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Regge Trajectories in a Multichannel Quark Model*
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Meson trajectories are considered in a nonrelativistic quark model. The model, in a speci6c example
involving the p trajectory, incorporates a mw channel and two quark-antiquark qq (or nucleon-antinucleon)
channels in spin triplet states. A harmonic-oscillator potential provides the attractive qg potential, and a
Yukawa potential is used in the xm channel. A short-range potential of exponential type couples the me. and
qq channels. The model gives in6nitely rising trajectories with resonances of small Gnite width capable of
decaying into pions, but not into quarks. The p trajectory deviates considerably from a straight line in the
negative-energy region. The model is capable of imposing exchange degeneracy in a natural way.

I. INTRODUCTION

HE quark model has enjoyed considerable success
in describing the meson spectrum. ' In order to

accommodate the observed regularly spaced resonances
(i.e., linear Regge trajectories in the region of positive
total energy er) it is often assumed that the qg potential
can be approximated by a harmonic force. ' ' With this
force law, the trajectory in the region of negative ez

(or its relativistic analog s) is also linear.
In the real world, the qg states are coupled to observ-

able decay channels (e.g. , z-7r) which give finite widths
to resonances. In this article we study the effects of such
channels on the originally linear trajectories. '

To be specific, we consider the p-meson trajectory to
be coupled to two spin triplet qg states of I =7+1,
where L(J) is the orbital (total) angular momentum.
Nonrelativistic dynamics is used. ' The decay channel

*Supported in part by the Air Force OfBce of Scienci6c Re-
search, Ofhce of Aerospace Research, U. S. Air Force, under Grant
No. AF-AFOSR-1294-67.

'For an extensive review, see J. J. J. Kokkedee, The Quark
Model (Benjamin, New York, 1969).

«R. H. Dalitz, in Proceedings of the Thirteenth Annual Inter-
national&Conference on High-Energy Physics (University of Cali-
fornia Press, Berkeley, Calif. , 1967), pp. 215—234 (reprinted in
Ref. 1).' S. Mandelstam fLRL Report No. UCRL-17250, 1966 (un-
published)g has argued that it is the inelastic multiparticle states
which are responsible for rising trajectories. With this interpreta-
tion, the pathological harmonic-oscillator potential is an approxi-
mate way of summarizing the effects of such states. A more
traditional interpretation of this model is that trajectories are
dominated by a small number of channels (usually one). The
linear rise of trajectories is due to pathological potentials (such as
the present model and Ref. 4) or energy-dependent potentials
whose strength increases with energy /see L. A. P. Baldzs, Phys.
Rev. 13'7, B1510 (1965); 139, $1646 (1965); U. Trivedi, ibid.
188, 2241 (1969)].Contrary to Trivedi s model in which multi-
channel effects are only a small perturbation, mixing effects are
quite important in our model at low energies.

4 See, e.g., G. Zweig, in Meson Spectroscopy, edited by C.
Baltay and A. H. Rosenfeld (Benjamin, New York, 1968),p. 485.

5 The dynamical effect of the ~m channel on the dominant qq
structure of the p has been discussed by E. Squires in Particle
Interactions at High Energy edited by T. W. Preist and L. L. J.
Vick (Plenum, New York, 1967).The author uses relativistic E/D
dynamics neglecting the effects of spin. The model does not give
linearly rising trajectories at high energies.

Various relativistic versions of this model are possible. One
extension would be to use the Bethe-Salpeter equation to provide
the underlying qq dynamics. See, e.g., the one-channel calculation
of C. H. Llewellyn Smith, Ann. Phys. (N; Y.) 53, 521 (1969).
Another approach would be to interpret our equations as O(4)
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is a 7t.7t- system interacting through a Yukawa potential
and coupled to the qg channels through a short-range
exponential potential. If the channels were decoupled,
then a Yultawa trajectory asymptotic to J= —1 (er ~—oo) is the leading trajectory for large negative er.
When the coupling is turned on, the leading trajectory
is still dominated by the qg (oscillator) states in the
region ey&)0, but changes character and becomes
asymptotic to l= —1 in the region e&(0. We expect
this type of "Battening" of the linear trajectories
whenever potentials of a Yukawa or exponential type
appear in channels coup/ed to the qg system.

This Qattening is even more pronounced for the lower-
lying trajectories. The Grst daughter trajectory (which
is two units of angular momentum. J below the leading
trajectory in the decoupled case) is lifted by this
mechanism to within one-half unit of J of the leading
trajectory. We speculate that it may be natural to
identify it with the p' trajectory used in Regge
phenomonology.

In Sec. II we describe the model and discuss the
quantum numbers. In Sec. III we give numerical results
and a discussion. Appendix A describes the angular
momentum decomposition of our equations, and
Appendix B gives the numerical details.

II. DESCRIPTION OF MODEL

The 7l-7t- channel in a state with isospin 1 and odd
angular momentum, satisfying Bose statistics, of
course has the same quantum numbers as the p tra-
jectory. The gg state has G parity G=(—1)~8+r,
charge conjugation C= (—1) +s, and parity'
P=(—1) +'. Thus the p trajectory is coupled to the
spin triplet, S=1, gg states with even L and J=L+1.
Now the p meson is expected to belong to J=L+1 state.
However, in the present model, both the state J=L+1
and J=J—1 of the qg state are coupled to the mx
channel. Thus transitions from J=L+1 to J=L—1
state (via the 7' channel) are possible and we have a

oscillators. See L. Susskind, Phys. Rev. Letters 23, 545 (1969).
Both of these models (as well as the Schrodinger model presented
here) suffer from the possible existence of ghosts in the region
Ep &0 since unitarity is not imposed in the crossed channel.

7A. Ahmadzadeh and R. J. Jacob, Phys. Rev. 1'76, 1719
(1968).
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as r ~ 00. The numerical values of the parameters in
Eqs. (2.2) are given by

Re(J)
3

gg ——12.86, a =1,
g2 =0.25, g3 ——3.0,

m2 ——1.0 GeV.

P=0.01,
mi ——0.14 Gev, (2.3)

coupled three-channel problem. Starting from the two
coupled equations (qq and m.m) in the coordinate space,
we make a separation of angular momentum and obtain
the desired equations. The derivation is given in
Appendix A. The resulting equations are

1 d' J(J+1)
mq dr' mar

—V.+Ei I4-

J qi/2
/
J+1 i/2

+v. —
I

—
I 0, +I — 0,+ =0, (2»)

k2 J+1) (2J+1

(J+1)(J+2) —v,+z,)y,+
km, dr' m2r'

'/J+1 ti/'
+v

I I y.=o, (2.1b)
&2J+1)

(
1 d' (J—1)J

m2 dr' m2r'
-V.+E I&.

J )1/2
y. =0, (2.1c)
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FIG. 1.Regge trajectories for the uncoupled system. The leading
trajectory is nondegenerate; all lower trajectories are twofold
degenerate. These trajectories belong to the quark-antiquark
system. The Yukawa trajectory corresponding to the ~w channel
has been omitted. As discussed in the text, one might interpret
2m2e& as total energy squared.

The ratio go/mo is fixed by the trajectory slope, while

g, is determined by the p width. The parameter P was
chosen somewhat arbitrarily to give the coupling
potential a range of approximately 0.5 F. In principle
it could be fixed by the widths of higher resonances on
the trajectory. The direct mm potential range a approxi-
mates that of p exchange. These parameter values are
meant only to be representative and are used to make
the model definite. In addition, the total energy ep is
related to E& and E& by

ez =Ei+2mi= Eo+2mo+ U, (2.4)

with U= 2.31, where we have used an extra constant
potential in the qq channels, adjustable to make the p
trajectory pass through J= 1 at c&——m, . Note that for
the uncoupled harmonic oscillator the trajectory is
given by

&o= (mo/2go)"'E2 o
—2k (k =0, 1, . . .) . (2.5)

Therefore, (m&/2go)'/o approximately determines the
slope of the trajectory at high energies (see Fig. 1).

Let us now make a few remarks about SU(3) sym-
metry and exchange degeneracy. The model in its
present form is not SU(3) symmetric because the EZ
channel has not been included. Ignoring the pseudo-
scalar octet mass splittings, we can replace p in Eqs.
(2.1) by the wave function for the isotriplet member
of the antisymmetric octet 8 obtained from the direct
product of the pseudoscalar octet with itself. If we
allow for mass splittings within the pseudoscalar octet
then we must include, in addition to the m~ channel,
the EK channel. Similarly, for the even-J analytic
continuation we would have instead of Eqs. (2.1) a
new set of equations in which p would be replaced by
the wave function for the iso triplet member of the
symmetric octet 8, of E8)&E8. This even- J analytic
continuation would thus give the corresponding model

which define the analytic continuation from odd J
values. In the above equation, mi (mo) is the pion
(quark) mass, V and Vo are the potentials in the m.~
and qg channels, - respectively, and finally V, is the
potential coupling the mx and qg channels. In our
present model, the potentials are given by

V = gie '"/r, —

g r2

V g ~
—Pr4

(2.2a)

(2.2b)

(2.2c)

Re(3)
0

G)

I I I I i I I I I I I
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The exact form of V, is not crucial, so long as it is of
short range. With this choice of V, Eqs. (2.1) decouple

~ T(BeV)

FIG. 2. Regge trajectories for the coupled system: Re(J) vs cz.



for the A2 trajectory. Again, with the octet mass
splittings we would have to include the EE and xq
channels instead of 8,, Note that this procedure of
including 8„and 8, automatically gives exchange
degenerate p and A2 trajectories. One could also obtain
the E* and E*' trajectories by a rotation in the SU(3)
SPRCC.

10"

III. NUMERICAL RESULTS AND DISCUSSION

The results of a numerical solution of Eqs. (2.1) are
summarized in Figs. 2 and 3, where the three top-
ranking trajectories are shown. The highest is identified
as the p trajectory. The harmonic-osciHator strength gg

and the constant potential U have been adjusted to
give the p trajectory its approximate physical intercept
and slope. The p-meson width may be fixed by ad-
justing the strength of the coupling potential. As is
coQ1IIion in IloIlI'clatlvlstic quRI'k models, onc Inay
heuristically replace 2mee, p by the invariant energy
squared for a relativistic interpretation.

For the p trajectory the wave function P~ has no
radial nodes. This trajectory (designated as o,, in Ref.
6) asymptotically becomes linear and coincides with
the corresponding decoupled (V, =O) case given in
Fig. 2. As the energy e~ decreases, the second quark
channel (p~+) and the pion channel (p ) mix strongly
and the trajectory becomes quite diferent from its
uncoupled counterpart. Since the leading trajectory for
negative e~ is that of the Vukawa potential, this is not
surprising. As c~ becomes negative, the slope gets
smaller and the trajectory becomes quite Rat by
ey~ —3

The secondary trajectory corresponding to the "first
excited" trajectory with L=J—1 is also dramatically
diGerent from the corresponding uncoupled (V,=O)
case. For the "first excited" L=J—1 trajectory the
wave function p, has one radial node. We call this
trajectory p'. As ey decreases below 5 GCV, the tra-
jectory deviates quickly from the uncoupled case,
diGering by about two units of J by the time can=0 is
reached. The point J=O on this trajectory will be
discussed later. tAte identify this trajectory with the
conspiring p' trajectory (called es' in Ref. 7). This
trajectory also Battens rapidly as ez becomes negative.
In the uncoupled problem, the leading trajectory of the
gq channel with L=J+1 lies two units below the leading
trajectory of the L=J—1 channel. In the notation of
Ref. 7, the leading L=J+1 trajectory is called d, . The
real part of this trajectory is only slightly different from
the uncoupled (V,=O) case, although a large imaginary
parts for the trajectory is generated in the region below
ReJ =0.

The imaginary parts of these trajectories are shown
jn Fig. 3. Note that ImJ for the p' trajectory is about
ten times larger than that of the p trajectory. Thus the
resonances on the p' trajectory would have very large
total widths. Also for the d3 trajectory ImJ changes
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FIG. 3. Regge trajectories for the coupled system: Imc,'J) vs eg.

sign as the real part of the trajectory passes through
zero.

There is another series of trajectories which in the
uncoupled limit are given by the Vukawa potential.
Ke have not calculated these. %ith our choice of
strength of the weak. Yukawa potential (for the direct
ms interaction), the uncoupled Yukawa trajectory does
not intrude into the physical region of J&0. Thus we
conjecture that this would also be the case in the present
model. It is perhaps worth mentioning that our results
are most sensitive to the harmonic-oscillator and the
coupling potentials. In fact we can make the Yukawa
potential arbitrarily weak without any significant
changes in the qualitative result.

Certain points in the J plane require special attention.
At thc point J=0 one of thc quRI'k chRQQcls becomes
unphysical, corresponding to L= —1. In the usual
parlance, J=O is a nonsense point of any trajectory
coupled to this channel. The factor (J)'I' in V, decouples
this unphysical channel from the remaining two. Thus
at J=O there are two types of solutions: (1) those for
which p,+ and p vanish and the 'trajectory chooses
nonsense, and (2) those for which p, vanishes and the
trajectory chooses sense. An example of the second type
of solution is the point (sr~ —1, J 0) on the p
trajectory.

It is interesting to note that, although the channel
L=J—1 dominates this trajectory at high energies,
decrease of the energy leads to large admixtures of the
other channels until at J=O the L=J—1 channel is
completely absent.

An example of the first type of solution is the point
(can=0. 28, J=O) on the p' trajectory. The system of
equations now reduce to a single equation. Note that
this point indeed lies on an uncoupled trajectory (i.e.,
the leading trajectory of Fig. 2).

Wc would like to emphasize that one should not
take the details of this model too seriously. It has,
however, several interesting features.
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(1) The p and p' trajectories have considerable
mixtures of L =J+1 qg states in the region ez (2 even
though the coupling (through the 7r~ channel) is quite
weak.

(2) The p' trajectory which is often used in the
phenomonology of meson-nucleon charge-exchange
reactions' can naturally be identi6ed with the present
p'. Our present p' trajectory also passes through c&——0
approximately one-half unit of J below the p trajectory
and has roughly the same slope. Were it not for the
channel coupling, this trajectory would lie two units
of J below the p trajectory. Furthermore, at J=O the
p' trajectory has a nonsense wrong-signature point
(i.e., L= —1), while the p trajectory chooses sense. The
analogous 32' trajectory obtained from the even-J
analytic continuation of a similar set of equations has a
right-signature point at J=O. The model predicts no
unwanted particle there because the trajectory chooses
nonsense.

(3) The p and p' trajectories are "lifted" in the
negative e~ region. The p trajectory still passes through
J=O at approximately cz ———1.0. The trajectories
Qatten considerably to the left of this point, eventually
behaving similarly to a Gxed pole for cT(—3.

(4) The width of the p can be made arbitrarily
narrow in this type of model by reducing V,.

(5) With the interpretation s=2mber, the mass of
p' particle will turn out to be about 2.3 BeV. However,
as we have mentioned, Im(J) for the p' meson is about
ten times larger than that of the p meson (see Fig. 3).
Therefore, the p' "particle" (with the present choice of
parameters and coupling potential) would have a very
large width and would thus not be observed as a reso-
nance experimentally.

(6) In our model, the widths of the resonances
decrease as we move up along the trajectory. In par-
ticular, the width of first p recurrence turns out to be
considerably smaller than that of the p meson. The
numerical values of these widths strongly depend on
our choice of parameters and the form of coupling
potential, however.

The diagonal elements of the operator Xo—8 are
(m 'V'+'U ), where //b is the particle mass and 'U is
the potential energy for channels n. The xm. potential is
of the Yukawa form and the qg potential is a harmonic
oscillator. The state vectors are expanded in angular
momentum eigenstates ln; J3fj,jb), where j,=—l(~~)
=l and j b=S(ns) =0 if n=1, and j,—=l(qq) =I. and
jb=S—(qq) =1 if n=2.

The interaction potential between channels is taken
to be

a;„,=Y~ Sf(r),

where 8 is the total spin operator, Y~ is the tensor
operator constructed from the first-order spherical
harmonics (i.e., the relative coordinate vector r), and
f(r) is a scalar under rotations. The operator Y~ acts
only on spatial coordinates and S acts only on the spin
coordinates. This interaction is odd under the spatial
parity operation since the mm. and qg systems have
opposite intrinsic parity. Thus H;„~ has no diagonal
matrix elements. The off-diagonal matrix elements are

v,&=(2; mJ1la, „,l1; Jcvlo)
=(—)' 'lv(l0J1 J1)l:3(L+1)7"(Lllv~llJ)(0llsll1).

In accord with the conservation of angular momentum,
the Racah coefficient tiV is zero unless l =J and L=J+1.
This demonstrates that our system has three channels:
two qg channels with L=J+1 and one 7rx channel with
l=J. Using

(Jl l
V 1

l l
I ) = —C(I 1J; 000)[3(2J+1)/4' (2Jj1)]'/'

and the definition

V, (r) = (3/47r) (OllSll1) f("),
we find

J 1/2

v~'(&) = —v.(&)I
&2J+1

if L=J—1,

if L=J,=0

J+1 ) 1/2

=+V,(r)
2J+1rAPPENDIX A: DERIVATION OF

COUPLED EQUATIONS
The coupled Schrodinger equations are

In the following, z is a channel index dined to be 1
for the n.n. and 2 for the qq systems. The state vector, 1 d' J(J+1)—~+&i 4

pEy df myf

satisfies the Schrodinger equation

(3'.//+'U, ) l@)=El@),

where 3'.0 and E are diagonal; 'U, couples the channels.

A. Ahmadzadeh and J. C. Jackson, Phys. Rev. 187, 2078
(1969); A. Ahmadzadeh and W. B. Kaufmann, ibid. 188, 2438
(1969).

J '/2 J+1 q»b
+V. -( —

) 4;+( l
4,+

J+1 )1/2
+V.

l
P =0,

2J+ Ii
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t' 1 d' (J—I)J

Gals dr nisr

q
1/s

au+1)
where rp is the s.s. wave function and rp, + are the

gg wRvc fUnctloDs with L =J&1.Thc totRl cnclgy cp
is related to the nonrelativistic energy E and m by

er =Eg+2oii Es+——2nis+ U,

where U is a constant potential which is adjusted to
make the p trajectory pass through nz, at J= i.

APPENDIX 8: NUMERICAL METHODS

1. Methods of Solution

The following methods are commonly in use for the
calculation of Regge trajectories.

i Dir.ect integration of differential emanation.
Boundary conditions Rt thc oI'lglIl Rnd infinity RI'c

connected by a numerical solution of the differential
equation. The method is relatively slow, but accurate
and straightforward. It is in principle applicable to the
entire J plane. It has the advantage of providing
accurate wave functions automatically. It allows the
calculation of the complete scattering amplitude.
Rcggc residues~ widths of resonancesq ctc.

ii Inner.sion of integral kernel. is The Green's func-.
tion of the I,ippmann-Schwinger equation is approxi-
mated by a sum of dyads, yielding an algebraic eigen-
value problem. Alternatively, one could approximate
thc lntcglRl by R sum ovcI' mesh polDts. This again
leads to R matrix clgcDvRluc problem. This method has
the difficulty of requiring large matrix inversions for
multichannel problems. Special treatment is also
required for negative Re(J), where the integrals must
be analytically continued.

9A. Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. I31,
I315 (1963); A. Ahmadzadeh, thesis, University of California,
1964 (unpublished).

'0 A. Ahlnadzadeh and V, Chung, Phys. Rev. 161, 1602 (196'j).

N$. VQfMAONQl PEekhods. Thc Raylelgh-Ritz Rnd
Schwinger variational quotients may be converted into
algebraic systems of equations if trial functions of the
form P; eott; are chosen (where P; is a function which
satisles the boundary conditions). The resulting matrix
elements are then analytically continued into the
complex J plane. The method is quite accurate and
rapid, but is somewhat more dBBcult to set up than
method i.

Because of its ease of formulation, and since we
require only the first few trajectories, we have chosen
method l.

Z. SNmericat Deta~7s

FOI' R glvcn value of BT %'c constluct Rn Rigor'lthlrl to
determine J, the corresponding point on the Regge
trajectory.

Since the differential equations decouple at r=00
)because of the exp( —Pr4) form of V,j, it is relatively
easy to calculate asymptotic forms for the wave
functions for large r. The over-all normalization co-
cKcient of one wave function may be hxcd arbitrarily,
but the remaining two normalization cocKcients
together with J are undetermined functions of e~.
Initial values of these normalization coe%cients andJ are chosen, and the system of differential equations
is integrated from the asymptotic region to a small value
of t'.

A power-series solution is next developed about r =0.
The normalization coeScients for the power series are
Qxed by equating the series with the integrated solution.
The differences between the three derivatives of the
series and the integrated solution at the matching
point delnes three (complex) functions of J and the
two normahzation coeKcicnts. Simultaneous zeros of
these functions are then found, through a Newton-type
iteration scheme. Ke have found that this method
converges rapidly, seldom requiring more than I2—I5
lntcgI'Rtlons pcI' point on the tI'Rjcctoly cRch time thc
cDclgy ls sultRbly incI'cmented.

"C.Schwartz, Phys. Rev. 141, 1468 (1966); W. B. Kaufmaan,
ibid. 154, 1991 (19@').


