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which completes the demonstration. Hence M ,,2™ (¢; p)
is finite. Let us take note of the last term of (BS), which
increases by a factor of ¢* faster at large ¢* than any
other contribution to M,,®™. The matrix elements of
©,, may be ‘“‘softened”® by adding a finite term,

g
Ez(anav _glﬂ’Dz) (62447, (B15)
to ©,, computed from (3.13) and (3.11).

The computation of matrix elements of ©, which are
also finite, follows the same lines 'as those of ©,,. For

SCHNITZER 3

example, Figs. 1(a)-1(c) contribute to the OPI matrix
elements of © — 2w, with the result from Fig. 1(b)
increasing by a factor of ¢ more than is desirable. The
addition of
4
- ~—~2D2(&2+'f‘r2) (B16)

1

to (3.14) softens the matrix elements of O in this order.
The results of these computations are given in (3.16)—
(3.24), with Eq. (3.27) also reflecting the modification of
O due to (B16).
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We consider the spinor pole in second-order spinor-vector and spinor-axial-vector scattering for all
possible couplings and show that, except for the vector v# coupling, none of the amplitudes factor. There-
fore, only in the case of v* coupling does the spinor lie on a nondegenerate Regge trajectory for all values
of the coupling constant. The degeneracy in the case of the axial-vector y#ys coupling is less than for the
remainder of the couplings. We also consider the axial-vector pole in pseudoscalar-vector scattering and
show that for one particular pseudoscalar-vector-axial-vector coupling, the sense amplitudes factor. These
results are reconciled with the Mandelstam counting procedure, and the effects of gauge invariance and

isospin on factorization are investigated.

I. INTRODUCTION
EVERAL years ago Gell-Mann, Goldberger, Low,

Marx, Singh, and Zachariasen'=® studied the condi- -

tions necessary for an elementary particle to lie on a
Regge trajectory independently of the value of the
coupling constant. They found that two conditions are
necessary: There must exist at least one nonsense
channel, and the perturbation-theory approximations
to the scattering amplitudes must factor. They showed,
by explicitly calculating in second and fourth order,
that the spinor in spinor-vector scattering with a y*
coupling does Reggeize, but that the scalar in scalar-

*This work was supported in part through funds pro-
vided by the Atomic Energy Commission under Contract No.
AT (30-1)2098.
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vector scattering does not Reggeize. Subsequently,
Mandelstam® gave a method for determining to all
orders if a field theory must Reggeize, by counting the
conditions placed on, and the free parameters in, the
relevant partial-wave amplitudes. This counting method
ostensibly is independent of the particular coupling
used and depends only on the spins of the particles; it
requires, however, that the field theory give scattering
amplitudes that are consistent with unitarity. Mandel-
stam showed that indeed spinor-vector scattering must
Reggeize, while scalar-vector need not Reggeize. Re-
cently Abers, Keller, and Teplitz’ showed that if
isotopic spin is added to the y* coupling considered
by GGLMZ, and the vector-vector-vector interaction
of the Yang-Mills field is included as demanded by
gauge invariance, the second-order Born terms continue
to factor.

All this leads to some questions. (1) What about
vector couplings other than y* in spinor-vector scatter-
ing? Mandelstam counting would seem to insist that

6S. Mandelstam, Phys. Rev. 137, 949 (1966). See also, E.
Abers and V. Teplitz, tbid. 158, 1365 (1967).

7E. Abers, R. Keller, and V. Teplitz, Phys. Rev. D 2, 1757
(1970) ; R. Keller, thesis (unpublished).
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these Reggeize also; we can check this by seeing if the
second-order terms factor. These other couplings,
however, are nonrenormalizable and may or may not
yield perturbation-theory amplitudes consistent with
the unitarity bound. If they do (do not) give real phase
shifts in second order, the Mandelstam procedure pre-
dicts that the theory has (has not) a factorizing tra-
jectory to second order. The second-order sense-sense
amplitudes for y* coupling go as 1/E? for large E so that
these other couplings may have worse behavior and yet
still be consistent with unitarity. (To be consistent with
unitarity the amplitudes must go no faster than a
constant.) If unitarity is violated, then factorization
does not necessarily imply Reggeization, but if the am-
plitudes do not factor, they certainly cannot Reggeize.
(2) If the amplitudes violate the unitarity bound, what
is the effect on Mandelstam counting; in particular, can
the counting be generalized by adding an additional
parameter for each subtraction constant that is neces-
sary to make the amplitudes unitary? (3) What about
various couplings in axial-vector-spinor scattering? The
counting is the same as in vector-spinor scattering. In
particular, what about the +y*y® coupling? Current
prejudice is that y#y5 should be as good for axial vector
as v* is for vector. (4) Finally, in view of Ref. 7, what
are the roles of gauge invariance or partial conservation
of axial-vector current (PCAC) in determining whether
a particle Reggeizes? What is the effect of isospin on
factorization of the amplitudes?

We will try to answer these questions by considering
all possible vector and axial-vector couplings and show-
ing that all of them except v* violate the unitarity bound
and that none of them, except v#, factor. As might be
expected, the y#y® coupling comes closest to satisfy-
ing unitarity and we show that only two Regge poles
exist in the coupled three-channel program, one sense-
choosing and one nonsense-choosing. We also consider
the axial-vector pole in pseudoscalar-vector scattering
(or equivalently the vector pole in scalar-vector scat-
tering) and show that, while none of the possible
couplings give amplitudes which are consistent with
unitarity, one of the couplings does give amplitudes
which factor. We then use these results to discuss
Mandelstam counting and the effect of gauge invariance.

In particular we shall see that gauge invariance (or
PCAC) is related to the presence of ancestors. If the
amplitudes are not gauge invariant then in most cases
the partial-wave amplitudes will have terms which go
as 8;,1 (or 81,2, etc.), whereas if they are gauge invariant
(or satisfy PCAC), the sense amplitudes will go as &;,0.
Then if the conditions of GGLMZ are satisfied, the
higher-order corrections must replace the &;0 by
—a/(l—a) and the elementary particle lies on a Regge-
pole trajectory. It should, however, be emphasized that,
as will become apparent, the requirement of factoriza-
tion is already nontrivial in second order.

There are five ways we can couple a vector to two
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spinors of momentum p; and p,; namely, the couplings
Te=nv* g*k,, P* k* and ¢#P,, where k*=(ps—p1)* and
Pr=(p1+ps)*. If the spinors are on the mass shell, then
the five couplings are not independent. In particular,

a(pa)kru(pr) = —iti(p2)o* Pyu(py) 1)

and

(p2) Pru(ps)
= —111(p2)a*ku(pr)+2mi(p2)y*u(pr). (2)

If we use the different couplings to calculate amplitudes
as shown in Fig. 1,

T(T*)= egter”
X[ (s—=m?)1i(pa)Tuly - poty- katm)Tu(p1)
+ (u—-m2)“‘12(172) I(y- pa—v-ki+m) Fu“(Pl)] 3)

(e2* and €y’ are defined in the Appendix), then, for
example, by (2) the amplitude with I'*=P* need not
be equal to the amplitude with —ig#k,+2my* at each
vertex but it must not differ from that amplitude by
more than a polynomial in & and P (a seagull). The
amplitude with v* coupling and the amplitude with
ok, coupling are each gauge invariant. The amplitude
with P* is not gauge invariant and if we add a seagull
to make it gauge invariant then, of course, we may
choose to add precisely the seagull which makes the P#
amplitude equal to the amplitude with the sum of the
other two couplings. In fact, no other reasonable seagull
exists.

The amplitude with %# is zero since e¢-k=0 so the
amplitude with o* P, must be only a polynomial. These
two couplings violate G parity and have been named
second class by Weinberg.8

There are also five axial-vector couplings which are
obtained by multiplying the vector couplings by 7°.
Here we have the relations

— i (p2) ot Pyy®u(py)
=4 (p2)kiy u(pr) —2mi(pa)y v u(ps) (4)
(o) PrySu(pr) = —ii(pa) o™ kv u(pr) . ®)

Now, if we use these couplings to calculate the diagrams

and

8S. Weinberg, Phys. Rev. 112, 1375 (1958).
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in Fig. 1, again the relations between the currents must
hold for the amplitudes except for polynomials. The
amplitude with ~y#y® satisfies PCAC in that if we
replace e* by k* at one vertex the resulting amplitude is
the same as the amplitude for a 2my® coupling at that
vertex. To see this consider

“yry®” amplitude =“y*”’ amplitude

2m 2m
+ ———wy ey e+ ———-’u/y €ry: €t
s—m? u—m?
If we replace €2 by ks, we get
2m m
———u'y kyy- etut ————u‘y ery- kot
s—m? u—m?
since the “y*” amplitude is gauge invariant. The

amplitude with 2my® at one vertex is

2m
—-—u'y5(7 paty-katm)y- erv®u
S— m
2m

+ S ey’ (v-pr—y-ket-m)you,

u—m

which equals the expression above.

The coupling o*’k,v® does not give PCAC since it is
manifestly gauge invariant. Further, it cannot be made
to satisfy PCAC by adding a polynomial since the
PCAC statement involves obtaining an amplitude with
poles from the substitution of k* for e*. The same is true
for the amplitudes with P*y% because, by (4), they are
gauge invariant except for polynomials. The couplings
o¥kyy® and Pry® violate G parity.

We now consider each of these couplings in detail.
The calculations are elementary and will not be shown;
the information necessary to check our results is given
in the Appendix. Unless we specify otherwise, we will
consider all the particles to have the same mass.

II. VECTOR WITH +* COUPLING

This is the case considered by GGLMZ. The relevant
second-order diagrams given in Fig. 1 serve to define
the momenta. The result is

2

T(y#) = ———————(2ey- poTo+ T
(Y ) ( ] k1)2 2( 2 Pz 2 12)
+ & (2 p2Ts~1 ) ©
( ] 2)2 €1°P2L3g——1Lg),

where the ¢* and the T; are given in the Appendix.
gv is the spinor-vector coupling constant. Using the
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Appendix, the helicity amplitudes are given by

gv? 1 /4B gt 1
Tyrb= —— — ———2m——2E> —
—m2V2 —miV2

x[(% —3m)(z—1>—E(1+z>],

gv? JAED
(—- —3E——m)

gv? [2E3
+ 2[—;(14—2) —E(2+33) —mz] ,

u—m*Lm
4E3 6E?
)

+— —— —5E—

Toot=
m? m

gt 1 (SE“
s—m2V2

gv? 1r4E* 2E3
—[—(H-ZH‘ —‘(H—z)
u—m2v2

™

2E?
— —(2+433)—E(3+42) +m] ,
m

g 2
= (54m),

u—m

T—l.o+=

" L m)
VAR

T 11t=
u—m?

—gy? 1 /2F?
A TEm)
u—m?v2

One may find the T— amplitudes from the T% by
changing the sign of E everywhere. This is MacDowell
symmetry.

For large 3=cosf, the amplitudes in (7) become

Toaat=

gV
Tiqat= (E+m)+0(zY),
2\/_ k2 2E—m
gV2 1
Ty,0t= (E+m)+0(z™),
2 k2 2E—m
gv2 1
To,ot= (E+m)+0(=z),
\/2- k2 2E—m
®)
gt 1 1
T-16"=——(E+m)-+0(="),
2 k? P
. gvt 1(E+ )1 o)
Tyt = — —(E+m)- +0(z7),
Y PR
. gv2 12E—m &+ ) 06,
Ty, 4T= m 7
VTR m
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The amplitudes in (8) check with the results of GGLMZ —ga? /2E?

and obviously factor for all E. That is, the matrix of T —1,0"= 2<—‘ -E—m),
coefficients of 2° for sense amplitudes and of z! for UM m
sense-nonsense and nonsense-nonsense amplitudes has

vanishing determinants and its minors have a vanishing —g42 1

determinant; GGLMZ explain in detail this requirement 7'y ;¥= —(E—m),

and the sense-nonsense choice. Notice that the sense- u—m*V2

sense amplitudes each go as 1/E? as E gets large. This

is because of a delicate cancellation of the large powers —ga? 1 /2E2

of E between the s- and #-channel contributions; the 7, += __<__ +E— 3m>
s- and #-channel contributions separately go as E° for u—m?v2

T:.1t, as E'for Ty ¢t and as E? for T ¢t. By considering
the 27! terms it is easily seen that all of the higher
partial waves in second order grow no faster than a
constant as E gets large and thus are consistent with
the unitarity bound.

Expanding (10) for large z,

—ga?
Tyit= (—8E24-3Em~+5m*)+0(z71),

III. AXIAL VECTOR WITH g4v*y® COUPLING 2V2k2 2E—m

We evaluate the diagrams in Fig. 1 where the wavy
lines are axial vectors instead of vectors. The amplitude —ga? 1
here is the same as that of vector v* coupling plus T10t= —(—4E*+Em~+3m?)+0(z71),
additional terms proportional to 2m, 2k m

84*
T(ry)= —————— —ga® 1
(prtk1)2—m? To,¢t= —(—8E*+-4E*m
2V2k* m?
X (2eg: poTo+T1o—4dmey - e2T1+2mTs)
gu? +6Em?—2m3)+0(z"1), (11)
4

————————2e1 p2T5—T5—2mTs), (9)
(p1—h2)?—m? ga% 1

1
42 2_ 2 —2
where g4 is the spinor-axial-vector coupling constant. Tor k2 m(ZE Em—m?) Z+O(z )

Using the Appendix, we find

+ 8 42 4E? 8 Az 1 g4 2
= s—m? 6<—m— +6E+2m)+ T Toit= 2\/_k2(E m)— +0G™),
2E?
X[(—— —m)(z—l) —EQ +z):| , 0t 1
" Tyt = ———QE+Em— 3m2> +0(z?).
- ga? /AES AR? i 2V2k* m
He s—m2< m? m m>
These do not factor and further T',¢" goes as E for
n ga® [2E? 1 2E? 1 large E, and thus (f,0t)7=1/2 violates the unitarity
"— m“’[——( +2)— —~( +2) bound. The cancellation of the high powers of E between
the s- and #-channel contributions that occurred in the
—EQ2+2)+m(2+7) |, vector y* case only partially occurs in the 2 terms and
unitarity is violated. The higher partial waves (7>>%),
To e ga? 1 <8E4 N 4E3 6E? At > (10) however, are consistent with unitarity; they come only
0.0 — 2V e " m from the.u channel and therefore do not depend on a
cancellation.
g4 i[g(1+ - g’:_ (1+ ) The amplitudes would be consistent with unitarity if
—m2 VD g g we could get rid of the 2 terms in (9). We can accom-

B2 plish this by considering the axial vector and the spinor
— (e 44)+E(G+49)+ 3mj|, to have different masses and putting the spinor mass
m equal to zero. Then (9) is the same as the y* case found
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from GGLMZ and MacDowell symmetry,

ga® E
Tyit= (E—w)*+0(71),
2V2k? E+4w
ga® E
Tit=— ME—w)+0@™),
2k? E+w
2
Ty it = o N0,
V2k? E4+w
(12)
_gA2 1
T_1_0+ = EN— +0(Z—2) ,
2k 3
T ot _gAZE(E )1 +0(z?)
-1, = —_—Ww)— )
' 2V2k2 2z
g4’ 1
-1 = E(E4w)-+40(z7%),
2V2k? z

where » and M are the axial-vector energy and mass.
The y*y® amplitudes do factor when m=0. It is not
true, however, that this factorization is because the
axial-vector current is conserved and the amplitude is
gauge invariant. We have examples of gauge-invariant
couplings where the amplitudes do not factor (¢#,) and
of couplings where the amplitudes are not gauge
invariant but do factor (see below).

If the spinor mass is 7ot equal to zero, Egs. (11) do
not factor and thus the elementary particle does not
turn into one Regge pole. The determinant of (11) is
zero, however, indicating that the particle turns into
two (not three) trajectories, one of which chooses sense
at =0 and one of which chooses nonsense. We can write
these two Regge poles as

o 1E(E) | 2a(E)B(B,(E)
T I—a(E) I—a(E)
Laptt _ CaBEyn(E)  Y-1(E)B.E) 13)
O+2)]2  I1—a(E) l—a(E)
Bt TGN g O CON
- I—a(E) I—a(E) ’

where « and » equal 1 or 0, and where 7, and {_; are the
residues for the nonsense-choosing trajectory. Then
from (11) we find®

9Tt is interesting to notice that this solution does not satisfy
the conditions for nontrivial evasion. See E. Abers, M. Cassandro,
I. Muzinich, and V. Teplitz, Phys. Rev. 170, 1331 (1968).
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Om

7 E_m 1/2< 1/2
al? A( 2\/Zk2> 2E—m> ’
N0 E_m 1/2 2 1/2
a2 =gA(zv2k2) (Z(ZE_MD ’ (1‘.1)
E—m\'?(2E—m\'/*
-
2V2k2 2m

E—m\1/?
B1= ( ) ’
1=84 VB

and

E/E—m\1/?
= \/2—( ) , (15)
Bo=ga m\ V22
E—m\?
e ﬁ( ) .
=

Now we can try to add isotopic spin to this theory.
If the axial vector has isospin 1 and the spinor has
isospin %, then the s-channel contributions in (10) are
multiplied by 747, and the u-channel contributions
in (10) are multiplied by 7.7, where the 7 are the usual
SU(2) generators and satisfy 7,744 757a=20845. If we
assume there is a vector in the theory (we assume it
couples to the spinor by y*), then there is an additional
contribution to the amplitude from exchanging the
vector in the ¢ channel. The vector-axial-vector-axial-
vector coupling must be

gier- ea(kitko)+ga(ka- eaer?+ko-ere0¥),  (16)

where g; and g» are here arbitrary coupling constants.
The t-channel contribution is (r57s—7a7s) T, Where
Tt is given by

Tt=({t—m?) " g1gv2e1- €214
+gzgv(k1- YL Y20 61T3):| . (17)

The helicity amplitudes are

Typt= 20 i{ [(m— g—lf>(1+z)
H t—m?V2 & m

—-E(1+z):|+g22<£; —m)(l—z)} )
(- Z oo

—m? m?

- %2(1 —z):|+82|:<E“ ;En—:>(1 +2)

- Z-rs o]

T1t=
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gv 1 4E* 2E3
To,ott= = {gll:-——(l—z)— ——-(l—z)

2E?

-@3 —z)+2E]+g2(1—z)
m

m?:  2m
gv 1 2E?
Toaa*= —{gl[— — -I-E-i-m:l
t—m2V2 m
E2
+gz|:— - +m:” )
m
gv &1 2F?
Toyatt= ———[— = +E+m] (18)
m2 V2 m

To make the higher partial waves consistent with
unitarity, we need to take gs/gi=—2 (see T1,0 and
T-1,0).

Further, by comparing (18) with (10), each multiplied
by the proper isospin factors, we see that the first
partial wave comes closest to being consistent with
unitarity when (gi+g2)gv =g4% Thus we take gogy =2g4®
and gigv=—g4% This is an interesting result because
it means that the vector-axial-vector-axial-vector
interaction derived by considering unitarity is the same,
except for an over-all factor of ga/gv, as the vector-
vector-vector interaction required by gauge invariance
in spinor-vector scattering.’

Expanding (18) for large 3, we have

ga? 2E?
Tyt = e — — —E+3m )40z,
m
ga’( 2EP , _
T1ott= —2-k—2 i +3E=m |+0(z"),
m&
gat/ 2E* Eb 3B
Toot= <— —+—+— —2E>+O(z~1) ’
V2k? md  m? m
) . (19)
Toaitt= " (B=m)= 0,
T——l,ll+= _:/—k2(E m) +0(2_2))
g4® (2E 1 _
Ty qtt= — —E—m 40 7).
2V2k? b4
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The total amplitude has both 7=% and I=% parts.
If we call the s-channel contribution 747,7° and the
u-channel contribution 7,7,7%, then the /=% part is

_Tu+4Tt
and the =% part is
2T%—2T".

Then from (10) and (18) or (19) we find that the
I'=$% amplitudes are

v
T12**=g4 "(E m)+0(z™),

2 E
Ty, =ga*—(E—m)— +0(z™"),
k? m

2V2 E?
To,0*?=gu>—(E—m)— +0(z"),
k? m?
(20)
2 E1
T_1,0*?=ga*—(E—m)—~+0(z"%),
k? m g

V2 1
T 1’ =ga™—(E—m)- +0(z™%),
k? 3

\/—
Ty, 1*?=ga —(E M) +0( 9.

These amplitudes factor giving a nonsense-choosing
trajectory with residues precisely equal to (15). The
I'=% amplitudes are

ga*> 1
T1.12= E—m)(8E+23 O(z!
1,1 2\/2_k22E—m( )( m)+ (1),
ga® 1
T1,0'*= — —(E—m)(4E+9m)+0(z™Y),
2k m
ga* 1
Tt 2= —(E—m)(8E2+12Em —6m?)

2V2km
+0G™), (21)
21

ga r
Tyl = e —(E—m)(=2E+3m)- +0(),
2k2% m z

T_1.11/2=
2

™),

g4®
V2R m

1
T _1%2= —(E—m) (6E+m) +0(z72).
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These do not factor but, as in the case without
isotopic spin, the determinant of the amplitudes is zero
indicating that we again have two trajectories—not
three. Here the nonsense-choosing trajectory has
residues equal to (15) while the sense-choosing trajec-
tory has residues equal to V3 times the residues given
by (14).

This, together with Ref. 7, leads us to speculate that
the addition of isospin in a Yang-Mills theory does not
change the factorization properties of the theory.

If factorization is used as a basis for choosing
couplings, then Ref. 7 shows that the vector-vector-
vector interaction (in the presence of isospin) should be

—iéijkgvtél'éz(k1+k2)'e3

—-261'k2€2' 63-—262'k1€1’ 63] 5 (22)
where gyy*7i/2 is the vector-spinor coupling, and %,
and &, are the momenta of vector No. 1 incoming and
vector No. 2 outgoing, respectively. The indices 7, 7,
and % give the isospin of particles 1, 2, and 3. Similarly
we have shown here that with isospin the vector-axial-
vector-axial-vector coupling should be

—ieii(ga?/gv)Ler ex(katka) - ev
—Zél'kgez' ev—2€2'k161' eV] (23)

if gay*y®7i/2 is the axial-vector-spinor coupling. This is
the same as the vector-vector-vector coupling except
for the over-all factor g4/gv.

IV. OTHER VECTOR AND AXIAL-VECTOR
COUPLINGS

A, Vector +* Coupling with m;=m,

Consider the diagrams of Fig. 1 but where all the
external particles have mass m; while the intermediate
particle has mass m,. This case is the same as the axial-
vector v*y® coupling except that the pole is at m, and
the 2m in (9) is replaced by #1—m,. It does not factor
and T, violates unitarity. Of course it is not gauge
invariant.

B. Vector with gy (ie*”/m)k, Coupling

The scattering amplitude is

8V2 261 . Pl 2
( T+ _Tls)

s—m2\ m? m

T(o*’k,) =

gV2 2e P 2 gV2
( : iT13+ —T16)+ —2(T s—7T12), (24)
: m

u—m2\ m? m
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which gives the helicity amplitudes

gvt 1

2VZk? md 2E—m
+8E*m?—21Em*—m®)+0(z1),

—g*1l 1

2% m?2E—m

X (4EA =5 E*m+ Emd+2m*) +0(zY) ,

—-gv:1l 1

Toot= —
2k m 2E—m

Tyit= (—16E5—8E*m-+36E*m?

Tl,o =

EXE—m)+0(z),

—gt 1

2k% m?

T 16t=
. (25)
X (2E*— E*m—3Em*+2m3)- +0(z?),
—gv? 1 i
2V2k2 m?
X (4E34-2E*m—5SEm? —ms)1 4+0(z?),
—gv 1 #

2V2k2 m?
1

X (—8E4+10Em? — Emd—mb)— +0(z-2).
b4

T—l,1+=

T_y1t=

The sense-sense amplitudes factor at the pole 2E=m
as they must but do not factor along the trajectory as
we can see by setting E=0. In addition there is no
cancellation of large powers of E of the type we saw in
the vector y* case. Thus none of the helicity amplitudes,
except To,0, are consistent with unitarity. The higher-
order partial waves are only consistent with unitarity
for the sense-sense amplitudes.

The determinant of the amplitudes in (25) is not zero
(again this can be easily checked by putting E=0). Thus
this coupling does not satisfy a two-trajectory theory of
the type we found for y*y5.

C. Axial Vector with (—ig40*/m)k,~5

This coupling is manifestly gauge invariant and so
cannot be made to satisfy PCAC. It differs from the
vector ¢#k, by terms proportional to 2,

T(o*"k,y5) = —T(o*"k,)
2 gAz 2 g42
+— T+ —

m s—m? m u—m?

Ts. (26)

As was the case for T'(c#%,), the amplitudes are not
consistent with unitarity and do not factor. Further,
the higher partial waves are not consistent with
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unitarity for the sense-nonsense and nonsense-nonsense
amplitudes. Also the determinant of the amplitudes is
not zero.

D. Vector Coupling gy P*
The amplitude is

261 . (2P1+k1) €2° (2P2+k2)

T(P+)=gv (it 19
s—m?
*(2pa—ki) e (2p1—ks)
g C TR Ol )y )
u—m?

A new feature enters here. The helicity amplitudes,
expanded for large z, have terms linear in z in the sense-
sense amplitudes and terms which go as a constant in
the sense-nonsense and nonsense-nonsense amplitudes.
These indicate the presence of an ancestor at J~1.
[51,1z (1 —a1)/(l—a1), and 51,0’*’-’ —ao/(l—ao).] Using
Eq. (AS5) of the Appendix for the partial-wave projec-
tions,! we find

gv?/2E? gl 1
hatt= _<—‘- —E—3m)5l.1+ o

6 \m 2 mE—m
X(—8E3416 E*m—2Em?—3m?) 61,0,
—gvz E 2E2 gV2 E 1
ot = —‘(— —E—3M>5z,1+ —_—
3V2 m\m 6V2Z m2 E—m
X(—=8EH-4E*m~+-22Em*—21m3) 61,9,
gv? E2/2E>
lo,ol = —“"—<—— —E—3m)5l.1
3 m*\ m
gV2 1 E? 51,0

— ———(52E4—52E3m
3 2E—mm* E—m

—T3E*m*+82Em®—6m?),

1o vt E/2E?
el g———<— —E—sm)az,1

(28)

L2 /6 m\ m
gv* E
- E=3m s,
—m
ARl gv2<2E2 )
=—|— —E—3m |oi1
iz 2V3\ m
gv? 1
- Q#Z— E-*—(4E2—-6Em+3m2)Q;_1 ,
—m
gvi/2E? gl 1
g at=———E-3m )11+ ———ro
2\m 8 m E—m

X (8E3—8E2m—10Em*+9m*) Q11

10 The equations for the partial-wave projections in GGLMZ
have two crucial misprints. In Eq. (2.16) the coefficient of P;_;
should be /42 instead of /4-1 and in Eq. (A13) the coefficient of
the operator A_ should be L(L+142\)%/(2L+1).
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where

1 P,
Qt—1(z0)=_%/ s L (z).

-1 Z2—230

(29)

These partial waves and all the higher partial waves
violate the unitarity bound badly. Nevertheless we see
from (28) the /=1 ancestor does factor. The [~0 ampli-
tudes do not factor nor is their determinant zero.

Of course the P* coupling is not gauge invariant. If
we add a seagull to make it gauge invariant then, as we
discussed before, we have simply a —ig#k,+2my*
coupling. The seagull can be written in several equiva-
lent ways,

gV’ —4mer- exiiu—2es- (p1+po)itry - exu
Fiby - exy-kyy- exu—ily - exy-kry- eau]
=gy —dmey- exiin—2e1- (p1+ pa)ity - exus
Fiby - exy-key - etu—ily - exy-kyy- ]
=gv2[—4me1 - egtlit—2e1 Pty €2 —2es- Pty et
Ty exy-kyy-eu—aity-exry-kry-eu].  (30)

The first form is convenient to use when we are checking
gauge invariance by replacing €, by k¢ and the second
form is convenient when we replace e;* by kq*. The
third form is most convenient for evaluating the
helicity amplitudes. Writing it in terms of the T

gv’L—4mer- eT1—2e1- p1T3—2er p1To+T1o—Ts]. (31)

The total gauge-invariant amplitude is (27) plus (31).
This does not have an /=1 ancestor. The I~0 terms
are very messy and do not factor.

At this point, one may conjecture that the role of
gauge invariance is in eliminating ancestors from the
amplitudes. This turns out to be true in all the cases,
without zero-mass particles, that we have checked.
With the freedom to add zero-mass particles, any
theory may be made gauge invariant (in the sense of the
substitution e,— %, yielding zero) without altering the
original scattering amplitude.

E. Axial Vector with g4 P“y% Coupling
The amplitude is

L& QprtR)e (2prrths)
T

4

T(Pry%)=—ga

s—m?

<2pe—k) e 2p—k
+g4261 Pa—ki)e ( D1 2)T4. 32)

u—m?

Like the vector P* case the helicity amplitudes have an
I~1 ancestor which factors. The /~0 partial wave does
not factor and neither the /~1 nor the /~0 amplitudes
are consistent with unitarity.

This theory does not satisfy PCAC nor is it gauge
invariant. It can be made gauge invariant by adding
the seagull which makes it equal to the amplitude with
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o*k,y® coupling. This again shows that if two sets of
amplitudes differ by a seagull, then the set which has
PCAC or gauge invariance is the one without ancestors.

The amplitudes could also be made gauge invariant
and thus the ancestor could be removed by adding to
(32) the interaction

e (prtpa)ea- (p1tp2)
2g42 T4.
kv (prt-p2)

The resulting amplitudes at /~0 and all higher partial
waves violate the unitarity bound, yet the amplitudes
at I~0 do factor. This probably has no meaning. It is
not clear what kind of an interaction (33) represents.
(There is a pole at s=u.) Further, the term (33) plus
an e-ex seagull also makes the amplitudes with P
coupling gauge invariant, but they do not factor.

(33)

F. Vector with gyk* or —gy (i/m)e* P, Coupling

Because €1-ki=e€2-k2=0, the amplitudes with k#
coupling is zero. Then, because of the relationship
between k* and o’ P,, the amplitude with ¢# P, can only
be a polynomial. We can explicitly check that it is
given by

7 gv?
T(— —a“”Py) =——2e: paT2+2e1- poTs
m m?

- 4mel . €2T1+ T12 - Ts] . (34)

The amplitude has an /~1 part which does not factor
and an /~0 part which does not factor either. Of course
it is not gauge invariant.

G. Axial Vector with (—i/m)o**P,x® Coupling

Since the k#y® coupling gives zero, the amplitude with
(—i/m)o* Pyy® can only differ from the amplitude with
y*y® coupling by a polynomial. We find

-1 12g42
T (—‘—O"‘"'P /75) =— RY A
m m

2
+ %[262'P2T2+261'P2T3+T12——T8:|
m

4gA2
[—4mer- eeT1+2¢er poTa+T1o+2mT5]

4g,12

+

s—m?

+ (35)

2[261 . Psz— Ts - 2mT5:| .
u—m

This has an ancestor at /~1 due to the polynomial.
Neither the ancestor nor the /~0 part factors and both
violate the unitarity bound. Also this does not satisfy
PCAC. To obtain PCAC one would drop the polynomial
and have the y#y® amplitudes.
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V. PSEUDOSCALAR-VECTOR SCATTERING

The pseudoscalar pole in pseudoscalar-vector scat-
tering has been considered in detail by GGLSZ. They
find that the amplitudes do not factor, indicating that
the scalar does not Reggeize. Since the amplitudes are
unitary, Mandelstam counting can be used and shows
that the scalar need not Reggeize. We now want to
consider the axial-vector pole in pseudoscalar-vector
scattering (or equivalently the vector pole in scalar-
vector scattering). The relevant diagrams are shown in
Fig. 2. We can couple a pseudoscalar of momentum a
vector of momentum % and polarization ", and an axial
vector of momentum p-+% and polarization €4 in two
independent ways; either gavpe”-e4 or havpe” - pet-k.
Using gavpe’-e4 in Fig. 2, we get

gavp?
T(e"-e)= e’ e’
s—m?

1
— —e" (p1tki)e”- (P2+k2):|
m?

gAVP2
+ €1V' €2V
u—m?

1
- —2€1V' (p2—ki)es” - (Pl“‘kz)] . (36)
m

This amplitude is not gauge invariant and further, since
the gauge-dependent part involves poles, cannot be
made gauge invariant by adding a seagull. The sense-
sense helicity amplitudes do factor,!!

gavp? 4E*—3m?

Tuiti= e ——— o,
_ 8avP*4E*—3m? E
Ty gHi= o (37)
. 84avP*4E?—3m? E2?
Togtim— — gy
s—m?  2m? 2

Both T1,0 and T, violate unitarity. If a nonsense
channel can be found which maintains the factorization,
then this is an excellent example of a case which is not
consistent with the unitarity bound but still factors.
We suggest that the nonsense channel is the channel
with one axial vector and two vectors. The sense-
nonsense and nonsense-nonsense amplitudes then
correspond to diagrams like Fig. 3. We have not
computed these.

A similar situation arises in considering the Reggeiza-

1 This factorization does not depend on particles having equal
mass. The amplitudes continue to factor when the pseudoscalar,
vector, and axial-vector masses are unequal.
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tion of the vector in spinor-antispinor scattering.® In this
case the sense-sense residues are of order &;; in the
coupling constant, the sense-nonsense residues are of
order g% but the nonsense-nonsense residues are of
order gb not g% because no tree diagram exists. Thus
the powers of the coupling constant preclude
factorization.

If we use the other coupling, €”:pe4-k, in the
diagrams of Fig. 2, we find

T(eV-ped k)

€V prea’ - pol
=hAVP2—_‘2-_I:k1'k2
S—m

eV paes’ - p1

u—m?

1
- _;kl - (krt-p1)ks- (k2+P2)j]+hA vp?
m

1
X[:kl‘k2_ —2k1' (pa—rk1)ks- (Pl—'kz):l . (38)
m

This is not gauge invariant. The helicity amplitudes are
not unitary and have ancestors at /~3 and /~2. The
ancestor at /~3 factors but the /~2 and /~1 amplitudes
do not factor.

We can combine the two couplings into a gauge-
invariant coupling, f(e”-etk-p—eV-pet-k). The
amplitude is
T(e"-edk-p—e - pet-k)

=[f/(s—m*)J[e1” - &2 k1" prka- po

Fe1V preaV - papa-ko—erV - prea¥ - papi-ks
—'EIV'kgézV'ngl‘?l""€1V'P1€2V'klp2'k2]
LY (w—m?) ] e1" - e2Vk1- poka- p1
Fe1V - poes¥ - prki-ka—er - poea’ - kipr- ko
—e1V kaerV - pipa-ki—mlerV - paea¥ - p1]. (39)
The resulting helicity amplitudes do not factor and

violate unitarity, but the ancestors present when we
considered the coupling €V-pe4-k alone have been

V(ks, €¥)
\ /‘/.V(kq,e\’)
N

/S A (P +ki,€4) N
A~ Rr(py)
7 m(p2) \\
V(kz,ég)

/7 Alpy-kz,€?) N
¥ R\77'“"1)

/
7 1 (p2) ~

F1c. 2. Axial-vector pole in pseudoscalar-vector scattering.
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———— .
4 T A T A
(b)

Fic. 3. (a) Example of a sense-nonsense amplitude with an
axial-vector pole. (b) Example of a nonsense-nonsense amplitude
with an axial-vector pole.

canceled. This shows once again that the role of gauge
invariance is to eliminate ancestors. This can also be
seen by considering the scalar pole in scalar-vector
scattering and working in the ¢-£=0 gauge rather than
the GGLSZ gauge. There, adding the seagull which
makes the amplitude gauge invariant, cancels an
ancestor which arises from the # channel, but the
seagull does not help with factorization.

If we require the absence of nonsense-choosing, I=1,
I=0or 2 trajectories, factorization indicates the pseudo-
scalar-vector-axial-vector coupling is purely S wave,

(40)

where g4vp is arbitrary. The axial-vector-pole ampli-
tudes in pseudoscalar-vector scattering with the
coupling (40) continue to factor if the masses are un-
equal. Also if the pseudoscalar, vector, and axial vector
are each isovectors and we add a diagram with vector
exchange in the ¢ channel, the amplitudes continue to
factor as in (37). In this case g4vp is no longer arbitrary
but is given by

gAvpeA ¥ y

(41)

where the pseudoscalar-pseudoscalar-vector coupling is
fvepe¥ - (p1+p2)ieir and the vector-vector-vector ver-
tex is given by (22). The mass of the axial-vector meson
is MA.

Thus we can use this coupling to discuss the decay
A1— p+w. In A, decay the probability that the pion
makes an angle 6 with respect to the direction of the 4,
polarization is proportional to!2:13

gave=2m4’fvppgv,

(mv?/ma?)gr? sin?6+g.? cos?, (42)

12§, Brown and G. West, Phys. Rev. 180, 1613 (1969).

1 J. Ballam, A. D. Brody, G. B. Chadwick, D. Fries, Z. G. T.
Guiragossidn, W. B. Johnson, R. R. Larsen, D. W. G. S. Leith,
F. Martin, M. Perl, E. Pickup, and T. H. Tan, Phys. Rev.
Letters 21, 934 (1968).
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where my is the vector (p) mass. For m42=2my and
m,2=0, the coupling (40) predicts

lgr/go| =%. (43)

This ratio has been measured to be 0.8040.15.12:13 If
we go further and use relation (41) with the value!4

ngVm.-/47l' =2.5 y

we can calculate the total decay width for 4;— p+m.
We find T'(4;:— pr)~1400 MeV, which is obviously
much too large; the experimental width is around 100
MeV, and even the naive current-algebra result is only
800 MeV.15

We do not mean to imply that the €”-e4 coupling is
the only one which factors. In particular, a combination
of the €"-e4 coupling and the €"-edk-p—eV-ped -k
coupling, namely, €”-e4k- (p+k)—eV- (p4k)et -k, also
factors in the absence of isospin. Both the s and #
channel poles are separately gauge-invariant. If we add
isospin and a vector particle in the ¢ channel with a
coupling given by (22), the resulting amplitude is not
gauge invariant because the f channel pole is not gauge
invariant by itself. We can recapture gauge invariance
by adding a seagull—e;"- ;7 with the same coefficient
as the ¢ channel pole. Then the seagull exactly cancels the
largest power of z from the ¢ channel pole and the 7=1
amplitude is simply two times the s-channel pole ampli-
tude plus the #-channel pole amplitude. This factors.
The 7 =0 and =2 amplitudes are proportional to the
u-channel pole amplitude. This also factors, choosing
nonsense. But now we cannot require that the /=0 and
I=2 amplitudes be free of trajectories. Thus we have
no method of determining g4vp and we cannot calculate
the A;pm decay width for this case.

VI. CONCLUSIONS

Except for v* no vector-spinor or axial-vector-spinor
coupling is consistent with unitarity. If we include all
the higher partial waves, y*y® is the only coupling which
violates the unitarity bound a finite number of times.
Thus it is not surprising that y*y® is the only other
coupling that comes close to Reggeizing, requiring two

D. A. DICUS AND V. L. TEPLITZ 3

moving poles rather than one. Mandelstam counting
for vector-spinor or axial-vector-spinor scattering
counts an excess of three conditions over the number of
parameters necessary to specify the theory. If the
counting could be generalized to theories which are not
consistent with unitarity by adding a parameter for each
subtraction constant necessary to make the theory
consistent with unitarity, then the y#y5 case would still
have an excess of two conditions. (No other case would
have an excess of conditions, even if we only count the
violations in the lowest-order partial wave.) Since y#y®
coupling does not lead to amplitudes which factor, this
generalization of Mandelstam counting cannot be
correct. Any violation of the unitarity bound seems to
invalidate the counting procedure.

The axial-vector pole in pseudoscalar-vector scatter-
ing is an example where the sense-sense amplitudes
factor for one of the possible couplings but where the
j=1 and all higher partial waves violate the unitarity
bound. It would be interesting to know if factorization
also holds when the sense-nonsense and nonsense-
nonsense amplitudes are included.

As has been emphasized in Secs. IV and V, the role of
gauge invariance seems to be to eliminate ancestors.
There are many gauge-invariant couplings that do not
factor and one coupling (e4-¢¥ in the pseudoscalar—
vector-axial-vector case) which factors but is not gauge
invariant. The addition of isospin through a Yang-Mills
theory does not seem to affect factorization if the
couplings of the Yang-Mills fields are properly chosen.
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APPENDIX

We study the elastic scattering of a vector or axial-
vector particle of mass 7 with a spinor (or scalar as in

TaBLE L. Values of the invariants that depend on the polarization vectors are listed for projections of the polarization vectors. The
first of the two numbers at the top of each column refers to the projection of e; [ =e(k2)] while the second number gives the projection

of e [=e(kr)]

1,1 1,0 0,0 —~1,0 —-1,1 —1,—1
€1+ € —3(1+4-cos8) —2712(E /m) sing (1/m?) (k2— E? cosB) 2712(E /m) sing % (cos—1) —%(14-cosb)
€-P1 0 2kE/m 2kE/m 2kE/m 0 0
e pa 0 0 2kE/m 0 0 0
€1 P2 — 2712 sing k(E/m) (14-cosb) k(E/m) (14cosb) k(E/m) (1+cosb) — 2712 sing 27172k sing
€ P1 27172 sing 27112 sing k(E/m) (14-cos) — 2712 sing — 27112 ging — 27112k sing
€1k 271/2); sin@ k(E/m) (1—cosb) k(E/m)(1—cosf) k(E/m) (1—cosd) 2712% sing — 2712} sing
e by — 27112 sing — 2712 sing k(E/m) (1—cos8) 2712 sing 27112k sing 27112k sing

1 J, J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

15D, Geffen, Phys. Rev. Letters 19, 770 (1967); B. Renner, Phys. Letters 21, 453 (1966).
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Sec. V) of the same mass. We work in the c.m. frame
where the vector has initial 4-momentum &;(E,k7,) and
initial helicity \; and the spinor has initial 4-momentum
p1=(E, —k#,) and helicity o;. The final 4-momenta are

ko= (E,kfi, sinf+k#, cos)
and
pa=(E, —kfi, sind—k#, cosh)

with helicities Ay and o2. Thus the scattering angle is
A+ (A sSinf-+74, cosd) =cosf=2z

and, as usual,

§= (P1+k1)2=4E2
and
nu= (Pl—k2 2= —2k2(1+z) .

Our metric is such that k?=E?—k?=m? and our vy
matrices make the Dirac equation (y-p—m)u(p)=0.

We denote the helicity amplitudes T, e5;,,0, Where
our T is (minus) the quantity M of GGLMZ. In
particular, if we define f=m/8rE then, for each
collection of helicities,

do/dQ= f]2.

For the 12 independent helicity amplitudes, we
choose T1313 T-1413 T-15-11 Tig03 Toa-g03
and To,30,1 for the ones which are even under parity
and time reversal and 73,413, T1-413 T1-3-1.4
T-1304 T130,3 and To_j;0,3 for those which are odd
under parity and time reversal. To calculate these
amplitudes, we use the polarization vectors

€= —)q(l/\/?)('ﬁx-l-i)\lﬁy) s M==1
q"=(1/m)(k,Eﬁz) , A=0
eo* = — (\g/V2) (A, cosO—7, Sin0—iNofly) , Ne==1
eo* = (1/m) (k,Eft, sin6-+E#, cosb) , Ae=0
such that e;-ki=ey-k2=0. (Other products of the

polarization vectors with the various momenta are
found in Table 1.) We define our spinors as

E—l—m)” 2 ( 1 )X
(P 1)—(W 2oik)(EAm))

and (A2)

E+m>ll2 o 12)(1 -—20’2k>
U =\ X ¢ Feil (o ) )
(72 ( om i E+m

(A1)
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where

cosif

‘ sinzd
X Fei ouIDX, =d, 112 —6) =( ) (A3)

—sin3f cosif

The results of the calculation of the helicity ampli-
tudes for 16 different combinations of polarization
vectors and momenta are given in Table II, which
defines the T'; used in (6), (9), (17), (22), (24), (25),
(29), and (30)-(33). Any possible combination of
polarization vectors and momenta can be found by
using Tables I and II and energy-momentum conserva-
tion p1+ki=p.+ks. (In fact, only the first eight
combinations of Table II are necessary; the second
eight are simply added for convenience.)

Once the helicity amplitudes have been found, we
find the parity-conserving helicity amplitudes as
defined in GGLMZ

Tost=T4.3v3V2 cosi0) 1M ul (V2 sing) 1Al
£ (=DMMHIT_, 3 (V2 cosz) 1wl
X (V2 sinf)~IMul - (A4)
where A\=v—%, u=0—1%, and N\,,=max(|\[,|x|). 5 is the
intrinsic parity of the vector, i.e., —1 for the vector
and +1 for the axial vector. For pseudoscalar-vector
scattering we also use (A4), where Ty v and Ty 1,
are replaced by Ty,0;5,0 and T—,,0,5,0 S0 that A=» and
=0 and the factor (— 1)+ g replaced by (—1)Mn,
Finally, the partial waves of definite parity are given
by

1 .
t,,y.fi =%/‘ dZ[C)\“‘H_(Z)Ty,pi‘i_C)\yj—(Z)Tv,v*_—_l y (AS)

-1

where u and \ are defined as before and the ¢’s are the
polynomials defined in GGLMZ. The unitarity relation
in the elastic region is then

m k
Impit= g——ltfilz.
T

(A6)

Thus to be consistent with the unitarity bound, the
#%£ and the T',,* must not go faster than a constant
for large E.



