
to make the real part of the spectral integral in (16)
vanish at —p'=ms, as expressed by the appearance of
a p'+m' factor. But just one such factor will not do,
since it alters the normalization of the propagation
function in the neighborhood p' —ms, which has
already been specified in describing the situation where
instability plays an unimportant role. Accordingly,
two factors are needed, as exhibited in

(26)
which gives, for —p') ms',

ps+m 2 s/2- —1
0

Z, (p)= p'+m' —s (—ps)— (2~)
m'

and, for P') —mes,

//p'+m ' '/' —'
Zp(p) = p'+m'+Xp'I

m'

(28)

p'+m'

Attention shouM be directed to the decisive role
played by the factor p'. If it were replaced by the
constant —m', which maintains the meaning of X in
(26), the spacelike behavior of Z+(p) would be deter-
mined by the function

p'+M' is M—' —m' (M' —m')'

p'+m' ' 1

M' —m' p'+M' se—
The result is

(21)

/ps+m sq 3/s

p'+m —Xm'~
i (29)

which changes sign with increasing p'. The resulting
p )0 singularity of the propagation function is com-
pletely unacceptable. '

To these results we add some remarks.

(p) ps+ms+(p2+m2) sp2
dm'

a(M') 1
X

M2 ms ps+Ms
(22)

A+(p)- (1/p')'. (23)

where we have also introduced, in the principal-value
sign, the prescription for relaxing the temporary ex-
clusion of M' ns'. It is verified by confirming that
the initial short-time description is indeed maintained. '

The structure of the modified propagation function
has now been determined, without reference to the
requirement of existence. That is assured if the weight
function u(M') increases less rapidly than (M')' as
M' —+ ~. If we make the stronger assumption that
a(M') increases less rapidly than M', we infer the
following asymptotic behavior for large spacelike
values of p:

(1) Since the electromagnetic field that probes a
hadron proceeds through the intermediary of a 1
meson, the observed electromagnetic form factors
compound the meson propagation functions with the
meson-hadron vertex form factors. If the large-momen-
tum-transfer behavior of Z+(p), as illustrated in (28),
can reproduce the trend of the data, we must conclude
that the vertex form factors have attained transitory
constant limits in the high-energy region now under
exploration.

(2) The steeper decrease of the 1 -meson propagation
functions with increasing momenta removes the
apparent divergence in calculations of electromagnetic
mass splittings such as m+-z', and thereby substantially
reduces the motivation for recent attempts4 to modify
electrodynamics. Similar comments apply to 1+ mesons
in relation to the weak-interaction properties of hadrons,
and, at another level of energy (and speculation), to
the hypothetical W, X, or Z boson and leptonic
coupling s.'

The more general situation indicated by

a(M') (M')' 0(n(1
leads to

A+(p) -(1/p')'
' Another example is discussed in Ref. 1(b), Sec. 3—16.

(24)

' Of course, p~ is not unique. The more general possibilities that
are roughly suggested by the addition of a suitably bounded
constant to —p' can have the same features, and doubtless are
more realistic.

4 T. D. Lee and G. C. Wick, Nucl. Phys. BQ, 209 (1969).' Compare M. Gell-Mann, M. L Goldberger, ¹ M. Kroll, and
F. R. Low, Phys. Rev. 179, 1518 (1969).Other references can be
found in S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev.
D 2, 1285 (1970).
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Simplifying the model by the restriction mo'(&m',

X«1, we have

with

r,
=v3, (32)

(3) The asymptotic behavior of Z+(p) is at variance
with the standard spectral form

A (M')
g+(p) = dM', A(M') &0 (30)

p+M ze

which forbids a decrease faster than 1/P'. Looking at
the example of (27), we see tha, t Z+(p), considered as a
function of the complex variable —p2, possesses not
only a branch line beginning at mo' but also a pair of
complex poles, leading to the representation

2 (M')
Z, (p) = dM'—

p'+M' —ie

1
+ (»)

p +M,2,M,r, P +M,2+zM, r,

currents is signaled by the explicit appearance of the
scalar field B„p& rather than the vector field p&. Such
terms do not aQect the transverse propagation function
and accordingly (22) is an entirely general form. The
corresponding general form of the modified longitudinal
propagation function is

Zz(P) = m'+(P'+m')P'E

b(M') 1
X dM'—

M2 m2 p2+M2
(35)

where b(M') is real and positive. For large p' this func-
tion. decreases as least as rapidly as (p') ', but not as
rapidly as (p') '.

2. The close relationship between strong interactions
and the massive nature of the 1~ particles should be
stressed. Thus, in the analogous photon (electron
charge) discussion, which persists without change up to
Eq. (16), with m'=0, the contact term is only required
to produce an additional p' factor in the spectral inte-
gral, which yields

1 (X/m') (M') "'
A(M') =-

Ã (M' —1S')'+ (X'/nl') (M') ' (33)
a(M') 1

D+(P)= P'-(p')' dM ——
M' P'+M' —se

(36)

and one can verify the sum rules

dM'A (M') =&, dM2M2+ (M2) M 2g (34)

6It may be that the theory is correctly formulated only in
Euclidean space Lsee the discussion of the Euclidean postulate
in Ref. 1(b)j, with the 6nal results of calculation transformed
back into Minkowski space for physical interpretation. (A
Euclidean calculation is implicit in the statement concerning
electromagnetic mass splittings, for example. ) That could produce
a limitation in the applicability of the conventional space-time
description for very small time intervals, with possible reper-
cussions jg. tQc structure of fopygrd-scattering dispersion relations.

which ensure that Z+(p) decreases faster than (1/p')'.
The unusual supplementary term in (31) seems not to
violate any general principle of source theory (which

does not have to contend with the restrictions imposed.

by an assumed underlying operator field structure, nor
with preconceptions about analyticity). Since the
additional term is real, it makes no contribution in the
vacuum persistence probability and therefore does not
describe particle processes. Correspondingly, the con-
tribution of this term to the time development of the

propagation function is rapidly extinguished and plays
no role in any causal arrangement. But, naturally, the
new direction thus opened by source theory demands
further intensive scrutiny to test its complete physical
acceptability. '

)Votes added ~n Proof

1. More reasonable than the possibility suggested in

Ref. 3 is the following. The presence of nonconserved

If spacelike singularities are to be avoided, this a(M')
must vanish as M' —+, and be sufficiently limited in
magnitude that

a(M')
dM' — (1.

M'
(37)

The comparison with the behavior illustrated in Eq.
(26) indicates that, in contrast to massive particles,
a massless particle cannot be associated with strong
interactions.

3. In the analogous discussion of 0+ particles, ap-
plicability to strong interactions seems to demand both
the massive nature of the particles and the dominance
of (pseudo) vector couplings over (pseudo) scalar cou-
plings. If the particles were massless, the form (36)
would apply, with its implied exclusion of strong inter-
actions. A massive particle, with couplings represented
by its field rather than a derivative of the held, has
a modified propagation function of a form that is de-
rived from (22) by removing the factor —p'. Again there
are magnitude restrictions on the weight function
a(M') if spacelike singularities are to be avoided. But
the strong interaction form (22) is appropriate (with
the generalization of Ref. 3) if the dominant dynamics
involves the gradient of the field. Here is a suggestion
of the partial chiral symmetry that does seem to govern
the dynamics of 0 (0+?) particles. It should be ern-

phasized that all these considerations assume that only
the contact terms required by the evident physical
normalization requirements are to be used.


