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A method is outlined for the construction of dispersion-theoretic electromagnetic scattering amplitudes
for processes in which bound states may appear; in particular, the electron-positron system is examined. A
Lorentz-covariant spinor amplitude is exhibited which is analytic, cutoG independent, and crossing sym-
metric, which has the correct double-spectral functions through second order in the fine-structure constant
n, and which reduces to the usual Born approximation in lowest order. Moreover, the amplitude displays
Regge asymptotic behavior and the positronium Regge poles. Self-consistency requires that the positronium
poles appear at the correct position and with the proper residue, and that the amplitude possesses a well-
dehned Jacob-Wick expansion. It is found that this second-order amplitude provides a suitable basis for
iterative calculation of the higher-order terms using the same procedure.

I. IÃTRODUCTION

LTHOUGH the usefulness of the Feynman-Dyson
perturbation theory in quantum electrodynamics

is beyond question, there is at least one area in which it
is expected a priori that the usual formulation will fail—in the description of scattering processes for which
there is the possibility of bound states. In this case,
it is known that the perturbation theory will not yield
the correct scattering amplitudes. Of course, it is pos-
sible to modify the formalism in such a way that
bound states may be accommodated, ' but the calcula-
tional difficulties which are thereby introduced more
than onset the gain in applicability. Thus, in spite of
the advanced status of the perturbation calculation of
bound-state energy shifts, the corresponding scattering
problems remain essentially unresolved. This deficiency
becomes acute if one attempts to construct a dispersion
theory of electromagnetic interactions which is inde-
pendent of perturbation theory and which can compare
with perturbation theory in the accuracy to which, for
example, the Lamb shift or the electron anomalous
magnetic moment is determined. In that case it is
necessary that the problems concerning scattering pro-
cesses for which there are bound states be faced, since
these scattering amplitudes will appear explicitly in the
dispersion integrals used to evaluate the form factors'
or the bound-state perturbations. 4 There is little doubt
that an alternative to perturbation theory would be
desirable, particularly if it oGers the possibility of
increased simplicity. Since a necessary preliminary step
in the evolution of an independent dispersion theory of
electromagnetic interactions is the construction of
accurate scattering amplitudes when there are bound-
state poles, the procedure which is outlined on the

f ollowing pages, aside from any intrinsic appeal, should
prove to be of considerable utility.

We will consider here only the elastic electron-posi-
tron scattering amplitude. This amplitude is necessary
for the dispersion calculation of the Lamb shift' and is
convenient for the dispersion calculation of the electron
anomalous magnetic moment. ' Moreover, it represents
a highly symmetric and therefore considerably simpler
system than that which results when the masses are not
equal. It should be made clear, however, that our
method can be extended to the unequal-mass case with
some additional labor. We would like to construct a
Lorentz-covariant spinor amplitude which is analytic,
crossing symmetric, and cutoff independent, which
exhibits Regge asymptotic behavior and the bound-state
Regge poles, displays the correct double-spectral func-
tions through second order in the fine-structure con-
stant n, and reduces to the usual Born approximation in
lowest order. Finally, we require that the amplitude
which results be self-consistent. We will show that for
electron-positron scattering these conditions can be
satis6ed by a relatively simple analytic form, although
the inclusion of spin greatly increases the apparent
complexity. While it was not our intention originally,
we have, in a sense, effected a bootstrap, since the only
pole whose position and residue is inserted u priori is
that of the electron, while our result can be shown to be
self-consistent only if it has positronium poles at the
correct position and with the proper residue.

Basically, our program is very simple, although there
are significant details which can only be appreciated by
means of an example. We consider the three t-channel
unitarity diagrams of Fig. 1. These three diagrams plus
the three exchange diagrams obtained from I-channel
unitarity represent a complete set through second order

' S. S. Schweber, An Introduction to Relativistic Qguntgnz Field
Theory (Harper 8t Row, New Vork, 1962), pp. 642-643.

~ Ref. 1, Sec. 17f.
' S. D. Drell and H. R. Pagels, Phys. Rev. 140, B397 (1965).
4 R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, 31190

(1964). ' J. McKnnan, Phys. Rev. 181, 1967 (1969).
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FIG. 1. Imaginary part of the elastic electron-positron scattering
amplitude, through second order in a, given by these three
t-channel unitarity diagrams.
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FIG. 2. Kinematics for our f-channel scattering amplitude.

in n. (Note that in perturbation theory there are 20
Feynman diagrams through second order. ) We ex-
plicitly calculate the second-order contribution of each
diagram to the double-spectral functions of the elastic
electron-positron scattering amplitude. We then assume
the invariant amplitudes can essentially be written in
the form6

+(single-spectral-function terms)+(crossing), (1)
I

where the yI, '(s, t,u) and the nq'(t) are to be determined

by requiring that Kq. (1) give the correct second-order
double-spectral functions and reduce to the Born term
in lowest. order; and that the amplitude be self-con-
sistent. In practice, the intermediate stages in the
evaluation of the double-spectral functions will strongly
imply the specific form of the yI, '(s, t,u) and of the n&'(t)
which satisfy these requirements.

We must point out, however, that in one respect our
evaluation of the double-spectral functions will differ
from the usual procedure. Diagrams 1(a) and 1(b) can
be evaluated without complication. Indeed, 1(a) is
equivalent to the usual Born approximation with vertex
corrections due to the electron anomalous magnetic
moment. This term will not contribute to the double-
spectral functions. Diagram 1(b) can be evaluated
directly by employing the usual pole approximation to
the two-photon annihilation amplitude. This term will

exhibit cuts in I and s so that there will be nonvanishing
contributions to each of the double-spectral functions.
The point of departure arises in the consideration of the
remaining diagram 1(c).This term cannot be evaluated
using the Born approximation, since the integral over
the angles of the photon pole is divergent. In order to
evaluate the integral without introducing a cutoff, we
replace the pole term by a simple function which ex-
hibits Regge behavior and which reduces to the Born
term in lowest order, and whose form is suggested by
the form of the Coulomb scattering amplitude obtained
from the Schrodinger equation. In a sense, this sub-
stitution amounts to a recognition of the fact that Fig. 1

This particular form has been discussed by X. Artru, M,
Fontannaz, and R. Omnes, Phys. Rev. 181, 2130 {i969).

represents a singular, inhomogeneous, nonlinear integral
equation for the elastic electron-positron scattering
amplitude, and that the Born term does not comprise
a suitable solution. . This substitution, which is related
to the form of Eq. (1) and will be discussed more fully
in subsequent pages, is crucial to the success of our
program, since it is this feature of our calculation which
will admit a process of iteration.

At this point, we should indicate the reasons for our
emphasis of the double-spectral functions. It is certainly
true that we cannot simply insert the discontinuity
function, which we obtain from the evaluation of the
diagrams in Fig. 1, into a dispersion integral. This pro-
cedure would (aside from the fact that our substitution
for the photon pole obviates the necessity for an in-
frared cutoff) simply reproduce the perturbation theory
results, which we know must be incorrect. In order to
arrive at a resolution of this difhculty, we turn to the
familiar example of the Coulomb scattering amplitude
in nonrelativistic quantum mechanics. By separating
the Schrodinger equation in parabolic coordinates, it is
possible to obtain the exact Coulomb amplitude ln
closed form. As is well known, the 6rst Born term is
identical to the lowest-order term in an expansion of the
exact amplitude in a power series in o.. However, the
second Born approximation is not equal to the second-
order term of the exact amplitude. (As a matter of fact,
the second Born term involves an integral similar to
that which would result from a dispersion calculation
in the relativistic case.) We do find, however, that with
sufficient care the contribution of the second Born term
to the double-spectral function can be evaluated, and
this is identical to the second-order term in the expan-
sion of the exact double-spectral function. It is this
result which has prompted our elevation of the double-
spectral functions to primacy. To be sure, there is no
guarantee that in the relativistic case the double-spectral
functions calculated by evaluating low-order unitarity
diagrams will be identical to the exact double-spectral
functions to that order, but we must have some basis
for our calculation and our results are so satisfactory
that it is entirely reasonable that this supposition is
correct. We will thus postulate that, although a uni-

tarity sum of the form given in Fig. 1 may not yield
the correct single-spectral functions (when truncated at
any finite order, at least), the double-spectral functions
which can be derived from this expansion are correct to
each order. Our results here strongly indicate that this
is true through second order in n. It is, however, a matter
for conjecture whether it remains true for higher orders,
although it is at least plausible to assume that this is
the case.

Thus, we shall proceed as follows. In Sec. II we will

review some aspects of spin- —,
' spin- —,

' equal-mass scat-
tering and introduce our notation. In Sec. III we will

discuss the Born approximation to the electron-positron
elastic scattering amplitude. In Sec. IV we outline our
evaluation of the double-spectral functions to second
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order. Finally, an ensate which satisfies our requirements
will be presented in Sec. V.

II. NOTATION

We should now like to review brieQy the general
formalism of spin--,'—spin--,' equal-mass scattering and
establish our notation. There is a minor difficulty in that
our calculation employed the two-component spinor
formalism as discussed, for example, by Barut, ~ since
this achieved a considerable reduction in the labor
required to express the result of the unitarity integra-
tions in standard form. However, since the four-com-
ponent spinor formulation is generally more familiar,
wehave translated our results into the usual notation.
Thus, the scattering amplitude for two spin- —', identical
particles with kinematics as in Fig. 2 can be written in
the following form:

T(k4 k2 kl k8) Q A '(s t u) Y'(k4 k2 kl k3)

+A, (s,t,u) Y;(k4,kg, ki,kl), (2)

where t=(ki+kl)', s=(ki —k2)', and u=(ki —k4)' are
the usual Mandelstam variables, and the A;(s, t,u) are
Lorentz-invariant scalar functions with

A, (s,t,u) = A, (s,u, t—) .

The spinor basis functions Y,(E) are given by

Yi —= V=u(k4)y&v(k, )v(k,)y„u(ki),
Ye—=5=u(k4) v(k2) v(k3) u(ki),
Yp—=F=u(k4)ygv(k2)v(ka)ysu(ki), (3)

Yz—=A =u(k4)y5y&v(k2)v(k~)y, y„u(ki),

Yr=T=u(k4)i(r&"v—(k2)v(ka)io„„u(ki).,

where the spinor normalization is that of Bjorken and
Drell. ' The Y,(E) can be obtained from (3) by the
exchange k4~ —k3, and will be denoted by V, S, I',
A, T. These are essentially the Ave spinor basis func-
tions used by Goldberger, Grisaru, MacDowell, and
Wong' in their analysis of the nucleon-nucleon problem.
Note that there are only five independent amplitudes,
since the exchange spinor basis functions Y;(E) can be
written as a linear combination of the Y,(E). We see
that the amplitude (2) is antisymmetric with respect to
the exchange k4+-+ —k3, as required by the Pauli
principle. In the t channel, W =gt is the total energy in
the c.m. frame; s= —2qP(1+s) and u= —2qP(1 —s) are
momentum transfers, with s the cosine of the scattering
angle; q, =—,'(t—4)'" is the c.m. relative momentum. As

usual, we choose units in which A, c, and the mass of
the electron are unity.

7 A. O. Barut, The Theory of the Scattering Matrix (MacMillan,
New York, 1967).

J. D. Bjorken and S. D. Drell, Relativistic Quantum 3fechanics
(McGraw-Hill, New York, 1964).

9 M. L. Goldberger, M. T. Grisaru, S.%; MacDowell, and D. Y.
Mong, Phys. Rev. 120, 2250 (1960).

III. BORN APPROXIMATION

The evaluation of diagram 1(a) yields the one-
photon-exchange contribution to the electron-positron
elastic scattering amplitude, with vertex corrections due
to the electron anomalous magnetic moment. It is
essentially the Born term. Although this term does not
contribute to the double-spectral functions, it must be
the case that the photon pole be reproduced in our
amplitude in lowest order. The contribution of diagram
1(a) to each of the five scalar amplitudes, assuming a
general form for the electron current,

j&(t) = (e/v2) $Fi(t)uy&u ,'I"2(—t) q—&uuj,
is given by

A v(s, t,u)a, ——(4m/t) I'i(0)Fi(0),
A e(s, t,u)a, ——&gK($—u)—(4mn/t)Fi(0)F2(0),

A p(s, t,u)s. ,'z——(s—u)(4—sn/t) I'i(0)FI(0), (&)

Ag(s, t,u)a, ——0,
A, (s,t,u),.„= ;.t(4 —/t)I,(0)F,(0).

In (5), I'i(t) =Fi(t)+I'g(t) =Fr(t)+eF2(t), where Fi(t)
and Fm(t) are the electron charge and magnetic moment
form factors, respectively, with Fi(0) =F2(0) 1;
~ =

2 (g—2) is the electron anomalous magnetic moment.
To first order, ~~n/2~. Note that for reasons of sym-
metry we have retained terms of order n' in (5). To
obtain the complete one-photon contribution to the
amplitude, it is, of course, necessary to antisymmetrize
with respect to the exchange k4~ —kg. Thus, there will

also be terms of the form

Jg(s, t)u)aom = A j(S,upt)apg~ q

which will be associated with the 6ve exchange spinor
basis functions Y;(E). Although the form of Eq. (2)
is rather cumbersome for the representation of the Born
term, it is in this form that comparison can most easily
be made with our Anal amplitude.

IV. DOUBLE-SPECTRAL FUNCTIONS

Diagrams 1(b) and 1(c) of Fig. 1 both produce non-
vanishing contributions to the double-spectral functions
of the elastic electron-positron scattering amplitude.

Two-Photon Intermediate State

We will consider erst the two-photon intermediate
state in the evaluation of the t-channel unitarity
/diagram 1(b)j. This contribution may be written

(T—Tt)2, =i P pm dO'T, t(kr', q")T,(q'; k;), (7)
SPins

where p2„ is the appropriate phase-space factor for two



1938 JAMES McENNAN

identical photons and T„(q,,qo, ki, kp) is simply the two-
photon annihilation amplitude in pole approximation.
The integration is over the angles of the four-momenta
of the two intermediate state photons, q;. If we expand
the right-hand side of P) in terms of the five spinor
basis functions given in (3) and perform the integration
over the angles, we 6nd that the two-photon inter-
mediate-state contribution to the imaginary part of the
invariant amplitudes of the elastic electron-positron
scattering matrix can be written in the form

Im,A;(s, t,u) p, , Dj(s——,t,u) p,

={8(—t) Q qj(s, t,u)I, (s,t,u)}
j'=0

+(—1)'{s~ u} (8)

where i= V, 5, P, A, T, and

( 1)~—
i=V, T

+1, i=S, I', A.

The q (s,t,u), which are essentially ratios of poly-
nomials, and the integrals I,(s,t,u) will be discussed
below. Note that in Eq. (8), contrary to the usual

convention, we have placed the unitarity cut due to
two-photon exchange along the negative real t axis,
rather than along the positive real axis. The reason for
this particular arrangement will be discussed after we

have investigated the singularities in s and Q of the
D~'( st, u). In detail, omitting the Heaviside functions

tt( —t), we find that the five discontinuity functions of
Eq. (8) can be written as follows:

1 4t 4-(s —u)(u —4) t'(u —2) t(t —4)(u —2)(u —4)
D,v(s, t,u) =— Io(s, t,u)

16 s S S Q

8(s —u+1) 4t(u —2) 4t(t —4) (u —2) -4(t —2) 8(t—4)-
+ Ii(s, t,u)j — Ip(s, t,u)

S S S Q — S SQ

4(2 —u) 8
+ ———I,(s,t,u) ——{s~u},

s' Q' 16

1 t(s —u —8) t'(2+s —u) t(s u)(u—2)(u—4)—
D, (sst, )u=— — Io(s, t,u)

16 s S QS2

2(s —u —8) 4t(2+s —u) 4t(s u) (u —2)— 2(4+s —2u) 2(u —4)
+ Ii(sqt)u)+ j Ip($)t)u)

S S Q — S Q

2(4—u) 4(u —2) 2(4+s —2u) 1—+ —+ —Ip(s, t,u) + —{s~u},
Q SQ s' 16

1 t(8+s —u) t'(2+s —u) t(s —u) (u —2) (u —4)
Dg~(s, t,u) = — — —+ Io(s,t,u)

16 s S S Q

-2(s —u) 4t(2+s —u) 4t(s —u) (u —2) -2(4+s —2u) 2(u —4) 16(t—4)
+ — Ii(s, t,u)+ j —+

(10)

S2 S Q

2(4+s —2u) 2(u —4) 4(u —2) 16(s—u) 1

)&I (s,t,u)+ —— - + —+ Ip($ t u) +
S Q SQ s]Q 16

1 4t(4 —u)
D,"(s,t,u) =—

16 s

4(2 —u) 8(s —u) 1j Ip(s, t~u) + —{$~ u} ~

16

-4(t —2) 8-
+ — — ——I:(s t u)+

S Q SQS

8t 2t'(u —2) 8t 8t 4t(t —u)
— Ip(s, t,u)+ ———+ Ii(s, t,u)

SQ S — S SQ S

1 t'(2 —u) 2t(u —2) t 2t(t —2) 2t(t —4) (u —2)
Dgr(s, t,u) =- Ip(s, t,u)+ —+ — —+ Ii($&t,u)

16 s' SQ S S S Q

t uu —4 2(u —-2—)
— Ip(s, t,u)+

2

-]—Q Q —4 1
Ip(s, t,u) ——{s&-+ u}.

s' Q' 16
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Io(s, t,u) =n' dQ'
(s' —1)(s"—1)

Sxn' 2 —u—Qo-
t[u(u —4)]"' [u(u —4)]"'I

Ii(s, t,u) =n' dQ'—
$ —1

—Q.l

—I,
tv iv)

'

The integrals I,(s,t,u), which appear above, are
given by

evaluated (7) independently at t=4 and compared the
result with the limit of (8) as t —+ 4, with the same value
in each case.]

Equation (12) represents the contribution of the
t-channel two-photon intermediate state to the double-
spectral functions of the electron-positron elastic scat-
tering amplitude. In order to complete the two-photon
part, it is necessary to consider the u-channel unitarity,
the addition of which is equivalent to antisymmetriza-
tion with respect to the exchange k4+-+ —k,". Thus, in
addition to (12), we will also have double-spectral-
function terms of the form

$ —1
I2(s)t, u) =n' dQ'

$' —I and

p~( (s~t~u) gv p(~ (spurt) &v

-S~n'-
uQOI

l ~~v(u —s)
4q, 'v kv)

Is($)t,u) =n dQ =4m'n

where v=q/E=t(t —4)/t]'", and Qo(s) is the Legendre
function of the second kind of degree zero. The phase-
space factors have been absorbed into the I,(s,t,u). From
(10) and (11)we see that only those terms proportional
to Ip($ t u) contribute to the double-spectral functions.
We find, using ImQi(s) = ——i2vP~(s), for s real and—1&s&1, that

p '(s, t,u) 2& = p~ '(s,u—,t) g&,

where, as usual, the tilde indicates that these factors are
associated with the exchange spinor basis functions
V, S, P, A, T. Although, as we have indicated, the
exchange spinor basis functions can be written as a
linear combination of the direct spinor basis functions
(V, S, I', A, T), it is convenient to keep them sepa-
rate, since in this form crossing symmetry is easily
maintained.

Elastic Unitarity

We now turn to the evaluation of diagram 1(c), which
is equivalent to elastic unitarity. We have

pg '(s, t,u) 2, =qp*(s, t,u)
tLu(u —4)]"'

= (—1)'p„'(u, t,s)2, . (12)

An interesting and, at first sight, unexpected result is
that the cuts in u (and s) of D&'(s, t,u)s, run from —~
to 0 and from 4 to +~ along the real axis, so that, for
example, p&„'(s,t,u)2~ is nonvanishing for real u which
satisfy u(u —4)&0. This particular cut structure may
be unambiguously veri6ed by noting that Iv(s, t,u),
while finite at N=o and 1=4, has an infinite first
derivative at each point. However, this result could
actually have been anticipated, since both the Klein-
Gordon and Dirac Coulomb scattering amplitudes ex-
hibit a cut structure of this sort. It was for this reason
that we put the cut in t of the A;(s, t,u) along the nega-
tive real t axis; otherwise, the double-spectral functions
would be nonvanishing in the physical region.

Although the double-spectral functions (12) have
poles at s=0 (u=0) due to the qo'(s, t,u), D&'(s, t,u) ~~ is,
in fact, finite at these points. This may be determined
by expanding the I;(s,t,u) about s=0 (u=0) and collect-
ing terms. This result is, of course, necessary if we are
to assume that the amplitude has no spurious singu-
larities, but it is reassuring to verify explicitly that the
cancellations occur. l As an additional check, we have

(T T').+, =s Q—p2(t) -dQ'T'(kr, k")T(k', It,), (14)
spins

where p2(t) is the two-body phase-space factor and the
integration is over the angles of the four-momenta of
the electron-positron pair intermediate state. If we
attempt to approximate the amplitudes which appear
in the unitarity integral (14) by their pole terms (5),
we find that the integral will diverge due to the vanish-
ing of the photon mass. Indeed, it is this circumstance
which necessitates the introduction of an infrared cutoff
in the perturbation calculation. There, while the ampli-
tude has an explicit cutoff dependence, the cross section
is finite due to cancellation with the bremsstrahlung
contribution. In our case, however, we wish to construct
an amplitude which is cutoff independent. Thus, our
procedure must, perforce, become somewhat less
straightforward than before. In a previous calculation, 5

we have shown that the substitution of a simple function
with Regge behavior for the photon pole term will serve
to remove the divergence difFiculty. In a sense, that
substitution here amounts to a recognition of the fact
that Fig. 1 represents a singular, inhomogeneous, non-
linear integral equation for the electron-positron scatter-
ing amplitude. We are attempting to construct a solu-
tion which is accurate to second order, and it is the case
that the pole approximation is not a convenient point
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.(b)

FIG. 3. These four Feynman diagrams are related
to the elastic unitarity diagram 1(c).

of departure. Thus, we replace A, (s,t,u)B„by A,o(s,t,m),
where each A;0(s, t,u) is identical to the corresponding
Born term in Eq. (5), except for the substitution

—4ny r(1—iq(N)) p
—t ~-'+'~&"&~ fo(s, t,~) =

4q„' I r(1+i&t(1))(4q„')

n 6(—t/4q„')
(15)

2q„W„»(N) 2xip2(u)

where r(s) is the Euler gamma function. The precise
form of the trajectory function»(N) is to be determined

by requiring self-consistency. The particular form of
Eq. (15) is motivated by the form of the exact Coulomb

scattering amplitude obtained from the Schrodinger
equation. It must be the case that our electron-positron
amplitude reduces to the Schrodinger amplitude in a
suitable limit, if we believe nonrelativistic quantum
mechanics at all.

At this point, we should say a few words about the
presence of a 8 function in (15).This term is a necessary
and unavoidable part of the Coulomb solution of the
Schrodinger equation, although it is often overlooked in

the derivation, and is a reflection of the little-remarked
fact that for the Coulomb scattering process it is the

S nsaIIrix which is analytic and not the transition ampli-

tude iT=S—I. Thus, T contains an explicit b function
[I=8(1—s)/2&rp in the spinless case]. This peculiarity
of Coulomb scattering will find a correspondence in our
amplitude, which will also exhibit an explicit b function.
We will find (see Appendix C) that the rather odd-

appearing coefficient of the 8 function in Eq. (15) is

such that, when combined with the spinor basis func-

tions and crossing, the b-function terms in our amplitude
will reduce to exactly —i times the identity matrix in

the momentum representation in each channel. Thus,
for electromagnetic processes in the relativistic case too,
it is the S matrix which is explicitly analytic and not
the transition amplitude.

If we insert the amplitude To(k'; k,), which we obtain
from the Born amplitude by means of substitution (15),
into the right-hand side of the unitarity integral (14),
and expand the product in terms of the spinor basis
functions discussed in Sec. II, then we find that the
result divides naturally into two parts which, for con-
venience, we will discuss separately. [Note that in each
case, the integrations can be performed explicitly and
analytically (see Appendix A).]The physical basis for
this dichotomy can be understood as follows. The
unitarity integral (14) is related to the four Feynman
diagrams of Fig. 3. Of these diagrams, 3(a)—3(c) only
represent vertex corrections, while box diagram 3(d)
has a nonvanishing double-spectral function. In our
evaluation of (14), we obtain homologous results. There
is a further (mathematical) distinction, however, which

may cause confusion. The vertex corrections obtained
from (14) are multiplied by the direct spinor basis
functions V, S, I', A, T, while the remainder is most
simply expressed in terms of the crossed spinor basis
functions V, 5, I', 3, T. This is independent of the fact
that we will have to antisymmetrize these contributions
to comply with the Pauli principle. With this caveat,
we turn to the evaluation of (14).

The vertex corrections which arise from the elastic
unitarity integral (14) can be expressed relatively
simply. We And the following second-order contribu-
tions to the imaginary parts of the invariant amplitudes:

D,v(s, t,m), +, =8(t 4) Im, —{(4'/—t)
xr (o)LF(t) —F (0)]},

D,s(s, t,m), ~, = 4i&i(s N)—8(—t —4)—Im, {(—4&rn/t)

XFi(0)[F,(t) —F,(0)]},
D,~(s, t,m,),+, = ,'&i(s u)8-(t —4)Im—,{(4mn—/t) (16)

Xr, (0)[F,(t) —F,(0)]},
Di( st, )I,+.-= 0,

D, (rs, ut), +,-=—,'&it8(t 4) Im, {(4&rn/t—)
Xr,(0)l F,(t) -F,(O)]},

where Fi(t) and F2(t) [ri(t) and r2(t)] are the electron
form factors defined previously, and F(t) is the vertex
function defined by F(t) =r(t) KF2(t) r(—t) satisfi. es a
once-subtracted" dispersion relation of the form

t " Im, I'(x)
r(t) =I,(o)+-

m 4 x(x—t)
where

Im r(t) =2xpa '{2[fp (4irn/t)—](t+2—)
+(3f +f )(t 4)} (»)—

In (18), 27rp2(t) fi(t) =(t—2) '[—2»(t)iP(t+1)], where

fi(t) is the lowest-order term (in n) in the expansion of
the Legendre transform of (15) (see Appendix A). »t(s)
is the digamma function. We will find that the integral

(17) is convergent for the particular value of »(t) which

makes our amplitude self-consistent. Note that no
'0 Note that a subtraction is necessary since the electron charge

remains an arbitrary parameter in our theory as well as in per-
turbation theory.
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infrared cuto8 is necessary to de6ne (17), in distinction
to the perturbation-theory results. Ke see immediately
that (16) does not contribute to the double-spectral
functions. However, since it will be necessary to include
the eRects of the vertex corrections in our ansats,
results (16) will be convenient. With regard to later
application, it is of interest to compare (16) with the
Born term (5).

If we now consider those terms resulting from the
evaluation of the elastic unitarity integral (14) which
are proportional to the exchange spinor basis functions,
we 6nd that the discontinuity functions for each of the

five invariant amplitudes can be written in the form

o(t —2)
Dq'(s, t,u), +,—=e(t —4) [1m&A (s,t,u)

2qgWgq(t)

+Q p (s,t,u) Im,f;(s,t,u)]. (19)

In (19), A,o(s,t,u) is our original lowest-order approxi-
mation to the invariant amplitude. The summation on
the right-hand side of (19) can be obtained from the
following:

Q P;r(s, t,u)f,(s, t,u),
&=l

1 4(2s —t) 4(t —2)(t—4) 4(t —4)(u —4)(t—2)—8+ + — fg(s, t,u)
16 s s s't

s

2(t —2) 2(t—4) (u —4) (t —2) 2(t —2) 2(s —u) (u —4) (t—2)
f2(s, t,u)+ + — — f3(s,t,u)

s'tu $ $2tu

1 2(t —s—12) 4(t—s —2) (t—4) 4(s—t) (t—2) (t—4)+ fg(s, t,u)
16 s s't$2

2(t —s —2) 2(s —t) (t—2) (t —4) 2(t —s—2) 2(s —t) (t—2) (s—u)+ fg(s, t,u)+ — = + f3(s,t,u)
$ $ tus'tu $2

g p, ~( st, )uf, (s,t,u)
j=1

1 2(12—s+t) 32(t —4) 4(2+s —t) (t—4)

16 s Su $2

$2 s tuSu

P p,"(s,t,u)f,(s, t,u)

1 4(2 —s+u) 4(t —4) (t—u —2) 8(u —4) (t—4)
8+ + — — fg(s, t,u)

16 s s s't

4(t —3) 4(t —4)(u —4) 4(1—u) 4(u —4)(u —s)+ fm(s, t,u)+ —— f3(s,t,u)
$ $2tu $'tus

3

P P,r(s, t,u)f,(s,t,u)
j=l

1 4—u 2(u —2)(t —4) 2(u —4)(t—2)(t—4)
fg(s, t,u)

16 s s't$2

4(s —t)(t —2)(t —4) 2(t —s —2) 16(s t+4) —2(s —. t)(t —2)(t—4)
fg(s, t,u)+ + — + f2(s, t,u)

$ t $2 Su s'tu
—16 2(t —s —2) 16(u—s) 2(s —t) (t—2) (s—u)+ + + + ——f3(s,t,u)

(20)

s tu

2 —u (u —4) (t—2) (t—4)
+ — f2(s,t,u)+

s s'tu

2 —u (u —4) (t—2) (s—u)—fs(s, t,u)
s
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where P,(z) is a Legendre function of the first kind (see
Appendix 8). There are three points which must be
emphasized concerning (19): (1) Although each of the
P,' (s, t, u') has poles at s=0, the coeflicient of each pole in
the discontinuity function is zero, so that (19) does not
have any spurious singularities. (2) We observe that if
we set rt(t) =n(t —2)/2qW, our initial trial amplitude
A,'(s, t,u) will reproduce itself. (3) Finally, if we assume
that it(t) is proportional to n, we note that the leading
terms of f,(t,z) are of order o.'. These three considera-
tions will play an important role in the construction
of our ensate for the electron-positron scattering
amplitude.

With a little labor, it is possible to put (19) in the
form implied by Eq. (1), with n(t) = 1+—i&(t) From.

this, it is a relatively simple matter to obtain the elastic
unitarity contribution to the double-spectral functions.
Ke find that to second order in the fine-structure
constant

p~„'( st, )u, +,—=p„~'( t,s)u»,

p„'(s,t,u), ,-=0, (22)

where result (22) is independent of the precise form of
it(t). This last circumstance arises from the fact that
(19) exhibits a factor 1/it(t), while the discontinuity in
u of 1m~fp(s, t,u) is proportional to it(t). Result (22) is
of particular importance, since it will allow a relatively
simple analytic form for the second-order electron-
positron scattering amplitude. Finally, in order to
complete the specification of the double-spectral func-
tions, it is necessary to consider the I-channel elastic
unitarity. As we have indicated previously, this will be
equivalent to antisymmetrization with respect to the
exchange k4&-+—k3. Thus, the elastic double-spectral
functions, to second order, which we obtain from the
explicit evaluation of diagrams 1(b) and 1(c) of Fig. 1,
and their exchange counterparts, can be written as
follows:

pt.„'(s,t,u) = p„~*(s,u, t) =2p—~ '(s, t,u)»,
p„'(s,t,u) = p„,'(s,u, t) =—(—1)'p, '(u, t,s)„, (23)

where p,„'(s,t,u)» is given by (12).

V. ELECTRON-POSITRON SCATTERING
AMPLITUDE

At this point it is possible to introduce an ansatz for
the construction of the elastic electron-positron scatter-

In (20) the f, (s, t,u) =f, (t,z) are given by

f (t,z) =4 (t—2) 'll'(I —i~)l'I:P'.(—z) —17,
f (t,z) = 4—urn(4q')(t 2—) '~ I'(1—irt)

~
'( ', (-1+ii')

(21)
~LP,,(- )+P.',(- )7-l(1- )),

fp(t&z) =4irn(4q') (t 2—)-'
~

I'(1 i—rt)
~
'iitP;„( z),—

ing amplitude. Referring to Eq. (2), we' set

A;(s, t,u) =2F,(s, t,u)+( —1)'F;(u, t,s),
A;(s, t,u) = —A;(s,u, t),

where (—1)' is defined by Eq. (9). F,(s, t,u) can be
written

F,(s,t,u) =F,'(s, t u)+P p,'(s, t,u) f,(s, t,u), (25)
j=l

where the p,' (st, u') and f,(s,t,u) are defined by (20) and
(21), with p, '(s, t,u) = —p (s,u, t), f, (s,t,u) = f,(s—,u, t)
F,'(s, t,u) is just our original trial amplitude A (s,t,u),
with the vertex corrections indicated by (16).Explicitly,

FvP(s, t,u) =I'i(0)F(t)fp($ t,u),
Fi;P(s, t,u) = ——,'x(s —u)Fi(0)Fp(t) fp(s, t,u),
Fi P(s, t,u) = —xi~(s —u) I'i(0)Fp(t) fp(s, t,u),
F~P(s, t,u) =0,
FT ($)tel) — pKtI 1(0)F (t)pfp($&t, u)

(26)

where fp(s, t,u) is defined by (15) and F(t) is the vertex
function discussed above Eq. (17).Note that the ampli-
tude (24) is not the result of a dispersion integration
over the discontinuity functions given in (16) and (19),
although (24) will have these elastic unitarity cuts. A
dispersion integral involving (16) and (19) would

eliminate the left-hand cut in t which was found to
obtain in the double-spectral functions. This left-hand
cut, which is contained in the trajectory function, seems
to be an inescapable feature of relativistic electromag-
netic scattering; both the Klein-Gordon and Dirac Cou-
lomb amplitudes exhibit this particular characteristic.

We now consider the properties which our electron-
positron elastic scattering amplitude must exhibit, and
verify that (24) represents a suitable solution to the
problem. By construction, the amplitude defined in

Eq. (24) is crossing symmetric. Moreover, each of the
invariant amplitudes is cutoff independent. Comparison
with (23), using (22), reveals that (24) has the correct
double-spectral functions through second order in the
fine-structure constant. Except for the 6-function terms,
(24) is an analytic function of s, t, and u, with no singu-
larities except those implied by unitarity and crossing.
As we explained earlier, the 8 functions are due to the
fact that, for electromagnetic processes, it is the S
matrix which is explicitly analytic, rather than the
transition amplitude iT=S—I. It is possible to show

that the 8-function terms in (24) combine to yield
exactly —i times the identity matrix in each channel

(see Appendix C), so that the S matrix obtained from

(24) will be a maximally analytic function of s, t, and u.
Finally, we note that the amplitude (24) exhibits Regge
asymptotic behavior, with the leading trajectory given
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by a„(/) = —1+i'(t)."If we set

g(t) =n(t 2—)(2qW, (27)

then the positronium poles will appear at the correct
position, including reduced mass and recoil corrections, "
and with the proper residue. The trajectory dehned by
(27) has often been suggested as an appropriate form
for the description of bound states in electromagnetic
processes. "Moreover, with the trajectory function (27),
each of the invariant amplitudes defined by (24) will

reduce to the correct Born term in lowest order. In fact,
since (i —2)/2W is equal to the reduced mass at thres-
hold, (24) actually reproduces the Coulomb scattering
amplitude in the low-energy limit. All that remains to
be established is that (24) is self-consistent.

The amplitude defined by Eq. (24) will be self-

consistent if its introduction into the right-hand side of
the elastic unitarity integral (14) does not produce any
second-order contributions to the double-spectral func-
tions other than those given in Eq. (22). We have al-

ready noted that, with q(t) defined by (27), the F 0(s, t,u)
will be reproduced in the evaluation of the elastic
unitarity statement. It is only necessary to show that
the remaining terms in (24) do not introduce any
additional second-order terms into the double-spectral
functions. However, this condition is obviously satisfied.
Inspection of (24) reveals that with the exception of
F (s,f,u) the remainder of (24) is of second order in n.
Insertion of these terms into the unitarity integral (14)
will only produce terms of order three or greater, which

can make no contribution to the second-order double-

spectral functions. We remark that (24) has a well-

defined Jacob-Wick expansion, '4 so that its reintroduc-
tion into the elastic unitarity can be effected without
divergence. This last, aside from its implications con-
cerning the practical applicability of (24) to dispersion
calculations of electromagnetic quantities, ensures that
our amplitude provides a suitable basis for an iterative
calculation of the higher-order terms.

VI. DISCUSSION

Using the electron-positron system as an example, we
have outlined a procedure by which accurate dispersion-
theoretic electromagnetic scattering amplitudes may be
generated for processes in which bound states can
appear. We have exhibited a Lorentz-covariant spinor
amplitude which is analytic, cutoff independent, and

'~Note that the asymptotic behavior of our amplitude is
essentially the same as that obtained in the relativistic eikonal
approximation. See, for example, M. Levy and J. Sucher, Phys.
Rev. D 2, 1716 (1970)."G. Breit and G. E. Brown, Phys. Rev. 74, 1278 (1948).

'3 L. Durand, Phys. Rev. 154, 1538 (1967). Also, from a
consideration of the infinite-dimensional. representations of
relativistic O(4,2},A. 0. Barut and A. Baiquni, ibid. 184, 1342
(1969). From the eikonal approximation, E. Brezin, C.
Itzykson, and J. Zinn-Justin, Phys. Rev. D 1, 2349 (1970).

'4 The precise form of the partial-wave amplitudes which can be
derived from (24) will be discussed in another place.

crossing symmetric, which has the correct double-
spectral functions through second order in o,, and
reduces to the usual Born approximation in lowest
order. Moreover, the amplitude displays Regge asymp-
totic behavior and the positronium Regge poles. Self-
consistency requires that the positronium poles appear
at the correct position and with the proper residue, and
that the amplitude possesses a well-defined Jacob-Wick
expansion. The procedure can, thus, be extended to
higher-order terms, although it is not known whether
the higher-order contributions to the double-spectral
functions, which we obtain from explicit evaluation of
the unitarity diagrams to that order, will still represent
the correct scattering amplitude. This is a moot point,
however, since the exact amplitude is not available for
comparison. We intend to introduce the electron-
positron amplitude (24) into dispersion calculations of
the electron anomalous magnetic moment and the Lamb
shift in hydrogen In .fact, To(kr', k,) has already been
employed to this purpose with gratifying results. ' "It
is interesting to speculate that our procedure for obtain-
ing electromagnetic scattering amplitudes might also
be applied directly to a calculation of the fine-structure
and Lamb shift corrections to the positronium (or
hydrogen atom) energy spectrum, since the quantity
which occupies a central position in our calculation is
the trajectory function. In that case, there would be no
need for the bound-state perturbation theory, since the
fine-structure and Lamb shift corrections would, pre-
sumably, be included in the higher-order terms of the
trajectory functions. Unlike the perturbation calcula-
tion where the renormalization program and infrared
difFiculties necessitate an extremely cautious evaluation,
our method can be employed without encountering any
divergence difFiculties. Moreover, it should be somewhat
simpler, since only the double-spectral functions need
be evaluated explicitly. However, this possibility must
remain untested until the o.' and higher-order correc-
tions to the scattering amplitude can be evaluated. In
the meantime, (24) can be employed in the usual manner
in the dispersion calculations of the Lamb shift and
electron anomalous magnetic moment. In any case, we
feel that our dispersion-theoretic approach to electro-
magnetic interactions may represent a significant im-
provement over previous efforts.

APPENDIX A

In the evaluation of the elastic unitarity statement
(14), we encounter integrals of the form

—,'p, (t) da'f, (r, s) ,f*(t, s)

XL( ')"( ")-+( ').( ")-j, (A1)

where fo(t,s)= fo(s, t,u) = fo(s,u, t) is defin—ed by (15).
"J. McEnnan (unpublished).
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fo(t,s) can be expanded in a Legendre series,

fo(t, s) =Z(2t+1)f (t)P (s)
where

P„(s) is an analytic function in the s plane cut along the
negative real axis from —~ (s& —1.The discontinuity
across the cut is —2i sinvrvP„( —s), so that

and

f&(t) =
I I

—(e""—1)
kqWrt) 4oripo

(A3)
sinorv ' P„(—s')

P„(s)=- ds ~

1
Qo

(82)

Thus,

e""= I'(1+1—i')/I'(t+1+iit) . (A4)

j n
opo d&'fo(t, s')fo*(t,s")=I —

I Imifo(t, s) (A3)
kqw„i

For the case m, n&0, we note that uofo(t, s) can also
be expanded in a Legendre series, with coefficients «(t)
given by

For Rev) 0, P„(s)~ z" for large s. When v is a positive
integer, P,(s) reduces to the usual Legendre polynomial.
We also note that P.(s) =P „ i(s). In the complex
v plane, P„(s) is an entire function, with an essential
singularity at infinity.

Of particular interest is the following integral:

1

ds Pi(s)P„(s) = -(—1)'+'

Xsinorv[(t —v)(i+1+v)]—'. (83)«(t) = —.(4v') "I
4oripo EqWrti

APPENDIX C

We note that the right-hand side of (83) is essentially

(A6)
ye —1 z~' the same as that of (A8), with v =k m&—iit

=-i [t—(m —1+irt)][l+1+(m—1+irt)]

Equation (A6) can be rewritten

ai(t) =
4xipg

n (k,g)
XZ —— (A7)~i [t—(m 1+iit)—][t+1+(m 1+irt)—]

where the n„(k,s) are independent of /. Given the
Lengendre coefficients (A6) or (A7), there is no difFiculty
in performing the integration (A1). The result will be
expressed in terms of another Legendre series, whose
coeNcients, we 6nd, can always be written as a linear
combination of the «(t) and terms of the form

g((k, rt) =P(k,it)[t (k m—wig)—] '

X[3+1+(k —ma is)]-', (A8)

where the P(k, g) are independent of /. A Legendre series
with coefFicients of the form (Ag) ca,n be explicitly
summed in terms of the generalized Legendre functions
of degree k —m+ig. These functions are discussed in
Appendix B.

APPENDIX B

For convenience, we shall display here a few pro-
perties of the generalized Legendre functions of the
first kind, P„(s)."These may be defined in terms of the
hypergeometric function, where

P,(s) =F( v, v+1; 1; —,'(1—s)) . —(81)
~6 Handbook of Mathematical Functions, edited by M. Abramo-

~itz and I. A. Stegun (U. S. Dept. of Commerce, Natl. Bur. Std. ,
Washington, D. C., 1966).

We wish to verify that the 8-function terms in (22)
reduce to the appropriate identity matrix in each
channel. Using our result for the trajectory function, we
find the b-function terms may be written

1 1— (2)
2orzpo(u) u —2 ku —4

1 1
V(s, t,u)

2iripo(s) s —2 s —4

1 (—u
+ (2)

2 tp(t) t 2(l —4)'—
(C1)

1 1 —u)
P(s, t,u),

2oripo(s) s —2 s—4i

2b — — b Vt,s. C2

where po(t) is the two-body phase-space factor and
Y'(s, t,u) is the appropriate combination of spinor basis
functions. Ke will consider here the t channel, where
t) 4 and s= —2q'(1+z), u= —2q'(1 —s). Since our
amplitude is explicitly crossing symmetric, it is sufhcient
to consider only one channel. Thus, the first terms in
(C1) are zero, since the arguments of their 8 functions
are nowhere zero in the t-channel physical region. The
remaining terms can be rewritten using the fact that
5(s)f(s) =8(s)f(0). We have
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We now use the identity bt f(s)j=h(s —so)/~ f'(so) ~,
where so is a zero of f(s), to write (C2) in the form

helicity representation, for example, to show that

Y(t, s =1)=-', (t—2) 8&,"~8&,"~.

Thus, in the t channel, (C1) reduces to

j.
(

B(1—s) f7(t,s) .
'i2~ip, ) t 2— (C3)

g(1 s)g„xzg„xg
2s ip2(t)

Finally, it is a relatively simple matter, using the which is just —i times the identity, as promised.
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We present a dual-resonance model with nontrivial quark spin factors. An amplitude is found which
satisfies factorization and eliminates the parity-doubling ghosts. An application to ~m elastic scattering
indicates that the positivity condition is not met on the first daughter trajectory' if one assumes realistic
values for the mass and intercept.

I. INTRODUCTION

ECENT developments of the dual-resonance
model" have revealed a close connection of the

duality concept with the quark model. ' ' It is now pos-
sible to embark on the construction of a hadron model
out of quarks in the manner represented by the Harari-
Rosner quark diagram. '7

A crucial step in this program is a proof of the fac-
torization property of the dual-resonance model. The
proof of factorization has been extended to all the
daughter trajectories. ' ' The resonance spectrum in the
model has been greatly clarified using the simple device
of the harmonic oscillator. ' " Roughly speaking,
mesons appear to be bound states of the quark and anti-
quark with a relativistic string between them.
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2 The generalization of the Veneziano model has been given by

many authors. The references may be traced from the review article
by H. M. Chan, CERN Report No. TH. 1057, 1969 (unpublished) '

' J. E. Paton and H. M. Chan, Nucl. Phys. B10, 516 (1969).
4 S. Mandelstam, Phys. Rev. 183, 1374 (1969).
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7 J. L. Rosner, Phys. Rev. Letters 22, 689 (1969).
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Previous attempts' ' to incorporate quark spin into
the dual model have swered from a serious defect. Con-
sistent factorization of the spin factor considered in
that approach demands the existence of ghosts associ-
ated with negative-parity quarks. On the other hand,
a recent work of Carhtz and Kislinger" provided a new
way to avoid parity doubling of the fermion trajectory
in the Van Hove model. Motivated by this work, many
people have proposed to dualize the projection operator
to eliminate parity-doubling ghosts. ""We will present
in this paper a different, but closely related approach to
a correct treatment of the quark spin.

Our guiding principle in selecting a spin factor is the
simple over-all picture of the dual-resonance model of
Refs. 10—12. After constructing a cyclically symmetric
amplitude of mesons, we proceed to check factorization
of the whole amplitude. A simple quark propagator con-
sidered in Sec. II turns out to eliminate the parity-
doubling ghosts from the leading trajectory only.
A generalization of the propagator is then suggested,
and elimination of ghosts from all the trajectories, as
well as complete factorization, is proved in Sec. III.
The generalized amplitude resembles a recent model of
Carlitz, Ellis, Freund, and Matsuda. "The main di6er-
ence lies in our insistence on the original form of the
quark projector; therefore, we factorize the meson

"R. Carlitz and M. Kislinger, Phys. Rev. Letters 24, 186
(1970). See also R. Carlitz and M. Kislinger, Phys. Rev. D2,
336 (1970).

'4 K. Bardakci and M. B. Halpern, Phys. Rev. Letters 24, 428
(1970).

» J. P. Lebrun and G. Venturi, Nuovo Cimento 68A, 691 (1970).
'6 R. Carlitz, S. Ellis, P. G. 0.Freund, and S. Matsuda, Caltech.

report, 1970 (unpublished).


