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where

f.'=g '/2m ' (6.3)

coupling ternis such as

f,y„„(S~„,~E) or f„'p„„(D„~&&D„~). (6.4)

which is known as the KSRF relation. "
In the treatment of the interaction of the p field with

other fields, we have introduced the simplest couplings
consistent with the divergence condition for the p field.
This divergence condition, of course, remains inviolate
if for any isofield f we introduce additional coupling
terms that are functions of y„„,P, and D„P, and therefore
it is possible to introduce for the p-vr-S system additional

".K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 14'7, 1071
(1966).

However, in view of the experience in quantum electro-
dynamics, it seems that these couplings are not likely to
be fundamental, although the higher-order effects will

undoubtedly generate e6ective couplings of the above
form.

When the p field is not accompanied by the a field,
we have shown that the usual PCAC condition cannot
be fulfilled, and it must be replaced by the covariant
PCAC condition (3.12) or (3.13). Since the existence of
the a mesons has not been clearly established by experi-

ments, it would be desirable to explore the consequences
of the covariant PCAC condition.
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The multiperipheral model of Amati, Bertocchi, Fubini, Stanghellini, and Tonin is used to study complex
Regge poles. We use the trace approximation to solve the multiperipheral integral equation. The equation
determining complex Regge poles for the forward-scattering case is derived. We explicitly solve for the
locations of complex Regge poles and discuss their dependence on the pion mass.

I. INTRODUCTION
' ULTIPERIPHERAL models' ' are very useful

- ~ for describing general features of high-energy
collisions, It is well known that they predict Regge
asymptotic behavior for elastic amplitudes and total
cross sections, a constant elasticity, a lns behavior for
the multiplicity, and a small average transverse momen-
tum for secondary particles produced in high-energy
collisions.

Another group of useful models for studying Regge
behavior are potential models. It is known that, in

potential models, complex conjugate pairs of Regge
poles may occur at energies below the physical thresh-
old. ' It is natural to ask whether this phenomenon is
also present in a relativistic model like the multi-
pheripheral model.

*Work supported in par t by the U. S. Atomic Energy
Commission.
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Recently, using a simplified multiperipheral model,
Chew and Snider4 illustrated the possibility of complex
conjugate pairs of Regge poles.

This paper studies the problem of complex Regge
poles in a more realistic multiperipheral model. The
model we use is the Amati-Bertocchi-Fubini-Stanghel-
lini-Tonin (ABFST) model. ' We do not attempt to
solve the ABFST integral equation exactly. Rather
we use an approximation method. The method we

adopt is the trace approximation, which has been
employed by Chew, Rogers, and Snider' (CRS) in the
case of the leading real Regge poles. With this approx-
imation, the eigenvalue equation can be written down

quite easily. The dependence of the locations of complex

Regge poles on various physical quantities becomes
transparent. In forward scattering, we explicitly solve

for the locations of these complex Regge poles. The
results agree with those of Misheloff, ' who solved the
ABFST integral equation exactly by a numerical
method.

The plan of the paper is as follows. In Sec. II, we

develop the trace approximation for the forward-

4 G. F. Chew and D. R, Snider, Phys. Letters 31B, 75 (1970}.
5 G. F. Chew, T. Rogers, and D. R. Snider, Phys, Rev. D 2, 765

(1970).
6 M. MisheloG, Phys. Rev. D 3, 1486 (1971).
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scattering ABFST integral equation. The equation
determining the locations. of Regge poles is written
down. In Sec. III, under a simplified assumption, the
locations of the complex conjugate pairs of Regge
poles are found. In Sec. IV we comment on the internal
consistency of the trace approximation for the forward-
scattering integral equation. Appendix A evaluates a
mathematical expression t Eq. (2.12)7 used in Sec. II.
The problem of the locations of complex Regge poles
in the limit of very small m'/m, ' is considered in
Appendix B.

mathematical expression, giving more insight into the
physical aspects of the problem.

The trace approximation for the ABFST integral
equation has been used by CRS. They found that it is
a good approximation for the leading Regge pole. In
this section we shall use the same trace approximation
to solve the ABFST integral equation for the complex
Regge poles.

The approximation amounts to replacing the Fred-
holm determinant by the trace of the kernel Ez~, i.e.,
Dz() )= 1 —TrXz1

II. TRACE APPROXIMATION FOR FORWARD-
SCATTERING ABFST INTEGRAL EQUATION

The ABFST multiperipheral model was the first
multiperipheral model. It is based on the pion dom-
inance of the scattering amplitude.

In this paper we restrict ourselves to the forward-
scattering ABFST model. The model can be formulated
in the form of an integral equation. Ke follow here
closely the notation of CRS.' Our starting point is the
diagonalized integral equation

Fz'(r, r') =Fz,1'(r,r')

0

d7.

T —m2 2

g
—()(+1)y (g, r)

ds C (s), (2.6)
X+1

cosh)t(s, r) =1—s/2r . (2 7)
The Regge poles are located at the zeros of the Fredholm
determinant, which in the trace approximation becomes

j.—TrEq~ ——0 . (2.8)
It is more convenient to use g instead of v as integra-

tion variable. Equation (2.6) can be expressed as

where the partial wave I'I is defined by
Dz()() =1— Cz(s)

ds

Fz"(r,r') =
oo ~

—()(,+1)tl (s, r, r')

ds — Fz+(s, r, r'), (2.2)
m2

with
cosh)t(s&r&r )= (s r r )/2(rr ) (2.3)

Xz'(r",r') =
co ~

—O+1)q(s, r, "r') Cz(S)
ds- ——,(24)

)(+1 (r"—m') 'm'

2(rr')' 2Fz+(s,r T )

&()+~)q(~, r, r')

d)(() +1) Fz'(r, r'), (2.5)
2xi Slnhr)(sqrqr )

where the integration is over a contour from —i' to
i ~, passing to the right of all )( singularities of Fz (r,r )
in the complex X plane.

Although the ABSFT integral equation can be solved
numerically by using computers, we show that using
the trace approximation transforms the eigenvalue
problem into solving a simple transcendental equation.
This approximation also provides a more tractable

where m is the pion mass and Cz(s) is proportional to
the z-m. elastic cross section.

Of course, Fz+(s,r,r') can also be expressed in terms
of Fz"(r, r'). It is given by

~
—(X+1)y

d(cosh 1)) . (2.9)
L1+(2m'/s) (coshz) —1)7'

Notice that the integral in Eq. (2.9) has meaning only
for Re%.& —2.

The explicit evaluation of the integral

~
—())+1)g

d(coshz))
L1+(2m'/s) (cosh)) —1)7'

( $
d(coshrl)—

&2m' cos

g
—())+1)q

~
—()(.+1)y

d(coshz))
11+(2m'/s) (coshzj —1)7'

(~+1)(m2

2sin~) k s)X()(+2)

m2+
~()-+2)(&+3)(1—X) s

+(higher-order terms in m2/s). (2 1O)

hz)+ (s/2m') —17'

is given in Appendix A. It is sufhcient to confjne our
selves to the case of large s/m'. In this case (for
Reh& —2)
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Since the dominating contribution of Cz(s) comes
from the p meson, we cari make the following estimate
of m'/s:

m'/s =m'/m, '= 0.03 .

We shall consequently neglect the terms inside the
bracket on the right-hand side of Eq. (2.10) and keep
only the first three terms.

The equation determining the locations of Regge
poles is then

12

where
X(X+2)(X+3)(1—X) m '

state is the p meson, it is reasonable to make a further
simplification. We replace Cz(s) by a 8 function at
s=m, '. With this simplification, Eq. (2.11) becomes

2 —
1 ~(X+1) m'q"

Rz
1+X X(X+2) 2 sinn. 'A m, 'I

ds 1—Cz(s)
s X(X+2)

~(&+1)/m'~'

2sin~XE si
12

ds
Rz = —Cz(—s) .

s

This can also be written as

(3 1)

) (3+2)(X+3)(1—X) s
(2.11)

This is the expression used by CRS for the leading
Regge pole.

(2) It is quite obvious that in general we cannot
just keep only the Grst term, especially when we are
interested in the nonleading Regge poles.

(3) For determining the locations of complex Regge
poles, the first two terms in Eq. (2.11) will be sufficient.
However, if we are also interested in the region of
X=1, we should use all three terms.

(4) From Eq. (2.10), we see clearly that the expres-
sion

g- ()+1)y

d(cosh') — — (2.12)
L1+ (2m'/s) (cosh' —1)]'

is not an analytic function of m2 around m2=0. The
presence of the term

~(X+1) /m'y"

2 sinnX E s I

This is our essential result of the trace approximation
for the forward-scattering ABFST integral equation.

We would like to make some pertinent remarks in
passing.

(1) If we neglect m' in TrEz", we get

2 ds
Dz(X) =1—— —Cz(s) .

X(X+1)(X+2) s

/ m'q"

2Rz X(X+1)(X+2) 2 sinzrXkm, 'z

m2+— (3.2)
X(X+1)(X+2)(/+3) (1 —g) m, 2

Before solving X for given EJ, we discuss qualitatively
the dependence of X of the ratio m'/m, '. It is clear that
when X is close to 1, the first term in Eq. (3.2) dominates
over the sum of the second and third terms. In this
region the dependence of X on m'/m, ' is weak. This is
the reason that if the leading pole is close to 1, we
may use I

1=2RzP(~+ 1)(~+ 2),
as in CRS. However, in the region where Rek is close
to zero or even less than zero, the first term is no longer
the dominating term. The second term becomes
important. Especially for Rely&0, the solution of Kq.
(3.2) depends strongly on the ratio m'/m, ' (we shall
see later that the complex Regge poles exist in the
region Rek(0). Therefore, their precise locations
depend on the mass ratio m'/m, '.

For any given El, the determination of the solutions
of Eq. (3.2) is easy. The solutions are tabulated in
Table I.

These results are in good agreement with those of
MisheloG, ' who numerically solved the ABFST integral

TABLE I. Positions of leading pole and
complex Regge poles.

is crucial for the problem of complex Regge poles.

III. SIMPLIFICATION AND NUMERICAL
SOLUTIONS

In the previous section we developed the trace
approximation for the ABFST multiperipheral model.
We derived, in particular, Eq. (2.11), which can be
used to determine the locations of Regge poles.

The function Cz(s) is related. . to the m.-~ elastic cross
section, consisting of the contributions from various
resonant states. Since the most important resonant

Leading rea],
Regge pole

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

Pirst pair of
complex Regge

poles

—1.03+1.40i—0.97+1.47i—0.93a1.52i—0.91~1.56i—0,89m 1.59i—0,87&1.63i—0.85&1.65i—0.84&1.69i—0.83&1.70i—0.82~ 1.72i

Second pair of
complex Regge

poles

—1.90+2.38i—1.83&2.45i—1.78&2.50i—1.74&2.54i—1.71~2.58i—1.68+2.61i—1.65+2.65i
1 62&2 7(h—1.60a2.72i—1.59&2.74i

1/281

1.32
0.835
0.609
0.467
0.370
0.298
0.244
0.203
0.171
0.154
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equation. We also find that Rek remains less than —-',

even when E& approaches infinity. This last statement
depends on the value of m2/m, ', as explained below.

In Appendix 8 we study Eq. (3.2) in the limit that
m'/m, ' approaches zero. In this limiting case we can
solve analytically for the locations of complex Regge
poles. There we shall see that for very small values of
m'/m, ', complex Regge poles can exist in the region
Reh) ——', .

We recall that although in potential theory one can
prove that the complex Regge poles can exist only for
Rek& —-'„' no such proof exists based on the general
principles of S-matrix theory.

IV. DISCUSSION

We would like to make the following remarks on the
approximation method used in this paper. From the
practical point of view, the work of CRS has established
the usefulness of the trace approximation for the leading
Regge pole. The agreement of our results with those of
Misheloff extends the usefulness of the approximation to
the problem of the complex Regge poles.

In what follows, we try to answer from another point
of view the question: Is the trace approximation a good
approximation for the locations of the complex Regge

poles'
It is well known that the trace approximation can be

used in solving the Fredholm integral equation in two
limiting cases. In the first case, the kernel is very weak
(weak-coupling limit); in the second case, the kernel
of the integral equation is approximately factorizable.
It is the latter limit that we adopt in this paper. We now
present some qualitative arguments in support of the
trace approximation by showing that our kernel is
approximately factorizable.

First we show that the average momentum transfer
square is of the order of —m', i.e., (r) =0(—m'). After
we succeed in establishing this fact, we then show the
approximate factorizability of the kernel.

The first argument comes from the self-consistency of
our model. In the trace approximation the following
integral appears:

~
—{)t+1)y

d(coshIt)
[1+(2m'/s) (coshrt —1)]'

In the region Reh&0, if m'=0, I approaches infinity.
It is precisely the factor

L1+(2m'/s) (coshrt —1)]'

which prevents the integral from divergence. It is easy
to show that the most important contribution to I
comes from the region (2m'/s)(coshIt —1)=0(1), i.e.,

7 R. G. Newton, The Comp/ex J-I'/une (Benjamin, New York,
1964), p. 50.

coshrt —1=0(s/2m'). We have by definition cosh' —1
s/—2r. Therefore, (r) =0(—m').

We can also give a second argument. In the integral
equation, we have r" integration. For r" small, we have

Kr"(r",r) =
(r"—m')'

with

Cr(s),

cosh' (s,r",r') =
2( II I)i/2

It is quite obvious that the factorizability of EI~
depends on that of e {"+'»'"' "). The expression
(e &i' "' "')i+' is factorizable in the limit of large
s/r", s/r' As we h.ave argued previously, for Reh(0,
(r"),(r')=0(—m'). Since s=m, ', (r")/s=(r')/s=m'/
ns, '=0.03. Thus, to a very good accuracy, the trace
approximation can be used in solving the integral
equation.

We want to emphasize again that the argument to
Justify the trace approximation is not the weakness of
the coupling, but is the approximate factorizability of
the kernel.

Before concluding this section, we would like to
mention another application of the trace approximation.
It can also be used to study the Regge poles for the
problem of nonforward scattering. In particular, the
behavior of the complex Regge poles as t approaches
the threshold 4m' can be studied. It can be shown that
an infinite number of complex Regge poles accumulates
at Reh= —~, in agreement with the result of Desai
and Newton, ' and Gribov and Pomeranchuk. ' We will
not discuss X(t) here after further. The nonforward
scattering problem will be left for a future publication.
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(r /s) i+ i

(."2—m2)2

In the region Reh) 0, we may neglect nz'. However, in
the region Reh(0, we cannot. In fact it can be shown
that for Reh(0, (r")=0(—m'). We consider these two
arguments to be sufficient to support (r)=0(—m')
when Rek&0.

Now we turn our attention to the problem of the
factorizability of the kernel. Our kernel is given by
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APPENDIX A: EVALUATION OF EQ. (2.12)

Before evaluating the integral appearing in our trace
approxima io,mation we consider 6rst the integral

Therefore,

e
—(X+1}g

d(cosh')—
(coshr/+coshn)'

—(X—i}zl 1 X—1'
8 x

dS,
0 e~+b 0 I+br

(A1)
—I

g
—(A+ i}ad

t:Dshv+cosh )
where x=e "f has been used.

If
~
b

j (1,we can expand 1/(1+bx) as a power series
in x, and we end up with

~-{X+1)zl

coshg+coshn

$v
Iz= Z (—)'—,

X+y

dg
—(}t.+1}y

=o coshg+ coshn

If &&&, w«s«auchy's theorem to ~~al~ate I&.
The contour we choose is shown g.n in Fi . I. We obtain

1 X+1 1

1+coshn sinha X+1
+e—(x+1)a

sinw~

2m ~i8 'A—1i &X
—i

~ 'ft
dxL1 —e"'&" '&]+ ze' d8

o 1+be 0 1+be"
(A6)+Z(—

Using Eq. (A6) and. upon identifying cosh' = —1
+s/2PÃ, we lmmedlatelg 6nd the desired result, , which
in the limit of ls, rge s/2m' hecomes

1 1 ( 1

1+be" be" k1+b 'e ")
g
—(X+I)rl

d(cosh')—
Li+(2m'/s) (cosh' —1)jz

4

f b ' @. From Eq. (A3), we obtainln a powei series 0

+ —
~

—,b) 1. (A4)
b'X —1—r b/ sin XQ r=o

X(X+2)

(a+1)(~')'

m2

E (A2) and (A4), one obtains

sing%

2X
+P (—e- )' . (A5)

X'—r'

co e 1Lt)de 1 (1
e-xn

coshg+coshn sinhu kX

X(X+2)(X+3)(1—X) s

+(higher-order terms in m'/s),

for ReX& —2, (A7)

which is the result we used in Eq. (2.10).

APPENDIX 3 COMPLEX REGGE POLES
IN LIMIT mz/zn, z~ 0

In this appendix we consider the lim' q.it of E . 3.2) as
mz/m, '~ 0. Equation (3.2) is

2 X1 m

2Er X(X+1)(X+2) 2 sinzrX m, '

(3.2)
X(P,+1)(X+2)(X+3)(1—X) mp'

It is easy to see that for R&&0, q. becomes

ur of integration in the complex z plane. The branch
l h""t- "l.-cut for z~ 'is aong 2Rr X(X+1)(X+2)

as m/mp ~0.
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P= ln(m, '/m') . (B1)

We are interested in the large-P behavior of Eq. (3.2).
It is convenient to introduce $=XP. Equation (3.2)
becomes

In the following we are interested in Eq. (3.2) only
for Rek(0. I.et us define

We expand (B2) in a power series of t/P around the
point zero and keep only the leading terms in 1/P
(because eventually we will let P approach infinity).
We obtain

(B3)

2RI 2(P/P)(1+$/P) (1+$/2P) 2 sin(~$/P)

12e—&

The solutions of Eq. (B3) can be found easily in the
limit of large P. They are

or
(5/0) (1+ill) (2+5/P)(3+(/P) (1 5/0—)

1 1 1 3 2

Rek = ——(2eIr) ' ——+ — +
2 P' I 2

~k/P

~i&P& (1+5/0)(1+$/2P)»n(~klo)
Imz = + (2~~)(1/P)+ ",

24e & where denotes higher-order terms in 1/P and
is~any positive integer. It is clear that for large

(1+]/P)(2+(/P)(3+$/P)(1 —]/P) P= ln(—m, '/m'), Rek can be larger than —2.
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Source theory is used to derive a representation for the propagation function of a unit-spin meson. The
asymptotic behavior for large momenta resembles that observed in electromagnetic form factors.

' ' ' ADRONIC electromagnetic interactions are
usually pictured as proceeding through the

intermediary of the known 1 mesons. In this model,
electromagnetic form factors are linearly related to the
meson propagation functions. Electron-positron collid-
ing-beam experiments have confirmed the implied
resonant behavior. But form-factor measurements for
large momentum transfer seem to be at variance with
the idea. Instead of the simple asymptotic dependence
on momentum transfer, 1/p', experiment indicates a
more rapid decrease, (1/p')", d&2. It is therefore
particularly significant that the modified propagation
functions derived from source theory' do show an
asymptotic decrease that is at least as rapid as (1/P')2,
and can approach (1/p')'.

To sketch how this comes about, consider p for
definiteness. The associated vector and tensor fields

* Supported in part by the U. S. Air Force Once of Scientifiic
Research under Contract No. F44620-70-C-0030.

f Present Address: Department of Physics, University of
California, Los Angelos, Calif. 90024.

' Various aspects of source theory are described by J. Schwanger
in (a) Particles and Sources (Gordon and Breach, New York,
1969), and (b) Particles, Sources, and Fields (Addison-Wesley,
Reading, Mass. , 1970).

The action principle supplies the field equation

P P""(P)+m'u" (P) =~"(P) (3)
which can be analyzed into longitudinal and transverse
components relative to the momentum vector, as
indicated symbolically by

PP& PP
p'+w (~ lp+==

P2j P2

are designated as p„and p„„,while the vectorial source is
J„.The initial description of this particle, appropriate
to such time intervals that its instability is not in
evidence, is given by the vacuum amplitude expression

«+I 0-&'=exp&+'(J)3, (1)

where, stated in momentum space for convenience,

(dp)

(2Ir)'
Lp'(-P) J.(P) -la""(-P)p"(P)

2m'r "( P)p.(P)j-, (2)-
r "(P)=~P.u (P) iP p.(P). -


