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Nonlinear Hadron Couylings from Divergence Conditions.
II. q Mesons, Pions, and Nucleons
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The interaction of the p Geld with pions and nucleons is investigated by extending our earlier treatment of
the pion-nucleon system and imposing the requirement that the source function in the p-Geld equation have
a vanishing divergence. This leads to a nonlinear equation for the p Geld without the use of either a broken
symmetry or a correspondence between the neutral p Geld and the photon Geld. It is possible to develop our
formalism with as well as without the axial-vector u Geld. However, the usual condition of partial conserva-
tion of axial-vector current (PCAC) is fulfilled only if the p Geld is accompanied by the u Geld, while a modi-
Ged PCAC condition is found to hold in the absence of the u Geld.

I. INTRODUCTION

ct„(ct„p„—ct„y„)—m, 'p„= —J„ (1.2)

where the source function J„satisfies the divergence
condition

ct„J„=O. (1 3)

Note that the field equation (1.2) can be decomposed
with the help of (1.3) into

(Cl' —m ')y = —J„
~vPv =0

y (1.5)

so that (1.5) can be regarded as an alternative form of
the divergence condition.

In Sec. II we shall treat the p-E system of fields by
using the divergence condition (1.3), while Secs. III
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Lee and H. T. Nieh, ibid. 166, 1507 (1968); S. Gasiorowicz and
D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969).
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' 'N an earlier paper' it was shown that the nonlinear
~ - chiral-dynamical models for pion-nucleon couplings
can be obtained simply by using an appropriate
divergence condition for the pion-field equation. We
shall now show that the interaction of the p field with
other fields can also be treated by imposing a simple
divergence condition which leads to a nonlinear equa-
tion for the p field. We would like to emphasize that me

shall not Nse either the broken chiral symmetry' ' or the
broken Yang Mills symm-etry' or a correspondence between
the neutral p field and the photon field, ' but shall derive
our results solely by the use of the divergence condition
described below.

It is well known that the free-field equation for p
mesons is

ct„(B„p„—ct„t~„)—m, 'y„=O.

We shall postulate that in the presence of interaction
the p-field equation takes the form

and IV will deal with the p-m-A' system. As we point out
in Sec. V, the axial-vector a field is no t necessary in our
formalism, but this field too can be treated by means of
a divergence condition. The formalism of the PCAC
condition with as well as without the a field will also
be discussed.

At present the experimental situation regarding the
a mesons is not clear. ' If it is found that a mesons do
not exist, it will create a serious difficulty in the chiral-
dynamical approach, ~ while it will not give rise to any
difFiculty in our approach. On the other hand, if it is
established that a mesons do exist, both approaches
could be used, but our approach will have the advantage
of combining the features of chiral dynamics and the
PCAC condition by employing only the divergence
conditions.

We shall follow the same notation as in Ref. 1 except
that the pion coupling constants g and f will be denoted
by g and f to distinguish them from the p coupling
constant g, .

II. LAGRANGIAN FORMALISM FOR
NONLINEAR y FIELD

We shall consider the Lagrangian formalism for the
interaction of p mesons first with nucleons and then with
an arbitrary field. The present approach is similar to
that of Lee and Zumino' except that we shall derive the
self-interaction terms for the p field without postulating
any correspondence between the neutral p field and the
electromagnetic field.

The linear Lagrangian density for a system of p
mesons and nucleons with the simplest p-Ã coupling is
given by

L,);„„,= ——,'(ct„y„—ct y )'——,'m 'p '
—g(y. 8+M)X+,'g+iy„~ ts„N, -(2.1)

and it can be easily ascertained that the source function
in the resulting p-field equation does not satisfy (1.3).
Let us, therefore, try to obtain the desired form of the
Lagrangian density by introducing nonlinearity in the

' Particle Data Group, Rev. Mod. Phys. 42, 87 (1970).' See, especially, Sec. VI of Gasiorowicz and Geffen, Ref. 3.
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p field through the replacement of (2.1) by

k( 9 ~ Pp) 2jjip Pp +gi(PpXP ) ' (~pP rj Pp)

+gk(Pp Pp)(Pv Pv)+ga(Pp Pv)(Pp 9v)
—N(y 8+31)iV+,'g+i-y„~ fjpjV, (2.2)

which includes the simplest isospin-invariant self-
interaction terms that are trilinear and quadrilinear in
the p field.

According to (2.2), the nucleon-6eld equations are

Hermitian matrices representing the isospin generators
acting on P. It is well known, for instance, that

.=1T'=2T' (2.13)

for an isospin-~ field, while the matrix elements of T; are

Ts,jy = —ZEsj (2.14)

for an isospin-1 6eld. We take the Lagrangian density
for the p field interacting with the iso6eld P as'

ypBpN+IpIN ,gpjy—„~ fppN v

Ops„M—N= ,'g—+-imp~ p
(2.3) where

I.=L,+L,Q,D„P),

g 52

(2.15)

(2.16)
while the p-field equation can be put in the form

8 (p& Ppv &vip) —jrjp fjv = Jvv
with

and 1.2 is obtained from the Lagrangian density of the

(2 4) free p field by replacing Bp by the covariant derivative
D„, defined as

Jv= 2giy„X (&pfjv Bvt—jp) 2gl—ijp(tjpXtjv)

+4g2(fjp pp) 9„+4'(fj, io„)pp+2gpNi Y„~N (2.5).
DIj = Bp, Zgp T'Pp. (2.17)

The invariance of (2.15) under the isospin trans-
formations

It follows from (2.5) that

~vJv= 2gitjpX&v(&ptjv &vip)+4gHv[(yp'pp)yves

+4g rj [(tk tj )e 3'+ g rj (N 7 N)

or, with the help of (2.3) and (2.4),

bpv j =&jrijkpv, k v jjf=~ri7 jf v

gives the conserved isospin current

gp PijkPv, k+&
-~(~ p'p. )j~(~A)

(2.18)

~ J = 2giPr XJp+4g&~v[(Pp'Pp)Pvj

+4gk~, [(p, pp)fjp j+kgp N&"j.&Xfj„N (2.6).
Moreover, since (2.5) also yields

tj.XJ.= 2giB,—[(y„yp)tj„—(p, pp)pp] —ggpNzv. vXy.N,

(2.6) can be simplified as

~ J =4(gi'+g~)~ [(e. e.)e.j
-4(gi'-g )~ [(e e.)e.j

+gp(gi+2gp)Njy, ~XtjN (2.7).
Evidently, the divergence condition (1.3) can be fulfilled
provided that the coefFicient of each of the three terms
on the right-hand side of (2.7) vanishes, which gives

gi=-lg. , gk=-lg, ', g =lg, ' (28)

or
8J2

gp pvXgpv+i
~(DA)

(2.19)

J =s+g &.(y.xp, )

in (2.20) satis6es the divergence condition

B,J,=B„s.=0

(2.21)

(2.22)

The p-field equation given by (2.20) and (2.19) can
also be put in the alternative form

while the p-field equation resulting from (2.15) can be
expressed in terms of the above isospin current as

rj„(rj„lk„B„y,)—jjk, 'fj„—= —[S„+g,a„(p„Xti„)]. (2.20)

The source function

The Lagrangian density, obtained by substituting
(2.8) into (2.2), can be put in the compact form

(2.23)

I- = ,'fjp, k ,'m, 'fjp' —N—(y pD
—p—+IPI)N—,

where

where ~~„, the P-dependent part of J„, is given by
(2.9)

BL2

and
Ppv ~pgv ~vPIjj+gpPIj Xgv

1'
DIj —Bp, 2zgpg ' gp.

(2.10)

(2 11)

v
= —

Zgp TP
-~(D.4)-

and satisfies the covariant divergence condition

(2.24)

g =ic;T;P, (2.12)

where c; are infinitesimal real constants and T; are

The above result suggests an obvious generalization
for the treatment of the interaction of the p field with
an arbitrary isofield represented by a one-column
matrix P. Consider an in6nitesimal isospin trans-
formation

D~~ =0 (2.25)

III. g-~-N SYSTEM

It will be convenient for the treatment of the p-~-Ã
system to establish an important property of the

We treat p as a real field; the extension of the formalism to a
complex 6eld is self-evident.
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covariant derivative of a product of isofields. Let f be
an isoquantity that is a product of e isoGelds

Under an arbitrary infinitesimal
isospin transformation,

yields
P —P(i)P(2). . .P(~) (3.1)

zc 2' g = (zc,T, (')P'z))P'2) P("'
+P")(iC,T, (2)P(2)) P(")+ ~ .

+P")f(2) (ic;T,(")P(")) (3.2)

where the matrices T ("& represent the isospin generators
acting on P("). By dropping the arbitrary parameters
c, in (3.2) and multiplying by p„;, we obtain

zT eA =(z~"'eA"))0"'
+4'"(z~"'(.o 4"') . 4'"'+ . .

+P( )P(2) (zT&") p P("))

which, together with the relation

(C]2—zzz 2)22=8„J„o, (3.9)

where the source function is a complete divergence. The
corresponding pion-Geld equation in the presence of
the p Geld is given by the modiGcation of (3.9) as

according to the general derivative z-E coupling of our
earlier paper, ' where the functions (z(222), b(222), c(222),

ni(22'), (22(22'), and n2(22') have been given explicitly for
various special models. In the case of the nonderivative
x-S coupling, I.2 takes a similar but simpler form.

The above Lagrangian density yields the same field
equations for pions and nucleons as in the absence of
the p field except that now D„appears in place of 8„.
Indeed, in view of the property (3.3) of the covariant
derivative D„, the entire treatment of the m-E system
in Ref. 1 is applicable here on replacing B„by D„
everywhere. ' It is especially important to recall that
in the absence of the p field the pion-field equation is
expressible in the form'

~A=(~A"))0"' 0(")+4")(~A")) . 0'")+
+0"4"' (~ 0("))

gives

DA =(DA( ))4( ) 4(.)+~")(DA( )) ~(-)+
+4 "'P"' (DA'"') (3 3)

or

(D„'—zzz. ')22 =D„J„o' (3.10)

where

D P(n) (g z~ T(n) .~ )P(n) (3 4)

We observe in particular that the covariant derivative
(3.4) gives, in view of (2.13) and (2.14),

D„E=B„E——,i'~ p„E,
D„N=BoN+-2zgg ~ p„,

where J»' is obtained from J„O by the replacement of
B„by D„. Thus, the pion-field equation maintains an
elegant form in the presence of the p field, but the source
function is no longer expressible as a complete diver-
gence. The conventional PCAC condition also breaks
down in the presence of the p Geld because (3.10) gives
the modified PCAC condition

D(I'7z = BO22+gp(()pxzz ( D„J„o"= —z)2222 (3.12)

while D„=B„for an isoscalar Geld. Similar relations
apply to the covariant derivatives of isospinor, iso-
vector, and isoscalar quantities consisting of products
of field operators.

Hy following the procedure of Sec. II, the Lagrangian
density for the p-z-E system can be expressed as

I- =I-i+1-2, (3.6)

where Li is given by (2.16) and 1.2 is obtained from the
Lagrangian density of the m-E system by replacing 8„
by Dp. Thus)

ol

where

~.J.O" = zm'~ g.e~X—J.o"—

J,o"=J,o' —D,~

(3.13)

(3 14)

D(~t)( ~ zzz( t)~ = 3» (3.15)

can be regarded with appropriate normalization as
the PCAC current.

The p-Geld equation too can be obtained from (3.7)
and (3.8) by using the relations (2.23) and (2.24), which
give

~2 I'Om +IOX +~a z +I'wX (3 7) wltll

with

I pgp
= 2(Dp'Jz'Dpzz+zzzp 22'22) (

I o)(( = N(y'D+M)1V, —
1. '=(2(222)+b(222)D„22 D„22+c(222)(22 D„22)2,

1.,~ ni(222)Nzy„go~ D„22N-—
+(22(22 )Nz'rp'2 '22 xDOOON

+(22(222) (22 D„22)Nip„yz~ 22N,

(3.8)

Qv (2+0(222 )gpXz'rp'21V gpQiNz rp"ro'2X'R1V—
—gpn2Niy„(~ 2O)22N —gp(1 2b)zzxD„22. (3.1—6)

Substitution of the values of the functions o,i, o.2, and b,

' There are no complications resulting from the fact that
D„and D„do not commute since in the treatment under con-
sideration the second covariant derivatives occur only in the
form D„D„.
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given in Ref. 1, shows that

3,=-,'g, {cos(2fgm')Nip„gN
—(g,/f. gm') sin(2 f.gm') Nip, y,~ XmN

+(1/~')[1 cos—(2f g~') jNiy. (~ ~)~N
—(1/2 f~ m ) sin'(2 f Q~')~XD.m} (3.17)

for Model A',

3„=&g,{(1 4f 2m—2) ~2Niy„sN 2g N—iy yewX~N

+(1/~')L1 —(1—4f '~')"'5'„(~ m)~N
—2~XD„~} (3.18)

for Model 8', and

Q„=kg,{r2(1+f 'm')-' —1(Nip„~N
—2g (1+f 'm') 'Nip„yg~XmlV

+2f '(1+f '~')-'Nip. (~ m)~N
—2(1+f '~') '~XD,~} (3 19)

for Model O'. The terms involving the nucleon field
in (3.17)—(3.19) should be replaced by ,'gay—„~lV for
the simpler nonderivative m-E-coupling models A, 8,
and C.

k
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IV. TRANSFORMATION OF ~-N COUPLING IN
PRESENCE OF p FIELD

It is known ' that the nonderivative vr-E coupling in
the nonlinear models can be transformed into the
derivative x-E coupling. Thus, the Lagrangian density
for the x-S system, given by

I. ~~= ', (8„~—B-„m+m, ~ m) —N(y 8+M)1V
—2f MNiy, ~ mN+0(f '), (4.1)

can also be expressed as

I..+~' ————',(8„m Bpc+m. '~ ~)—N(y r7+M)N

+f.lay„yg~ B„mN+0(f. ') . (4.2)

When the p-field interaction is introduced into the x-E
system through the replacement of B„by D„, then (4.1)
yields the coupling terms

I-inc = gpio„~X—B„~+', gplViy„~ -p„N

2f.MNiy5~ —mN+0(f ',gp'), (4.3)

while (4.2) yields

goal ~Xr71++kg&~71 &' pP
+f N~y„y5~ 8„+N+f~gP'iy„y5~ p„X~N

+o(f-',g.') (4 4)

V Although (4.3) and (4.4) are expected to be equiva-
lent on general theoretical grounds, such equivalence is
somewhat surprising in view of the fact that the p-field

interaction specifically depends on the appearance of
the derivatives in the Lagrangian density. It would,

'OSee S. Coleman, J. Mess, and S. Zumino, Phys. Rev. 177,
2239 (1969), and earlier papers quoted there.

I rG. 1.Second-order diagrams for scattering process x+1V~p+S.

we find

N (p')(iy p'+M) =0,
(iy p+M)N"(p) =0,

k.'p. , ' (k') =o,
(4.6)

A = r, r,My5(2i p„' o„,k.')/(k'+2k p)—,

ll =,,„M&,(2ip„—~„k„')/(k' —2k p'),
C =4~;;"M~5(p.—p.')/[(p' —p)'+~-'7.

(4 7)

Similarly according to (4.4), the scattering operator for
Figs. 1(a)-1(d) is found to be

S,'= i(2~)4S(p+-k p—' k') f.g,N (p—')—-
X[A'+8'+C'+D']N+(p) p„,, (k')7r, +(k), (4 8)

therefore, be reassuring to verify by an appropriate
application that (4.3) and (4.4) lead to the same result.
For this purpose, we shall consider the scattering
process 7r+N~p+iV described by the diagrams in
Fig. 1, where p and p' denote the propagation four-
vectors of the initial and final nucleons, and k and k'

denote those of the z and p mesons, respectively. It
should be observed that the coupling terms (4.3) and
(4.4) do not lead to identical diagrams, because Fig. 1(d)
can arise only from (4.4).

According to (4.3), the scattering operator for
Figs. 1(a)-1(c) is

S,= —z(2 )'S(p+k —p' —k')f.g+-(p')
XLA+8+C]1V+(y)p„„(k')~;+(k), (4.5)

where, after simplification with the help of the relations
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where

A'= r;r,[ 2—y2y„+My2(22P„' o—„„k„')/(k +2k ~ P)j,
B'=; ~[-,'Y,y„+My, (2ip„„—„k.')/(k —2k p')$,'

(4 9)C'=4", "~v (p. &,'-)/[(a' e)'-+m. '3,
~l~ =&&ij k 7 k+5+y ~

It follows from the above results that

S2'=S2,

which establishes the equivalence of the couplings (4.3)
and (4.4) for the process under consideration.

in the presence of the pion field. It is possible to include
the a field in our formalism by regarding the divergence
conditions (5.1) as basic postulates but without employ-
ing the broken chiral symmetry. However, while the
chiral dynamics demands the existence of the u Geld,
our formalism can accommodate this Geld but does not
necessarily require its inclusion. We shall confine
ourselves to a brief consideration of the x-p-u system.

By introducing the simplest coupling terms with
undetermined coeScients for the interaction of the a
field with the m-p system and imposing the requirements
(5.1), it can be shown that the Lagrangian density for
the ~-p-u system can be expressed as

V. AXIAL-VECTOR MESONS where
1.= ——42 (y„„"+a„") 222—2 2—

(y '+a 2)+L (5.2)

In chiral dynamics an axial-vector a field is introduced
along with the vector p field and, further, these fields
are believed to satisfy the divergence conditions

B„y„=0) B„R„=const, e

1 sin(2f +222) g,I = —— (8„22+gpy„X22)+ cos(2f +222)a„
2 2f.+222 2f.

9p" Fp" "pp+gpppXV"+gpapXa" 5.3
@s+gnpwXa&+gnavXP»

while L, which depends on the pion models described
(5.1) in Ref. 1, is given by

1-( 1

2 (sin(2 f,g )222

cos(2f +222)~(22 8„22) sin(2f +222)
+g, (22 a)

2f.V'~' & g~' 2f &222

1 q(~ 8 ~)-2
+ —

~
cot(2f +22') — —

~

—-22m 2222 (5.4)
2 4 2f +~2)

for Model .4,

I = 2[~.~+g.e—.X~+(g,/2 f-) (1 f-'~')'"a.—j'
——,'[2f (1 4f 2222)-"2(22—8 22)+g (22 a )j'

—(m. '/4f ')[1—(1—4f '22')'"j (5.5)

for Model 8, and

I = ——,'[(1+f. 222)2-'(a„2+2g, y„X2)2

+(g /2f )(1—f~' ')(212+f '22') 'a $'
'[f (1+f '22')-—'(-m 8 ~)+g (1+f '22')-'(m a )j'

+1[f (1+f 2~2)-1(~.g ~)j2
—(222~'/2 f~') ln(1+ f~'22') (5.6)

for Model C.
We have explicitly given the results for three different

models because only one of these models seems to have
been explored previously for the m.-p-a system. ' Each
model involves a mixing of the a and x Gelds. Therefore,
in order to obtain the coupling terms for physical fields,
it is necessary to carry out the decomposition of the
a Geld followed by the renormalization of 2r, f„and 222

in the usual manner.

VL CONCLUDING REMARKS

We have observed that the nonlinear pion-nucleon
couplings in general involve two couplings constant g
and f, . The divergence condition for the pion field is
unable to yield the relationship between g and f, but
the following two cases seem worthy of notice because
of their simplicity:

(a) The case g =f has the advantage that the
derivative pion-nucleon coupling can be transformed
entirely into the nonderivative form. In this case the
small difference in the phenomenological values of g
and f for the low-energy 2r-X scattering can be attri-
buted to renormalization effects.

(b) The case f, =0 has the advantage that all models
for pion couplings become linear and identical with each
other, because L ~ and L, reduce to

L)rgb —g~glpp+54 ' Bp&E ) Lg)r 0 o (6.1)

In this case the low-energy x-E scattering can be
accounted for reasonably well by taking into considera-
tion not only the fundamental 2r %coupling (6.1) but-
also the effective p-exchange coupling, given in the
static limit by

We conclude with some comments on the fundamental
couplings of the m, X) p, and a fields. Lgf f = fg W yp''2X2I92+2K)2 (6 2)
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where

f.'=g '/2m ' (6.3)

coupling ternis such as

f,y„„(S~„,~E) or f„'p„„(D„~&&D„~). (6.4)

which is known as the KSRF relation. "
In the treatment of the interaction of the p field with

other fields, we have introduced the simplest couplings
consistent with the divergence condition for the p field.
This divergence condition, of course, remains inviolate
if for any isofield f we introduce additional coupling
terms that are functions of y„„,P, and D„P, and therefore
it is possible to introduce for the p-vr-S system additional

".K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 14'7, 1071
(1966).

However, in view of the experience in quantum electro-
dynamics, it seems that these couplings are not likely to
be fundamental, although the higher-order effects will

undoubtedly generate e6ective couplings of the above
form.

When the p field is not accompanied by the a field,
we have shown that the usual PCAC condition cannot
be fulfilled, and it must be replaced by the covariant
PCAC condition (3.12) or (3.13). Since the existence of
the a mesons has not been clearly established by experi-

ments, it would be desirable to explore the consequences
of the covariant PCAC condition.
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Complex Regge Poles in the Amati-Bertocchi-Fubini-Stanghellini-Tonin
Multiperipheral Model*

SUN-SHKNG SHKX

Luzrence Radiation Laboratory, Un& ersity of California, Berkeley, California 947ZO

(Received 8 December 1970)

The multiperipheral model of Amati, Bertocchi, Fubini, Stanghellini, and Tonin is used to study complex
Regge poles. We use the trace approximation to solve the multiperipheral integral equation. The equation
determining complex Regge poles for the forward-scattering case is derived. We explicitly solve for the
locations of complex Regge poles and discuss their dependence on the pion mass.

I. INTRODUCTION
' ULTIPERIPHERAL models' ' are very useful

- ~ for describing general features of high-energy
collisions, It is well known that they predict Regge
asymptotic behavior for elastic amplitudes and total
cross sections, a constant elasticity, a lns behavior for
the multiplicity, and a small average transverse momen-
tum for secondary particles produced in high-energy
collisions.

Another group of useful models for studying Regge
behavior are potential models. It is known that, in

potential models, complex conjugate pairs of Regge
poles may occur at energies below the physical thresh-
old. ' It is natural to ask whether this phenomenon is
also present in a relativistic model like the multi-
pheripheral model.

*Work supported in par t by the U. S. Atomic Energy
Commission.

L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,
626 (1962); D. Amati, A. Stanghellini, and S. Fubini, ibid. 26,
896 (1962).

2 G. F. Chew and A. Pignotti, Phys. Rev. 1'76, 2112 (1968);
G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev. Letters
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Recently, using a simplified multiperipheral model,
Chew and Snider4 illustrated the possibility of complex
conjugate pairs of Regge poles.

This paper studies the problem of complex Regge
poles in a more realistic multiperipheral model. The
model we use is the Amati-Bertocchi-Fubini-Stanghel-
lini-Tonin (ABFST) model. ' We do not attempt to
solve the ABFST integral equation exactly. Rather
we use an approximation method. The method we

adopt is the trace approximation, which has been
employed by Chew, Rogers, and Snider' (CRS) in the
case of the leading real Regge poles. With this approx-
imation, the eigenvalue equation can be written down

quite easily. The dependence of the locations of complex

Regge poles on various physical quantities becomes
transparent. In forward scattering, we explicitly solve

for the locations of these complex Regge poles. The
results agree with those of Misheloff, ' who solved the
ABFST integral equation exactly by a numerical
method.

The plan of the paper is as follows. In Sec. II, we

develop the trace approximation for the forward-
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