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which completes the demonstration. Hence M„„"' (q; p)
is finite. Let us take note of the last term of (85), which
increases by a factor of q' faster at large q' than any
other contribution to 3f„„&' ). The matrix elements of
e„„may be "softened"6 by adding a finite term,

example, Figs. 1(a)—1(c) contribute to the OPI matrix
elements of 8~2sr, with the result from Fig. 1(b)
increasing by a factor of q' more than is desirable. The
addition of

(B-„ct„g—„,C1') (o'+sr'),2'

s (
~ s+ ~s)

Sm'
(816)

to e„„computed from (3.13) and (3.11).
The computation of matrix elements of 8, which are

also 6nite, follows the same lines 'as those of 0„„.For

to (3.14) softens the matrix elements of 9 in this order.
The results of these computations are given in (3.16)—
(3.24), with Eq. (3.27) also reflecting the modification of
8 due to (816).
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We consider the spinor pole in second-order spinor-vector and spinor —axial-vector scattering for all
possible couplings and show that, except for the vector y& coupling, none of the amplitudes factor. There-
fore, only in the case of y& coupling does the spinor lie on a nondegenerate Regge trajectory for all values
of the coupling constant. The degeneracy in the case. of the axial-vector y&y5 coupling is less than for the
remainder of the couplings. We also consider the axial-vector pole in pseudoscalar-vector scattering and
show that for one particular pseudoscalar —vector —axial-vector coupling, the sense amplitudes factor. These
results are reconciled with the Mandelstam counting procedure, and the eGects of gauge invariance and
isospin on factorization are investigated.

I. INTRODUCTIOH

sEVERAL years ago Gell-Mann, Goldberger, I ow,
Marx, Singh, and Zachariasen' ' studied the condi-

tions necessary for an elementary. particle to lie on a
Regge trajectory independently of the value of the

coupling constant. They found that two conditions are
necessary: There must exist at least one nonsense

channel, and the perturbation-theory approximations
to the scattering amplitudes must factor. They showed,

by explicitly calculating in second and fourth order,
that the spinor in spinor-vector scattering with a y~

coupling does Reggeize, but that the scalar in scalar-

~ This work was supported in part through funds pro-
vided by the Atomic Energy Commission under Contract No.
AT(30-1)2098.

'M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,
275 (1962); 10, 39 (1963).

~ M. Gell-Mann, M. L. Goldberger, F. E. Low, and F.
Zachariasen, Phys. Letters 4, 265. (1963).

3 M. Gell-Mann, M. L. Goldberger, F. K. Lour, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 8145 (1964). This will be called
GGLMZ.

& M. Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh, and F.
Zachariasen, Phys. Rev. 133, 8161 (1964).' See also M. Gell-Mann, M. L. Goldberger, and F. E. Low,
Rev. Mod. Phys. 36, 640 (1964); H. Cheng and T. T. Wu, Phys.
Rev. 140, 3465 i1965l.

vector scattering does not Reggeize. Subsequently,
Mandelstam' gave a method for determining to all

orders if a 6eM theory must Reggeize, by counting the
conditions placed on, and the free parameters in, the
relevant partial-wave amplitudes. This counting method
ostensibly is. independent of the particular coupling
used and depends only on the spins of the particles; it
requires, however, that the AM theory give scattering
amplitudes that are consistent with unitarity. Mandel-
stam showed that indeed spinor-vector scattering must
Reggeize, while scalar-vector need not Reggeize. Re-
cently Abers, Keller, and Tephtz~ showed that if
isotopic spin is added to the y& coupling considered

by GGI MZ, and the vector-vector-vector interaction
of the Yang-Mills fieM is included as demanded by
gauge invariance, the second-order Born terms continue
to factor.

All this leads to some questions. (1) What about
vector couplings other than yl" in spinor-vector scatter-
ingP Mandelstam counting wouM seem to insist that

'S. Mandelstam, Phys. Rev. 137, 949 (1966). See also, E.
Abers and V. Teplitz, ibid. 158, 1365 (1967).

~ K. Abers, R. Keller, and V. Teplitz, Phys. Rev. D 2, 1757
(1970);R. Keller, thesis (unpublished}.
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these Reggeize a1so; we can check this by seeing if the
second-order terms factor. These other couplings,
however, are nonrenormalizable and may or may not
yield perturbation-theory amplitudes consistent with
the unitarity bound. If they do (do not) give real phase
shifts in second order, the Mandelstam procedure pre-
dicts that the theory has (has not) a factorizing tra-
jectory to second order. The second-order sense-sense
amplitudes for y» coupling go as I/Z'for large F so that
these other couplings may have worse behavior and yet
still be consistent with unitarity. (To be consistent with
unitarity the amplitudes must go no faster than a
constant. ) If unltarlty is violated, tlleil factorlzatlon
does not necessarily imply Reggeization, but if the am-
plitudes do not factor, they certainly cannot Reggeize.
(2) If the amplitudes violate the unitarity bound, what
is the effect on Mandelstam counting; in particular, can
the counting be generahzed by adding an additional
parameter for each subtraction constant that is neces-
sary to make the amplitudes unitaryP (3) What about
various couplings in axial-vector —spinor scattering? The
counting is the same as in vector-spinor scattering. In
particular, what about the y&y' coupling? Current
prejudice is that p&p' should be as good for axial vector
as y» is for vector. (4) Finally, in view of Ref. 7, what
are the roles of gauge invariance or partial conservation
of axial-vector current (PCAC) in determining whether
a particle Reggeizes? What is the e8ect of isospin on
factorization of the amplitudes?

We will try to answer these questions by considering
all possible vector and. axial-vector couplings and show-

ing that all of them except y& violate the unitarity bound
and that none of them, except y~, factor. As might be
expected, the y&y' coupling comes closest to satisfy-
ing unitarity and. we show that only two Regge poles
exist in the coupled three-channel program, one sense-
choosing and one nonsense-choosing. We also consider
the axial-vector pole in pseudoscalar-vector scattering
(or equivalently the vector pole in scalar-vector scat-
tering) and show that, while none of the possible
couplings give amplitudes which are consistent with
unitarity, one of the couphngs does give amphtudes
which factor. We then use these results to discuss
Mandelstam counting and the effect of gauge invariance.

In particular we shall see that gauge invariance (or
PCAC) is related to the presence of ancestors. If the
amplitudes are not gauge invariant then in most cases
the partial-wave amplitudes will have terms which go
as 8i, i (or bi,~, etc.), whereas if they are gauge invariant
(or satisfy PCAC), the sense amplitudes will go as bi, o.
Then if the conditions of GGLMZ are satis6ed, the
higher-order corrections must replace the b~, o by

n/(l n) and—the e—lementary particle lies on a Regge-
pole trajectory. It should, however, be emphasized that,
as vQll become apparent) the requirement of factorlza"
tion is already nontrivial in second order.

There are 6ve ways we can couple a vector to two

p&+ k~

Pa

FIG. i. g and g, channe1s for p.
spinor-vector scattering. g1

spinors of momentum pi and. pm, namely, the couplings
P»=y» 0""k P» k» ando»E wherek»=(p2 —pi)" and
P»=(pi+ p2)». If the spinors are on the mass shell, then
the 6ve couplings are not independent. In particular,

N(p, )k»N(pi) = —iu(p2)o»"P„N(pi) (I)
aIld

u(p2)P»N(pi)

iu(p—2)0»"k,N(pi)+2mu(p2)y»u(pi) (2).

If we use the diferent couplings to calculate amplitudes
as shown in Fig. 1,

T(P»)= e2»ei

&&L(~—~') '~(p2)P»(v p2+q k,+m)r, N(p, )
+(u —m') 'N(p2)P„(y p2 —y ki+m)P»e(pi)j (3)

(e2» and ei" are defined. in the Appendix), then, for
ex™pie,by (2) the amplitude with P»=P» need not
be equal to the amplitude with —io»"k„+2m'» at each
vertex but it must not differ from that amplitude by
more than a polynomial in k and. P (a seagull). The
amplitude with y& coupling and the amplitude with
0&"k„coupling are each gauge invariant. The amplitude
with E~ is not gauge invariant and if we add. a seagull
to make it gauge invariant then, of course, we may
choose to add precisely the seagull which makes the E'II

amplitude equal to the amplitude with the sum of the
other two couplings. In fact, no other reasonable seagull
exists.

The amplitude with k& is zero since e k=0 so the
amplitude with 0&"E„must be only a polynomial. These
two couplings violate G parity and have been named
second class by Weinberg. '

There are also 6ve axial-vector couplings which are
obtained by multiplying the vector couplings by y'.
Here we have the relations

—iN(p~)~""~.V'"(pi)
=u(p2)k»y'N(pi) —2'(pg)y»y'N(pi) (4)

and
N(p2)E»y'N(pi) = iu(p2)0»"k. y'I{pi).— (5)

Now, if we use these couplings to calculate the diagrams

' S. Weinberg, Phys. Rev. 112) 1375 (1958).
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in Fig. 1, again the relations between the currents must
hold for the amplitudes except for polynomials. The
amplitude with y&y' satisies PCAC in that if we
replace c~ by k~ at one vertex the resulting amplitude is
the same as the amplitude for a 2m'' coup1ing at that
vertex. To see this consider

amphtude —y~ amphtude

2m 28$
+ ——up'62/' tyu+ — —u7 ty'r &u ~

s ts I—tS

If we replace e2 by k2, we get

(2k'
3M s 1 —E1 s

lg~2 4@8
T,,,+= — —3E—m

~

S—Bl 5$

gy' 2E
+ (1+s) E(2+—Bs) ms—

S—tÃ -PS

Appendix, the helicity amplitudes are given by

g
2 ] (4E2 g'fS' 1

Tg, g+= —
~

— 2m—2E—+.—~2'& ~ u —m' V2

u'y'k2+' Eyu+ 'u'r' Crt'ks'u
S—8$ I—t5

since the "yl"" amplitude is gauge invariant. The
ampbtude with 255+ at one vertex ls

T0,0

gp' 1 (SE' 4E' 6E'
- — ——5E—~/

rs —m'@2' m' m' m
(7)

g
2 1 i,-4+4 2+8

(1+s)+ —(1+s)
e—A&2 ~2 m'

uy'(y pm+y ks+m)y egg'u
s—ts

+ uy egg'(y pg —y 4+m)y'uI—m'

282—— — (2+Bs)—E(3+4s)+m

—gvT, 0+ = — (E+m),I—m'

which equals the expression above.
The coupling o-&"k„y' does not give PCAC since it is

manifestly gauge invariant. Further, it cannot be made
to satisfy PCAC by adding a polynomial since the
PCAC statement involves obtaining an amplitude with
poles from the substitution of k& for ~&. The same is true
for the amplitudes with P"y5 because, by (4), they are

gauge invariant except for polynomials. The couplings
a~"k„y5 and I'I'y'" violate G parity.

%e now consider each of these couphngs in detail.
The calculations m,re elementary and will not be shown;
the information necessary to check our results is given
in the Appendix. Unless we specify otherwise, we will

consider all the particles to have the same mass.

II. VECTOR WITH ~~ COUPLING

This is the case considered by GGLMZ. The relevant
second-order diagrams given in Fig. 1 serve to dehne
the momenta. The result is

gv
T(y") = — (2e2 p2T2+Tqs)

(pg+k, )'—m'

gv
-(2ei psTS —Ts) (6)

(pg —ks)' —m'

where the ~& and the T; are given in the Appendix.

gp is the spinor-vecto1 coupling constant. Using the

—gy
T g, ,+= (E+es), —

u —m' V2

g~2 l (2E2
T,,-,+= —

~

—+8—m).

One may find the 2 amplitudes from the T+ by
changing the sign of 8 everywhere. This is MacDowell
symmetry.

For large s=cos8, the amplitudes in (7) become

gy 1 5$
Tg,+= — (E+m)+0(s '),

242 422' —m

gy 1 5$
T, ,+ = — — — (E+m)+0(s '),

2 k22E —ei

gy 1 8$
To 0+ = — (E+m)+0(s-'),

VZ a22Z —m

gy
T g, o+= — —(E+m)-+0(s '),

2 A2

gy 1 1
T-x,i+= ———(E+~)-+0(s ')

gy2 1 2E—m
T g, g+= — (E+m)-+0(s ').

2~2k
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The amplitudes in (8) check with the results of GGLMZ
and obviously factor for all E. That is, the matrix of
coeKcients of z' for sense amplitudes and of z. ' for
sense-nonsense and nonsense-nonsense amplitudes has
vanishing determinants and its minors have a vanishing
determinant; GGI MZ explain in detail this requirement
and the sense-nonsense choice. Notice that the sense-
sense amplitudes each go as 1/E' as E gets large. This
is because of a delicate cancellation of the large powers
of E between the s- and I-channel contributions; the
s- and u-channel contributions separately go as E for
Tj,j+) as E' for Tj,o+, and as E' for T0,0+. By considering
the z ' terms it is easily seen that all of the higher
partial waves in second order grow no faster than a
constant as E gets large and thus are consistent with
the unitarity bound.

III. AXIAL VECTOR WITH gyral'y~ COUPLING

We evaluate the diagrams in Fig. 1 where the wavy
lines are axial vectors instead of vectors. The amplitude
here is the same as that of vector y& coupling plus
additional terms proportional to 2m,

—g~' (2E'
T-~.o+=

I

—E—m I,
ru —m'k m

gA 1
T g, g+= —(E—m),u-m' v2

l—gg' 1 /2E'
T-~,-~+= —

I +E—3m
I

~

u —m'van m r

Expanding (10) for large s,

—gx
Tg, g+= (—8E'+3Em+Sm')+0(s-')

2V2k22E —m

gA 1
Tg o+= —(—4E'+Em+ 3m')+0(s ')

242 m

gx
T(v"7') =

(pe+kg) '—m'

X(2&2'psT2+T12 4m«—ooTr+2mTo)

gx
(2«psTo To —2mT—4), (9)

(pg —ks)' —m'

g~' 1 $4E' g~'
Ts,g+ = —

I

— +6E+2m I+
s—m'vs& m u —m& W2(2E'-

XI m z 1 E 1 z )

g~' )4E' 4E'
Ti.o+=

I +
s—m'E m' m

g
2 -2E3 2E2

+ — (1+s)—
u —m' m' m

(1+s)

—E(2+s)+m(2+s)

g&' 1 )8E4 4E' 6E'
To,o+= —

I + — —E+m
I

s —m'V2(m' m' m r

gg2 1 4E4 6E'
+ — (1+s)— (1+s)I—m' V2 m3 m2

2E2
(s+4)+E(5+4s)+3m

m

where g~ is the spinor —axial-vector coupling constant.
Using the Appendix, we 6nd

—gx
To, o+ = —(—8E'+4E'm

2V2k' m'

+6Em' —2m')+0(s ') (11)

ga
T g o+= —(2E'—Em —m')-+0(s ')

2k2 m z

gA 1
T g ~+= (E—m) —+0(s '),

2%24' s

gx
T g g+= —(2E'+Em —3m')-+0(s ').

242k' m z

These do not factor and further To,o+ goes as E for

large E, and thus (to,o+)'='I' violates the unitarity
bound. The cancellation of the high powers of Ebetween

the s- and I-channel contributions that occurred in the
vector y& case only partially occurs in the 2m terms and
unitarity is violated. The higher partial waves (j)s),
however, are consistent with unitarity; they come only
from the u channel and therefore do not depend on a
cancellation.

The amplitudes would be consistent with unitarity if
we could get rid of the 2m terms in (9). We can accom-

plish this by considering the axial vector and the spinor
to have diferent masses and putting the spinor mass
equal to zero. Then (9) is the same as the y" case found
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from GGI MZ and MacDowell symmetry,

ga
T, ,+= — — (E (a)—'+0(z '),

2@2k' E+(u

gx
Tg, p+ = A(E —co)+0(z '),

2k' E+(g

ga
T, ,+= — — -) '+0(.- ),

&2k' E+(o

and

(E mq—'I'( 9m ~'~'

E2W2kPi E2E—mi

/E m)—I ( 2 q
1/2

=g~l
I I

—(2E—m) I

E 2v2k'i &m

(v IN) I (2g III)
t

n»pl=, =-g.
I

&2VZki E 2m

—gz EZ-+0(s-'),
2k' s

—gxT, ,r+= E(E—(o)—+0(s '),
2@2k' z

gx 1
T g g+= — E(E+(u) +0(s '), —

2%2k' s

where ~ and X are the axial-vector energy and mass.
The y&y' amplitudes do factor when nz=0. It is not
true, however, that this factorization is because the
axial-vector current is conserved and the amplitude is

gauge invariant. Ke have examples of gauge-invariant

couplings where the amplitudes do not factor (o ""k„)and
of couplings where the amplitudes are not gauge
invariant but do factor (see below).

If the spinor mass is not equal to zero, Eqs. (11) do

not factor and thus the elementary particle does not
turn into one Regge pole. The determinant of (11) is

zero, however, indicating that the particle turns into
two (not three) trajectories, one of which chooses sense

at n =0 and one of which chooses nonsense. We can write

these two Regge poles as

n.(E)n, (E) 2n(E)P.(E)tL(E)
l+ — +

l-n(E)

[l(l+2)3"'
l.- (E)~.(E) O- (E)~.(E)

l -n(E) l-n(E)

2n(E)D .(E)l [tt .(E)3+
l—n(E) l—n(E)

(13)

where ~ and v equal 1 or 0, and where rt p „and f z are the

residues for the nonsense-choosing trajectory. Then
from (11) we 6nd'

E ('E m"'—
po=g~v2 —

I

mE V2k'

(E m) '~'—
0-i=g~~2I

W2k i

Now we can try to add isotopic spin to this theory.
If the axial vector has isospin 1 and the spinor has

isospin p, then the s-channel contributions in (10) are

multiplied by vga and the u-channel contributions
in (10) are multiplied by r,r p, where the r are the usual

SU(2) generators and satisfy r, &r+r&r =25,&. If we

assume there is a vector in the theory (we assume it
couples to the spinor by pv), then there is an additional
contribution to the amplitude from exchanging the
vector in the t channel. The vector —axial-vector —axial-

vector coupling must be

gyp'' pp(kg+kp) +gp(kr' cppl +k2' plp2 ) q (16)

where g~ and g2 are here arbitrary coupling constants.
The t-channel contribution is (rpr, r,rp)T', w—here

T' is given by

T'= (t—m')-'[gggv2pg ppT4

+gpgV(kl' &2T2+kp' &1TS)j ~ (1l)

The helicity amplitudes are

gv 1 t' 2E')
T, ,'+= ——g, I

m — — I(1yz)
t—m'v2 4 mi

(EP—E(1+z) +gp2I ——m I(1—s),
&m i

E
+E l(1+s)

t-m' 4 m' i
E2 — -t Ep

——(1-s) +g, I
E- —(1+z)

' It is interesting to notice that this solution does not satisfy
the conditions for nontrivial evasion. See E. Abers, M. Cassandro,
I. Muzinich, and V. Teplitz, Phys. Rev. 1VD, 1331 (1968).

)E' E'
+I ——

Em' 2m

m)-E+—l(1-z)
2i
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gy 1 484 2E'
To, o'+ = — —gi (1—s) — — (1—s)

t —m'K2 m' m2

282
(3 s)+—2E +go(1 —s)

m

The total amplitude has both I=-,'and I=-,' parts.
If we call the s-channel contribution rye, T' and the
I-channel contribution r~v yT", then the I=-,'part is

3T' T"+—4T'

m'

-4E4 2E' 482

m' m

and the I=—,
' part is

2T —2T'.
gy t' 2E' E'

T i.o"= —
g~I

— +—+E
I~m' E m' m )

E' E' m)
+g I —,+ +E-

gy 1 282
T z, z'+= —

gg
— +E+m

t —m' v2 m

E2
+go ——+m

gy gj. 2&t+-
t—m'K2 m

+E+m . (18)

Ti, i'+=
I

— —Ey3m I+0(»-'),
)2Vruo( m

g~'t'
Tx,o'+=

I

— +3E—'m I+0(s '),
mE
g„' 2E4 E' 3E'

To o'+= — +—+ —2E I+0(» ')
mo m' m

To make the higher partial waves consistent with

unitarity, we need to take go/g&= —2 (see T&,o and

T x,o).
Further, by comparing (18) with (10), each multiplied

by the proper isospin factors, we see that the 6rst
partial wave comes closest to being consistent with

unitarity when (g&+g&)gz =gz'. Thus we take g&g& ——2gz'

and g~gy= —gA'. This is an interesting result because
it means that the vector —axial-vector —axial-vector
interaction derived by considering unitarity is the same,
except for an over-all factor of g~/gy, as the vector-
vector-vector interaction required by gauge invariance

in spinor-vector scattering. '
Expanding (18) for large s, we have

Then from (10) and (18) or (19) we find that the
I=~ amplitudes are

Ti,i"'=gx' (E m—)+0—(s ')
k'

2 E
Ti,o"'=gz'—(E—m)—+0(s-'),

k' m

2' Z2
To,o"'=g~' (E—m)—+0(s-'),

k2 m2

2 Ej.
T i.o'~'= g" (E m) —+O—(;2)—-

k2 ms

(20)

V2
T i, i"'=g~' (E m) +—0(»-—')—

k'

v2
T &g"'=g,z' (E m—) +—0(s--') .

k2 s

gA'
Tg, g'" —— (E—m) (8E+23m)+0(s-&),

2~2k2 2E—m

gA
T, o"'—— (E m—)(4E—+9m)+0(z ')

2k2 m

gA 1
To oP

=' (E m)(8E+12Em 6m)
242k2 m'

+0(s '), (21)

These amplitudes factor giving a nonsense-choosing
trajectory with residues precisely equal to (15). The
I= ~~amplitudes are

gA 1
T, ,'+= (E—m)-+0(s '),

2k' s

gA 1
T»'+= (E—m) —+0(s '),

212k

gg' 2E' )1t+— E m I-+0(s '). — —
2vZk' m )s

(19) gA 1
T ~,o"'—— (E m)—( 2E—+3m—) +0(s ')—,

2k' m s

—gA'
T g, g"' —— 5(E m) +0—(s ')—,

2&2k' s

gA j.
T—1,—1"'= (E m) (6—E+m—)- +0(»-') ~

2V2k2 m s
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These do not factor but, as in the case without
isotopic spin, the determinant of the amplitudes is zero
indicating that we again have two trajectories —not
three. Here the nonsense-choosing trajectory has
residues equal to (15) while the sense-choosing trajec-
torv has residues equal to V3 times the residues given

by (14).
This, together with Ref. 7, leads us to speculate that

the addition of isospin in a Yang-Mills theory does not
change the factorization properties of the theory.

If factorization is used as a basis for choosing

couplings, then Ref. 7 shows that the vector-vector-
vector interaction (in the presence of isospin) should. be

which gives the helicity amplitudes

—gy
~1,0

2k' m'2E —m

T0,0

X (4E4—5E'm'+Em'+2m 4)+0(s '),
—gy 1 1

42k' m 2B—m
E'(E—m)+0(s-l),

gy
Tl, 1+= — (—16E'—8E'm+36E'm'

2@2k' m' 2E—m

+8E'm' —21Em4 —m')+0(s '),

35i3'kg V/tl ' 53(kl+k2) ' 53

2 15' k 35353—252 ' k151' 53] ) (22)

where gran"r5/2 is the vector-spinor coupling, and kl

and k2 are the momenta of vector No. 1 incoming and

vector No. 2 outgoing, respectively. The indices i, j,
and k give the isospin of particles 1, 2, and 3. Similarly

we have shown here that with isospin the vector —axial-

vector —axial-vector coupling should be

—3&lj5(ga /gV)L&1'53(kl+k3) '5&
—2@1 k353 5v —253 k151 5vf (23)

—gy
~—1,0

2k' m'

X (2E' —E'm —3Em3+2m') —+0(s—')
—gy

~—1,1
22k2 m~

X(4E'+2E'm-5Em3 —m3)-+0(s-3),
—gv

~—1,—1
2%2k3 m'

(25)

if g~y1'y5r3/2 is the axial-vector —spinor coupling. This is
the same as the vector-vector-vector coupling except
for the over-all factor g~/gv.

IV. OTHER VECTOR AND AXIAL-VECTOR
COUPLINGS

A. Vector y& Coupling with m&/m2

Consider the diagrams of I'ig. 1 but where all the
external particles have mass m~ while the intermediate
particle has mass m2. This case is the same as the axial-
vector 7&y' coupling except that the pole is at m2 and
the 2m in (9) is replaced by ml —m3. It does not factor
and To, o violates unitarity. Of course it is not gauge
invariant.

B. Vector with gv(ie&"/m)k, Conning

The scattering amplitude is

gV' 2&1 Pl
T(o.&"k.) = —— T14+ T15

s—m' m' m

X(—8E4+10E'm3 —Em' —m4) —+0(s ')

The sense-sense amplitudes factor at the pole 2E=m
as they must but do not factor along the trajectory as
we can see by setting E=O. In addition there is no
cancellation of large powers of E of the type we saw in
the vector y~ case. Thus none of the helicity amplitudes,
except To, o, are consistent with unitarity. The higher-
order partial waves are only consistent with unitarity
for the sense-sense amplitudes.

The determinant of the amplitudes in (25) is not zero
(again this can be easily checked by putting E=0).Thus
this coupling does not satisfy a two-trajectory theory of
the type we found for y&y5.

C. Axial Vector with ( ig~33&"/m)k—„y5

This coupling is manifestly gauge invariant and so
cannot be made to satisfy PCAC. It divers from the
vector tTi""k„by terms proportional to 2m,

T(~~"k y5) = T(~~"k)—
gx 2 gx+— T,5+ —— T,5. (26)

m s-m' me —m'

gV ( 62' P1 gv
As was the case for T(o&"k„), the amplitudes are not

T +. T ~+ (T T„) (24) consistent with unitarity and do not factor. Further,
N-m3~, . m3

'
m i m' the higher partial waves are not consistent with
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unitarity for the sense-nonsense and nonsense-nonsense
amplitudes. Also the determinant of the amplitudes is
Dot zero.

~I-I(s)
ds (29)

A new feature enters here. The helicity amplitudes,
expanded for large s, have terms linear in s in the sense-
scnsc amplitudes Rnd tclHls %'hlch go Rs R constRDt 1D

the sense-nonsense and nonsense-nonsense amplitudes.
These indicate the presence of an ancestor at 1~1.
P, ,I=(1—~,)i(1—«), and b, .e= —«/(f —~,),3 Using
Eq. (AS} of the Appendix for the partial-wave projec-
tions,"we 6nd

. gy 2E gy 1 j.
tl, t'+= —E—3m 8I,I+

6 m 12 mE —m

y( —8E'+16E'm —2Em' —3m') &I,e,

g~2 jv 2jv2 gy' E—E—3m 8I,I+
3%2 m m 642~'E —~
X(—8E'+4E'm+22Em' —21m') 8I,o,

gvs Es 2Es
]e st+= — —E—3m ill, 13m' m

gy I E 8g 0
(52E'—52Esm

3 2E—mmsZ —m

—73E'm'+82Ems —6m'), (28)

gvs E(2E'

rPI' g6 mE m

"1,0

I+ g2 (2Es.

PIs 243k m

D. Vector Coupling gyPI'

Thc amplitude ls

el (2pt+kl)es (2ps+ks}
T(I'&) =gp' — (2mTI+T4)

S—Pb

el (2Ps —kl)es (2PI—ks)
+gv' (2mTI —Te) . (27)

These partial waves and RH the higher partial waves
violate the unitarity bound badly. Nevertheless we see
from (28) the / =1 ancestor does factor. The f =0 ampli-
tudes do not factor nor is their determinant zero.

Of coulsc thc E~ coupling ls Dot gRugc lDvRHRnt. If
add, a seaguH. to make it gauge invariant then, as we

discussed before, we have simply a s—o""k+ 2m'&
coupling. The scagull can be written in several equiva-
lent %'ays~

gv'L —4mel esuu —2es (pl+ps)uv e,u
+u'r 'es'r kl'r'etu —u'r ely klan ~ esuj

=gvs$ 4m—el esuu 2el—(pl+ps)uy e,u
+up'es&'ks'r'e'lu —u'r'ely key: esuj

=gv L 4m—el ' essu 2el—' ptu'r ' esu 2es
—' plug etu

+up eg key elu —uy ely klan esu). (30)

Thc erst form is convenient to use when we are checking
gauge invariance by replacing ~j.' by k~" and the second
form is convenient when we replace ~2& by k2I'. The
third form is most convenient for evaluating the
hcHcity amplitudes. %riting it in terms of the T;,
gvs( 4tmel—esTI —2el plTs —2es pITs+Tls Tsj (31)

Tllc to'tal gallgc-lllvs1'1RIlt amplitude is (2/) plus (31)
This docs Dot have a,n $= j. ancestor, Thc )—0 terms
are very messy and do not factor.

At. this polIlt, ODc may conjecture that thc role of
gauge invariance is in eliminating ancestors from the
amplitudes. This turns out to be true in aH the cases,
without zero-mass particles, that we have checked.
ith the fI'ccdoIIl to Rdd zero-mass particles, any
tlM01'y Illay bc made gauge lllval'lallt (ill tllc sellsc of tllc
substitution e„-+k„yielding zero) without altering the
original scattering a,mplitudc,

E. Axial Vector vrith g~PI'y' COuyliIlg

The amplitude is

el (2PI+kl)es (2Ps+k, )
T(P "v'}= —g~' T

S—tP$

g
s (2Es gvs 1 1t, , I'+=

i
—E—Bm i'll, I+2&m 8 mE —m

X(8E'—8Esm —10Em'+9tm') QI I,
'0 @he equations for the partial-wave projections in GGLMZ

have two crucial misprints. In Eq. I',2.16) the coeKcient of E~ 1
should be 1+2 instead of /+1 and in Eq. (A13) the coeRcient of
the operator 5 should be 1.(L+1+2X)'r(2L+1).

el (2ps —kl)es (2pl —ks)
+g~' —T4. (32)

I,lke the vector PI' case the hchclty amplitudes have anl~ 1 RnccstoI' which fRctoI's- The l 0 partlRl wave docs
not factor and neither the / 1 Dor the l 0 amplitudes
are consistent with unitarity.

This theory docs Ilot satisfy PCAC nol ls lt ga,ugc
invariant. It can be made gauge invariant by adding
the seagull which makes it equal to the amplitude with
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0-&"k„y' coupling. This again shows that if two sets of
amplitudes di6er by a seagull, then the set which has
PCAC or gauge invariance is the one without ancestors.

The amplitudes could also be made gauge invariant
and thus the ancestor could be removed by adding to
(32) the interaction

61' 1 2 62' 1 2

T4 e

&1 (P1+Ps)
(33)

The resulting amplitudes at l 0 and all higher partial
waves violate the unitarity bound, yet the amplitudes
at. l 0 do factor. This probably has no meaning. It is
not clear what kind of an interaction (33) represents.
(There is a pole at s=N. ) Further, the term (33) plus
an e1 ~2 seagull also makes the amplitudes with PI"

coupling gauge invariant, but they do not factor.

The amplitude has an l 1 part which does not factor
and an t 0 part which does not factor either. Of course
it is not gauge invariant.

F. Vector with gvk" or gt (i/—m)a""P, Coupling

Because ~1 k1——~2 k2 ——0, the amplitudes with k&

coupling is zero. Then, because of the relationship
between k& and 0 I'"P„, the amplitude with a I'"P„can only
be a polynomial. We can explicitly check that it is
given by

gV2
T 0'~ Py = 2&2' 2~2 2&1' 2~8

222 i 2222

—4ms, ssT1+ T12—Ts] (34)

V. PSEUDOSCALAR-VECTOR SCATTERING

The pseudoscalar pole in pseudoscalar-vector scat-
tering has been considered in detail by GGLSZ. They
find that the amplitudes do not factor, indicating that
the scalar does not Reggeize. Since the amplitudes are
unitary, Mandelstam counting can be used and shows
that the scalar need not Reggeize. Ke now want to
consider the axial-vector pole in pseudoscalar-vector
scattering (or equivalently the vector pole in scalar-
vector scattering). The relevant diagrams are shown in
Fig. 2. We can couple a pseudoscalar of momentum p, a
vector of momentum k and polarization ev, and an axial
vector of momentum P+k and polarization s" in two
independent ways; either ggvps s" or h~vt sr Ps" k.
Using gAvpe ~ e" in Fig. 2, we get

gAvp
T(sv'. sA) y

s—m'

1——21'(P1+&,).2'(Psy~s)
m2

gA VS+ S1 '22I—m'

1
21 '(Ps —4)ss" (P1—ks) . (36)

This amplitude is not gauge invariant and further, since
the gauge-dependent part involves poles, cannot be
made gauge invariant by adding a seagull. The sense-
sense helicity amplitudes do factor "

6. Axial Vector with ( —f/ns)o»p„~s Coupnng

Since the k&y' coupling gives zero, the amplitude with

( i/sr')a»P„ys ca—n only differ from the amplitude with
y&y' coupling by a polynomial. We find

i —) 12gg'
T O'""P y ~

—— 21 ssT1
) 212

gAvP2 4+2 3m2
~ 1,1V +j

30j,l )
s —m' Qm'

gAv~' 4&'—3m' E
g1 0+j—

~—m' 2m' m

gA vz2 4~2 —3m
~ 0,0T +j= ———8. 1

2

$—m2 Qm2 m2

(37)

+ [222'P2T2+221 P2Ts+T12 Ts]
m2

4gA'
422261 ssT—1+222''P2T2+T12+2222Ts]

s —m'
&gA'

+ L221 P2Ts Ts 2222Ts] ~ (33)I—m'

This has an ancestor at / 1 due to the polynomial.
Neither the ancestor nor the 3 0 part factors and both
violate the unitarity bound. Also this does not satisfy
PCAC. To obtain PCAC one would drop the polynomial
and have the y&y' amplitudes.

Both T1,0 and T0,0 violate unitarity. If a nonsense
channel can be found which maintains the factorization,
then this is an excellent example of a case which is not
consistent with the unitarity bound but still factors.
We suggest that the nonsense channel is the channel
with one axial vector and two vectors. The sense-
nonsense and nonsense-nonsense amplitudes then
correspond to diagrams like Fig. 3. We have not
computed these.

A similar situation arises in considering the Reggeiza-

"This factorization does not depend on particles having equal
mass. . The amplitudes continue to factor when the pseudoscalar,
vector, and axial-vector masses are unequal.
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tion of the vector in spinor-antispinor scattering. In this
case the sense-sense residues are of order 5~,~ in the
coupling constant, the sense-nonsense residues are of
order g', but the nonsense-nonsense residues are of
order g', not g', because no tree diagram exists. Thus
the powers of the coupling constant preclude
factorization.

If we use the other coupling, ev pe" k, in the
diagrams of Fig. 2, we find

T(6 pe" k)

61 'P162 'P2
=hgvg ky k2

s —m'

1 61 'p262 'pl
kl'(kl+pl)k2'(k2+p2) +kAV p

m2 u —ns'

(a }

A

X kl. ks —kl. (ps kl)ks. (pl ks) (38) FIG. 3. (a) Example of a sense-nonsense amplitude with an
m2 axial-vector pole. (b) Example of a nonsense-nonsense amplitude

with an axial-vector pole.

V)

(k),ev))

A (p, +k„e4}

r m p&( )
~sr( p))

V (k„e,')
( k), e", )

A( p~ k ~a) ~ ~(p, )
t' ~(p&)

FIG. 2. Axial-vector pole in pseudoscalar-vector scattering.

This is not gauge invariant. The helicity amplitudes are
not unitary and have ancestors at l 3 and l 2. The
ancestor at l 3 factors but the l 2 and l 1 amplitudes
do not factor.

We can combine the two couplings into a gauge-
invariant coupling, f(e" 6 k p —e pe" k). The
amplitude is

T(ev. eAk. p ev. peA. k)

=[f /(S m )][61 '62 kl'plk2'p2

+61 'p162 'p2p2 k2 —61 'p162 p2pl k2
—e,v ksesv pskl pl —elv plesv. klps k.]
+[f'/(u m')][61 —e2 kl psks pl
+61 'p262 'plkl'k2 61 'p262 'klpl'k2

el 'k 62 'pips'kl m' elp262 pl]. (39)

The resulting helicity amplitudes do no t factor and
violate unitarity, but the ancestors present when we
considered the coupling ev pe" k alone have been

canceled. This shows once again that the role of gauge
invariance is to eliminate ancestors. This can also be
seen by considering the scalar pole in scalar-vector
scattering and working in the e k =0 gauge rather than
the GGLSZ gauge. There, adding the seagull which
makes the amplitude gauge invariant, cancels an
ancestor which arises from the I channel, but the
seagull does not help with factorization.

If we require the absence of nonsense-choosing, l = 1,
I=0or 2 trajectories, factorization indicates the pseudo-
scalar —vector —axial-vector coupling is purely S wave,

ga vs~ (4o)

gAvp'=2mA'fvppgv
& (41)

where the pseudoscalar-pseudoscalar-vector coupling is
fvppe (P,+P2)ie@s and the vector-vector-vector ver-
tex is given by (22). The mass of the axial-vector meson
ls 5$g.

Thus we can use this coupling to discuss the decay
Al —+ p+~. In Al decay the probability that the pion
makes an angle 8 with respect to the direction of the A j
polarization is proportional to" "

(42)(mvs/mA2) g~s sin28+g~s cosset,
» S. Brown and G. West, Phys. Rev. 180, 1613 (1969)."J.Ballam, A. D. Brody, G. B. Chadwick, D. Fries, Z. G. T.

Guiragossi6, n, W. B. Johnson, R. R. Larsen, D. W. G. S. Leith,
F. Martin, M. Perl, E. Pickup, and T. H. Tan, Phys. Rev.
Letters 21, 934 (1968).

where g~ v ~ is arbitrary. The axial-vector-pole ampli-
tudes in pseudoscalar-vector scattering with the
coupling (40) continue to factor if the masses are un-
equal. Also if the pseudoscalar, vector, and axial vector
are each isovectors and we add a diagram with vector
exchange in the t channel, the amplitudes continue to
factor as in (37). In this case gAvp is no longer arbitrary
but is given by
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where mv is the vector (p) mass. For m~s=2mv and
m, '=0, the coupling (40) predicts

lg~/gil --' (43)

Except for y& no vector-spinor or axial-vector —spinor

coupling is consistent with unitarity. If we include all

the higher partial waves, p&y' is the only coupling which

violates the unitarity bound a finite number of times.
Thus it is not surprising that p&p' is the only other

coupling that comes close to Reggeizing, requiring two

This ratio has been measured to be 0.80+0.15.i2 ia If
we go further and use relation (41) with the value"

gvgv ./4s =2.5,

we can calculate the total decay width for Ai~ p+~.
We find F(Ai —+~)=1400 MeV, which is obviously
much too large; the experimental width is around 100
MeV, and even the naive current-algebra result is only
800 MeV."

We do not mean to imply that the e~ e~ coupling is
the only one which factors. In particular, a combination
of the sv s" coupling and the sv. s"k p —sv ps" k

coupling, namely, s" s"k (p+k) —s (p+k)s" k, also

factors in the absence of isospin. Both the s and u
channel poles are separately gauge-invariant. If we add
isospin and a vector particle in the t channel with a
coupling given by (22), the resulting amplitude is not
gauge invariant because the t channel pole is not gauge
invariant by itself. We can recapture gauge invariance

by adding a seagull —e&~ &2~ with the same coefficient
as the t channel pole. Then the seagull exactly cancels the
largest power of s from the t channel pole and the 5=1
amplitude is simply two times the s-channel pole ampli-

tude plus the I-channel pole amplitude. This factors.
The I=0 and I=2 amplitudes are proportional to the
I-channel pole amplitude. This also factors, choosing
nonsense. But now we cannot require that the I=0 and
I=2 amplitudes be free of trajectories. Thus we have

no method of determining g~y~ and we cannot calculate
the A&px decay width for this case.

VI. CONCLUSIONS

moving poles rather than one. Mandelstam counting
for vector-spinor or axial-vector —spinor scattering
counts an excess of three conditions over the number of
parameters necessary to specify the theory. If the
counting could be generalized to theories which are not
consistent with unitarity by adding a parameter for each
subtraction constant necessary to mak. e the theory
consistent with unitarity, then the y&y' case would still
have an excess of two conditions. (No other case wouM
have an excess of conditions, even if we only count the
violations in the lowest-order partial wave. ) Since y"ys
coupling does not lead to amplitudes which factor, this
generalization of Mandelstam counting cannot be
correct. Any violation of the unitarity bound seems to
invalidate the counting procedure.

The axial-vector pole in pseudoscalar-vector scatter-
ing is an example where the sense-sense amplitudes
factor for one of the possible couplings but where the
j=1 and all higher partial waves violate the unitarity
bound. It wouM be interesting to know if factorization
also holds when the sense-nonsense and nonsense-
nonsense amplitudes are included.

As has been emphasized in Secs. IV and V, the role of
gauge invariance seems to be to eliminate ancestors.
There are many gauge-invariant couplings that do not
factor and one coupling (s" sv in the pseudoscalar-
vector —axial-vector case) which factors but is not gauge
invariant. The addition of isospin through a Yang-Mills
theory does not seem to affect factorization if the
couplings of the Yang-Mills fields are properly chosen.
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APPENDIX

We study the elastic scattering of a vector or axial-
vector particle of mass m with a spinor (or scalar as in

TAgz, R L Values of the invariants that depend on the polarization vectors are listed for projections of the polarization vectors. The
first of the t~o numbers at the top of each column refers to the projection of ~2 I

—=~(k2)g while the second number gives the projection
of sg (—= s{kgl].

~1'pl
ep'pg

&1'PS

62' pl
ei kg

e2 kj

—-', (1+cosg}
0
0

—2-»2k sing

2 '"k sing
2-»2k sing

—2
—'"k sing

1, 0
—2-'"(E/m) sing

2kE/m
0

k (L~/m) (1+cosg)
2 '"k sing

k {E/ml {1—cose)
—2 '"k sing

0, 0

(1/m') (k' —E cosg)
2kE/m
2kE/m

k (E/m) (1+cos8)
k {Z/m) {1+cossl
k {E/ml {1—cose)
k (E/m) (1—cos8)

—1, 0

2 '"(E/m) sing
2kE/m

0
k (E/m} (1+cosg)
—2-»~k sing

k {E/ml {1—cose)
2-»2k sing

-', (cosg —1)
0
0

—2-»2k sing
-2-»2k sine

2»'k sing

2 ' lk sing

—' (1+cosg)
0
0

2»2k sing
—2 '"k sing
—2 '"k sin8

2»2k sing

'4 J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
» D. GeQ'en, Phys. Rev. Letters 19, 770 (1967};B. Renner, Phys. Letters 21, 453 (1966}.
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and
s= (pi+ki)'=4E'

N =(pi —ke)'= —2k'(1+s).

Our metric is such that k1' ——E'—k'=m' and our 7
matrices make the Dirac equation (y.p —m)u(p) =0.

%e denote the helicity amplitudes Tq, ,„., q, „„where
our T is (minus) the quantity 3f of GGLMZ. In
particular, if we define f=rw/g7rE then, for each
collection of helicities,

d /de= ) f)'
For the 12 independent helicity amplitudes, we

choose T~,~ ~,~, T &,&;1,-') T—1,-',—1-') T1,—~p, ~) T—1,——,';p, ~)

and Tp, , p & for the ones which are even under parity
and time reversal and T ~, ~., y, ;) Ty, ~ &,;, Tj., ;, y, ~„

T 1.„p,& T1„-p,„and Tp, , p ., for those which are odd
under parity and time reversal. To calculate these
amplitudes, we use the polarization vectors

e i&= —4(1/W2) ()t.+i'm/„),
ep = (1/m) (k,E6,),
e2" ———(4/K2) (n, cos8—n, sin8 —F48„),
e2"= (1/m) (k,EB sin8+E«1, cos8),

Ay=+1

(A1))2=+1
x,=o

such that ei ki ——e2 k2=0. (Other products of the

polarization vectors with the various momenta are
found in Table I.) We define our spinors as

(E+m) "' 1

~"(pi) =I
4 2m ) 2(rik/(E+m)J

and
(8+m)"' ( —2

k)«t„(p,) =(
)

x +e"("")
4'E+

Sec. V) of the same mass. We work in the c.m. frame
where the vector has initial 4-momentum ki(E,kR,) and
initial helicity Xq and the spinor has initial 4-momentum

pi ——(E, —kR,) and helicity ai. The final 4-momenta are

k2 ——(E,M, sin8+kA, cos8)

p2 = (E, Hg —sii18—O'Bg cos8)

with helicities X2 and 0.2. Thus the scattering angle is

«1, (tl, sin8+)4, cos8) =cos8—=s

and, as usual,

The results of the calculation of the helicity ampli-
tudes for 16 diferent combinations of polarization
vectors and. momenta are given in Table II, which
defines the T; used in (6), (9), (17), (22), (24), (25),
(29), and. (30)—(33). Any possible combination of
polarization vectors and momenta can be found by
using Tables I and II and energy-momentum conserva-
tion pi+ki=p2+k2. (In fact, only the first eight
combinations of Table II are necessary; the second
eight are simply added for convenience. )

Once the helicity amplitudes have been found, we
find the parity-conserving helicity amplitudes as
defined in GGLMZ

T, .+=T, ~. , ~(v2 cos-'8) ~ "+&~ (K2 sin-'8) ~"-&~

&(—1)'+" +'))T ), (v2 cos-', 8) ~~ &~

)&(K2 sin-,'8) ) "+&~, (A4)

where X=) —-'„«i=a —-'„and X„=max()g(, )ti)). )) js the
intrinsic parity of the vector, i.e., —1 for the vector
and +1 for the axial vector. For pseldoscalar-vector
scattering we also use (A4), where T, , ;,„,; and T,
are replaced by T„p.,„,p and T,p. „,p so that X=v and
«i =o and the factor (—1)"+" +' is replaced by (—1)~+"".

Finally, the partial waves of de6nite parity are given
by

1

«..."=2 «Lc..'+(s)T.„'+ei.~(s)T...-j, (A5)

where p and ) are defined. as before and the c's are the
polynomials defined in GGLMZ. The unitarity relation
in the elastic region is then

mk
Im«J+= ——~«J+)'.

Sm E
(A6)

Thus to be consistent with the unitarity bound, the
t&~ and the T...+ must not go faster than a constant
for large K

where

cos-', 8 sin-', 8)
X.+e'()('~)')X, =d.,'('( 8)—= ~. (A3)—sin-', 8 cose'8)


