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We have calculated the decay rate and photon energy spectrum for the decay mode Ei,' —+ 7r+z. m-'y.

Neglecting small CP-violating eRects, we have related the E1. amplitude for EI,'~ 7r+m 7r'y to the ampli-
tude for EJ. ~ ~ pp using current algebra and the hypothesis of a partially conserved axial-vector current.
We haVe fOund fOr the branChing ratiO I'(EL,' —+ 7r+7r 7r'y)/I'(EL, —+ 7r'yy) =0.16 jq. USing the preSent
experimental upper limit on EI,' —& m'yy we estimate F (EI,'~ 7r+7r 7r'y)/I'(El, ' —+ all) &3.7&(10 . We
have also determined the same branching ratio based on the p-dominance model, and we find good agreement
with the corresponding result of current algebra.

I. INTRODUCTION

~ VER the last few years, the techniques of current
albegra have been successful in describing various

meson decays. ' In particula, r, the radiative decays
g ~ ~+~ y, g ~ vr+7r z y, and El. ~ vr+7r y have been
studied, ' and the current-algebra predictions are in

good agreement with experiment. '
During the same time, there has also been a number

of studies of these radiative decays based on vector-
meson dominance. 4 In all cases there has been fairly
good agreement with the results of current algebra.
This rather remarkable agreement has led to further
investigations' into the possibility of a general equiv-
alence between current algebra and vector-meson
dominance.

In this paper we shall study the radiative nonleptonic
decay

+1 ~7l X 7r Q o (1)

This decay along with the other radiative decays of EL,'
are of interest since they involve electromagnetic
interactions which have been suggested as a possible
source of CI' violation. ' In looking for CI' violation in

'For a comprehensive review see, e.g. , S. L. Adler and R.
Dashen, CNrrent Algebra and Applications to Particle Physics
(Benjamin, New York, 1968).

2g —+ 7r+7r y: J. Pasupathy and R. E. Marshak, Phys. Rev.
Letters 1'7, 888 (1966); M. Ademello and R. Gatto, Nuovo
Cimento 44A, 282 (1966). These authors predict the branching
ratio 1 (q —+ 7r+~ y)/1'(g —+ 7y) =0.19. q —+ m-+7r m'p. For the E1
transition there have been two calculations, A. Q. Sarker, Phys.
Rev. Letters 19, 1261 (1967), and G. W. Intemann and I. R.
Lapidus, Phys. Rev. 165, 1650 (1968).These calculations yield the
branching ratio F(q —+ 7r+7r=7roy)/F(g —+ vr py) 0.28 jo. For the
M1 transition, A. Chatterjee I ibid. 174, 1832 (1968)]predicts the
same branching ratio to be 0.2/o. Ei,' —& 7r+7r p'. C. S. Lai
and B. L. Young, Nuovo Cimento 52A, 83 (1967), predict
I (E,o + -&)/r (E&0»)=0.14.

3 From the compiled data on ri decay experiments, I" (q—+7r+7r y)/
F (q ~ py) =0.14&0.02 and I'(rI —+ 7r+x, m. 'y) /I'(q ~ 7ro&7) &0 6oyo

&

for EJo decay, experiments have placed the upper limit
1 (Ei' —+ 7r+7r y)/F (EI,O ~ pp) &0.77. See A. Barbaro-Galtieri
et al, , Rev-. Mod. Phys. 42, 87 (1970).

4L. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962);
S. Oneda, Y. S. Kim, and D. Korff, Phys. Rev. 136, 81064 (1964);
P. Singer, ibid. 154, 1592 (1967); A. Chatterjee, ibid. 174, 1.832
(1968).' K. R. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); J. J. Sakurai, Phys. Rev. 156, 1508 (1967).' J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1965); S. Barshay, Phys. Letters 17, 78 (1965); F.
Salzman and F. Salzman, ibzd. 15, 91 (1965).
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IC' decays other than E' —& 2+ or X' —+ 3', it is well
known' that an observation of an interference effect
between El. and Ez decays in the partial decay rate
would be direct evidence of CI' violation. Thus, a study
of EI. q~w+m my might, in principle, lead to new
evidence for CI' violation, especially if its origin is
electromagnetic.

We shall examine decay (1) from both the approaches
of current algebra and vector-meson dominance. We
shall primarily be interested in studying the direct,
CP-conserving Ei transition amplitude with the
objective of estimating the size of this more interesting
contribution to (1) as compared to the inner brems-
strahlung part. Also, by comparing our results from
current algebra with those from vector-meson dom-
inance, we will be in a position to further test the
equivalence of these two approaches.

In Sec. II, using current algebra, the hypothesis of a
partially conserved axial-vector current (PCAC) and
Weinberg's T-product decomposition method, ' we shall
relate the parity-conserving (PC) amplitude for the
decay (1) to the amplitude for the decay Xr,o ~ 7royy.

Using the experimental data on this latter decay, we
will be able to obtain an upper limit for the Ei transition
rate of (1). We shall also derive a single soft-pion
theorem relating decay (1) to the parity-violating part
of the decay El,' —+ z+z p. In Sec. III we shall present
the vector-dominance calculation for the Ei transition
of (1). In Sec. IV we discuss our results.

II. CURRENT-ALGEBRA CALCULATION
OF El TRANSITION

Before presenting the details of the current-algebra
calculation, let us discuss some of the kinematics of
the decay (1) and the possible types of transitions.
Throughout this paper we shall only consider the
CP-invariant mode of Pro —+7r+7r vr"y (i.e. , neglect the
small effects due to CP violation).

Since the maximum photon momentum is low (k
=77 MeV), we need to consider only the lowest
multipoles. Let us classify the m+7r ~o state by (L,l)
where I. is the angular momentum of relative motion

7 L. M. Sehgal and L. Wolfenstein, Phys. Rev. 162, 1362 (1967).' S. Weinberg, Phys. Rev. Letters 1'7, 336 (1966).
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between the 7t+m pions and / is the angular momentupm

of the ~o relative to the ~+&r system. For the (1,0) or
(0,1) configuration one has either an electric dipole
(E1) or magnetic dipole (3/I1) transition.

For the E1 transition, if CI' invariance holds, the
three-pion state has JP=1+, I=O and is an eigenstate
of the CI' operator with CI'= —1. If there exists an
axial-vector meson with I=O and CI'= —1, it could
mediate the decay. In view of the lack of experimental
evidence for such a meson, the E1 transition might
more likely be described by p dominance with the
~+&r state in a relative p wave.

In the case of M1 transition, the three-pion state has
J~=1, I=1, and CI'= —1. The absence of a vector
meson with such quantum numbers which could
mediate this transition indicates that the M1 transition
predominantely enters into the CE'-violating amplitude
in which the 3m. state has J~=1, I=O, and CP=+1.
Since we are neglecting the small effects of CP violation,
we shall in turn neglect the M1 transition as compared
to E1.

YVe now begin our calculation by considering the
two-point function

M = dxdy e'«'*+" »(~o(qo), p(k) I

y T(A„-(x)A,+(y)H (0)) I
K~.'(P)) (2)

where 2„+are the charged, AS =0, axial-vector currents
and II„represents the weak nonleptonic Hamiltonian.

If one uses the standard current commutation
relations'

LAo'(x), A. (y) j~(xo-yo) =2l". (y)&'(x —3) (3)

[A p+(x), o&„A„(y)j8 (xo yo)—=2io-(y) &'(x—y), (4)

and the PCAC relation"

o&,A „+(x)=I'.lJ, 'y: (x),

where Ii is the pion decay constant and p represents
the 7f-+ mass, one obtains after two partial integrations
and a decomposition of the T product

—q.,q&,&V„„=F„'(p'—q&') (p' —q, ') dxdy e' o' '+op p (m', y I T(p, (x)y.-(y)H„(0)) I Alp)

—i(q —
q ). dx ~""+"' '(~' v I

7'(~.'(x)H-(o)) I
&~")

+l dx«ye'&""+" "&( ',ylLAo ( ) LA+(y) H (0)lhlI& ')~( o)~(yo)

dx«y &"" "+""(~' el l Ap+(y) I Ao (x)» (0)jul &~)~(xp)~(yp)

+I' (u
' q') «x«-y—~"" '+" "'(xo,y I T(4. (x)l Ao+(y), H. (0))) I &i")~(yo)

+I'.(I" q, ') «x«y e'& '+ —'&(~",y I
T(y.-(y)[A;(x),H„(0)])

I
IC,o)r(x.)+(~ terms), (6)

where E„,represents M„„after all the pion pole terms
have been removed.

The weak Hamiltonian density II„(x) will be taken
to be of the current-current form"

H„(x)=gdo;,I„'(x)I„&(x)=H. „po+II„"v, (7)

where I„'(x)= V„'(x)+A„'(x) is a sum of the vector
and axial-vector weak hadron currents, the superscript
i is an SU3 index and FI„P and H„pv are the parity-

' M. Gell-Mann, Phys. Rev. 12S, 1064 (1962). o. (x) is a scalar
density which in the 0. model represents the 0.-meson Geld. See
M. Gell-Mann and M. Levy, Xuovo Cimento 16, 705 (1960).

'0In the presence of electromagnetism one should actually
use, to 6rst order in e, the modified form of PCAC, (d„&ieO,„)A„+
=I p, '@ ~, where 0',„represents the electromagnetic field. How-
ever, since we are contracting both the ~+ and vr, the contributions
from the electromagnetic corrections to PCAC cancel.

"M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964); Y. Hara
and Y. Nambu, ibid. 16, 875 (1966).

conserving (PC) and parity-violating (PV) parts of
FI„, respectively. If we assume CI' invariance, then
only H„p contributes to the lowest multipole transition
of (1).

With the weak Hamiltonian in the form of Eq. (7),
assuming CI' invariance, one can show that the terms
containing the commutators [A p+(x),H (0)7 as well as
the o terms in Eq. (6) violate CP invariance and thus
can be dropped. Furthermore, in the case of soft-photon
emission we can neglect" the terms of the second order

"There is some question as to the validity of neglecting the
nonpole term q2„gi„E„„since the 1&'1 amplitude for EI,0 —+ 7l-+m m07
is itself quadratic in pion momenta. To be rigorous, it is necessary
to make a model-dependent study of the nonpole terms in order
to ascertain their degree of importance. See H. R. Rubinstein and
S. Veneziano, Phys. Rev. Letters 18, 411 (1967). However, in
most previous calculations it appears that such nonpole terms are
indeed negligible, and we will make this same assumption here.
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TAaI,E I. Comparison of current-algebra predictions for E(L~'1)
and g'(Ei) based on various estimates for r (XLO ~ pro»).

r(x&o o»)
j. (x 11)

2 2xio 7—4.6X10 4

(current algebra)'
2.SX10 '

(q-pole model)b
6.1.1X10 '

(vector dominance) '
&2.3X10 '
(experiment) ~

g.'(Ei)

3.5X10 —7.3X10—7 2,8X10 —5 7X10 6

4.0 X10-8

9.71X10-»

&3.7 X10-7

3.1 X10 7

7.66X 10

&2.9X10-6

a A. Della Selva, A. De Rujula, and M. Mateev, Phys. Letters 24B,
468 (1967).

b S. Oneda, Phys. Rev. 158, 1541 {1967);G. Faldt, B. Petersson, and
H. Pilkuhn, Nucl. Phys. B3, 234 (1967).' G. Oppo and S. Oneda, Phys. Rev. 160, 1397 {1967).

d See Ref. 13.

in the pion momenta. This approximation amounts to
neglecting the quadrupole transitions. Thus, we find in
the limit q1' ——g2' ——0

F pp4 d*dy e'c"'+op'p)(prp(qp) y(k) I

x&(e.'( )4--(y)II-"(0))IIt '(p))

=i(qo —q&)„dx e'«'+ »P*(7ro(qp), p(k) I

xT(v.'(~)II-"(0))
I z"(p)). (g)

The left-hand side of Eq. (g) is essentially the amplitude
fOr EI, —+w+7)- 7r y in the limit q1 =q2 =0. The
right-hand side can be related to the amplitude for
Ic r.' ~ 7r'yy. Equation (8) may be written a,s

(27r) "I'(32cp gcppcppcpx) "'
x( (q,)=(q,)- (q,)~(k) III.-lx, (p))

= (i/F. ') (2pr)'(16k'kcppcpx)'r'

X (qp
—

qg) „M„'(k',k,qp), (9)
where

(2pr)"'(2k')"'M„P =p dx e" *(xo(qp)y(k) I

XT(V '(x)II (0))IEro(P)), (10)
a,nd k'= qc+qp.

On grounds of general covariance we may write for
the E1 amplitude of EI. —+71-+7)- 7r y

(2pr)

iso�(32»pppcp,

kcpx) pro(p+«oy
I
II Po

I
KJo)

= (eF/Mx')[k (q, —q, )p (qg+qp)
k (ql+qp) p ' (ql qp)+k ' (qp ql)e ' (qp+ql)
k' (qp+ql)e' (qp ql)+k' (q2 qp)e' (q2+q2)

—k (q,+q,)' (qp
—q,)], (11)

where F represents a form factor.
In a similar manner we have for the EI.' —&7r'yy

amplitude

(27r) '(16k'kcp, cpx) "'(pr'yy
I
II~

I Erp (p) )
=(e'M/Mx&2)[(k k')(p p') —(k' p)(k p')], (12)

with M representing a form factor. Combining Eqs.
(9)—(12) gives

(13)

This form-factor relation permits us to compare the
decay rates of EI.' ~ ~+a zr'p and EI.' ~ ~'pp.

Calculating the decay rates, using Eq. (13), one 6nds
fOr the E1 tranSitiOn Of Ez,'~ 7r+7)- 7)-'y

where

rx(&r."~pr+pr pr"y) =- [2I(k)+Ip(k) ],
2F '(27r) 'Mx' o (Mx —2k)

(14)

I(k) =

Ip(k) =

and

qX(k, -)(-4(Q -"-..)(-~" -2- —:q) —:("+..)(4- -")
+[(Fx ~)'+oq'](Q'+I" I o')[1 'pX—'(k, ~)]—)d~, (13)

ceo max

qoXp(k cpo)( 4(Qp 2p )(cppzx 2cpcP qcP) (g/3)p (4cpp Icp )

+[(&x—cpo) +pqo ](Qo +2wo —2p )[1—p&o (k,ppo)])dppo (16)

Zx ——(Mx' —2Mxk) "', Q —2p —2pp
X(k,cp) =

Q' =&x(Ex—»)+p',
Q2 4 2 1/2

x.p. , )=(—' ")

Qo'=Fx(Fx »o)+I o', — F-x'+p' —(y+~o) '

+X +Po —4P
&0 max

2~x
and p, p, 0 are the masses of 7r+, m', respectively.

Mx' —(2p+ pp)
'
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Similarly, for EJ„—+ m'yy,

~2I~I2& 4 1
I'(Er, ' +m'—yy) = 3X' 1+—

96xM~'

6-

(X'-I 1 (X2-I)2
+3I —3 Ink —1+—,(18)Ee,

where X=3IIrr/p2. —
Kquations (14) and (18) yield

I'z(Er. ' ~ 2r+2r 2r'y)
=1.59X&0 '.

I'(Er, ' ~ 2r'yy)
(19) 2-

It is not possible at the present time to directly
compare this current-algebra prediction with experi-
ment since there are no published experimental data on
EI,' —+ 7f+~ ~op. However, recently Banner et a/. "have
reported an upper limit on EJ. —+ x yy, namely,
I'(Er,' ~ 2r'yy)/I'(Ei, ' ~ all) (2.3X10 with 90%%uz con-
Mence. Combining this datum with Kq. (19), we then
find for the E1 transition the branching ratio

I'g(Er. ' —+ 2r+2r
—

2roy)
E(EI)= —&3.7X 10 2. (20)

I'(Er, ' —& all)

There have also been a number of theoretical
estimates for El,'~x'yy. In Table I we compare the
predictions for 22.'(ZI) based on these theoretical
estimates. Equation (14) also permits us to determine
the photon energy spectrum for the Ei transition of
El,o —+ ~++ mop. This spectrum is shown in Fig. 1.

From our results we see that current algebra pre-
dicts a very small rate for the direct Ei. transition of
Ez, ~2r+2r 2r p if the decay Ez, ~ rr yp is as rare as
it is generally believed. Another way, perhaps, in
which to see this suppression of the Ej transition is by
considering a single soft-pion limit of its amplitude.

If one considers the quantity

0 )0 20 30 40 SO M

k(vv) =
I'IG. 1. P1ot of photon energy spectrum for the Ej transition of

EqP -+ ~+w +op in the EI,o rest frame.

F =f/2V2F (25)

The form factor f has been estimated" to be f=6.35
X10 '. We thus find from Kq. (25)

Thus, we have related the parity-conserving Ej transi-
tion of EI,' —+ ~+a m'y to the parity-violating amplitude
of EI,' —+~+x y. This PV amplitude contributes te
Ei CE'-violating and E2 CE'-conserving radiation and
is expected to be small compared to the PC amplitude
of El, —+ x+m p which contributes to M j. CE-conserving
radlatlon.

The PV amplitude for El.' —+ x+z y can be written as

{22r)'(16(oico2kcurr)'~2(2r+ir y I
H P~

I
Er,')

=(f/~-)L(p f)('V.)-(&'~)('p)j. (24)

Thus, in the soft-pion limit we have, after combining
Kqs. (11), (23) and (24), the form-factor relation

M = dx e'""(2r+2r yI r(A '(x)H p (0))IE ') (21)

integrates by parts, using PCAC and the equal-time
commutation relation

I A2'(x), H Po(0)]b(xo) =-', H P~(0)b'(x), (22)

one Ands in the soft-pion limit q3 —& 0

{F-/~2)(x'(e)~ (V2)x'(V2) V(&) IH-" IE~'(P))
X (2~) 2l2(2~ )1/2

= —-'2(~+(g, )~-(q2)P(u) IH„"IE,o(P)) . (23)

» M. Banner et gl. , Phys. Rev. 188, 2033 (1969).

This estimate for F yields for the E1 transition rate
I'z(Er, '~2r+2r 2r'p)=8. 4X10 ' sec ', which results 1n

the branching ratio

22'. (EI)=4.5X10 ', (27)

which ls coIlslstcllt with our plcvlous cuI'I'cnt-algcbI'a
result combined with the experimental upper limit on
Er,'-+2r'yy. Combining Eqs. (19) and (27), one is
led to the prediction

I'(Er.' —+ 2r'yy)
=2.8X10 '. (28)I'(Ei'-+ all)

"D.P. Majumdar and J. Smith, Phys. Rev. 18'7, 2039 I'1969).
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E1 trRnsltlon ls glvcn by

ORs(XI.' —+ s.+m w'y)

~&fx"»f.-f.:.fn-~~'
A~)

p'(~ x' m,—')L(q, +q,)' m,—']L(q, +k)' m,—']
(3o)

where A~ is de6ned as

As=qa-(qg+qp)L(e q,)k (qg q2} —(k q—a)e (qg —q2)]

+q (q+k)L'(q~ —q~)k. (q+q)
—k (q~

—q)e(q~+q)]+q3 (q —q)
XL'(q~+q~)(k. q.)—k. (q~+q~)('q3)] (31)

Thc E1 transition rate is then given by

+ ()= =y')

r~(Ez, ' +s+m —s'—y) =
32(2s)'3fx

8 gyd g2l g3d k

GP2 603 k

X )ORsf'a'(p —q, —q, —q, —k). (32)

.FIG. 2. Feynman diagrams for EI.0~ x+~ mop and EIO~ mopy
in the p-dominance model. S1IQllarly) dcscllblng El. ~ x pp with the p-doIQlnancc

model and evalua, ting its Feynrnan dlagraIQ in Fig. 2

leads to the decay ra, te
In acceptin. g this result it should be remarked that
Kqs. (19) and (27) were obtained by means of different
Sof t-pion limits. Thus thc VRlldlty of combining these
results rests primarily on the smoothness properties
of(the various form factors involved.

1'(Xr,' -+ s'yy) =—
16(2n.)'Mx

&&
~
OR(K&'~ ~'Yq)

~
'V(p —

q
—k —k'}, {33)

whcl c

OR(XI„'—+ s'yy)

In this section we will determine the magnitude of
the',t:E1 transition contribution. to EI,O —+7r+7r roy by
Hlcans of vcctoI'-xncsoIl doIIllnance. Ncglcctlng SIQ8,11

CE-violating eRects, if the photon in the decay is

emitted through an E1 transition, the 3m state has
I=O and J"=1+.Thus the mo will be in an s state
relative to the ~+sr and the decay is described by the
p-dominance model. The principal Feynman diagram
is shown in Fig. 2. Kc have only induded the q-pole

contribution, neglecting the effects of a m' or X' inter-
mediate state. Since the q mass is so close in value to
the Ago mass, the q-pole contribution should dominate
in this decay. The CRects of q-Xo mixing should only
affect our results by no more than 10% for a mixing

angle of &10'.
Taking as the invariant couplings for the pry) happ,

px'x') Rnd EI, -'g veI'tlccs

~~&i"f.-~f~-f.v3'f x'
8+(k ~ k') (34)

p'm, '(mx' —m„')L(q+k) '—m«']

8= (q k')L(e q)(k e') —(k q)(e e')]

+q (q+k')((e. e')(k k') —(k e')(k' c)}
+(q.")&(k")(k q) —(k k')(q')}. (3S)

Combining Kqs. (32) and (33) and using f» em,'/f„„——
f, '/47r=2. 5, we 6nd

rs(Ez, ' —+ x+~ s'p)/I'(Kz, ' —+ m'yy)

=1.18)&10 ', (36)

in fairly good agreement with the current-algebra

prediction, Kq. (19).

(fo«v/&) e~e~«qsukeevp«) fI ««p~(q& q2)~ p (29)
(fop p/j4)e «~bp1vpl«p2xp25 p

t/2~x fzr, q p

where p&, p2, pq, p2 represent p-meson momenta and

polarizations, respectively, the matrix element for thc

IV. MSCUSSION AND CONCI. USIOHS

%e have seen that current algebra, and PCAC yield

spcciGC predictions for the CE-conserving E1 transition

of EJ.O —+m+~ roy. First, by applying a IQOIQenturQ
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expansion technique of Weinberg, we calculated the
branching ratio Fs(Rr, —& m+vr ~ y)/F(Ez —&s- yy)
=0.16%. Using the present experimental upper limit
on Xz'~s'yy we then found R(E1)(3.7X10 '. Then
by considering a single soft-pion limit, we found, using
an estimate for the parity-violating amplitude of
Rz ~m+~ y, the value R(E1)=4.5X10 '.

We have further calculated the E1 transition by
means of a vector-meson-dominance model. We found
that the description of the E1 transition by the p-
dominance model gives results consistent with current
algebra.

Finally, it remains for us to compare the size of the
direct-emission contribution to the inner bremsstrah-
lung. Unlike the decay El, —&~+~ p, CP invariance
does not prohibit bremsstrahlung from taking place
in El. —+x+z vr y. One can in fact easily estimate its
size compared to the CE'-conserving nonradiative

process to be

R'(8) —=
Fii(Ez' —» m+x s'y)

F(Xz'~ s+s n')

=9.8&&10 4, k) 10 MeV.

In Table I we have listed the estimates for R'(E1).
We find R'(E1)(2.9X10 '. Based on these calcula-
tions, we conclude that the direct-emission contribution
is smaller by at least two orders of magnitude than the
inner-bremsstrahlung contribution. As a result, the
possibilities of observing CP-violating effects in
EI,' ~ ~+z m'p would appear quite remote in the
foreseeable future.

On the other hand, our calculations have given
further support to the belief in a general equivalence
between current algebra and vector-meson dominance.

P H YSI CAL REVIEW D VOLUM E 3, NUM B ER 1 1 JANUARY 19? 1

Backward ~N Scattering: A Regge-Pole-Cut Model without Parity Doubling*

LOYAL DURAND III AND HUBERT M. LIPINSKI't

Department of Physics, University of 8'isconsin, Madison, Wisconsin 53706
(Received 9 September 1970)

We present a very simple model in which the amplitude for backward ~Ã scattering is described in
terms of the exchange of the Ã and 5& Regge trajectories and associated Regge cuts. The trajectory func-
tions &(u) and the positions of the brarich points n, (u) are linear functions of u, but there are no odd-parity
resonances associated with the resonances on the E and 6& trajectories (no parity doubling). The model
provides a good description of the data on backward m+p scattering, including the differential charge ex-
change cross section and the polarization observed in 7F+p scattering.

N a recent paper, ' Carlitz and Kislinger showed that
~ ~ it is possible to construct simple Regge-type models
for boson-fermion scattering amplitudes which do not
contain parity doublets. In their model, the fermion
trajectory functions are linear functions of I=8", but
the positive-parity resonances at n+(W) —',, ~3, .=. . do
not have odd-parity partners as would seem to be re-
quired by the MacDowell symmetry relation n (W)
=a+( —W). This model is potentially of great interest,
since it provides a natural explanation of the absence
of odd-parity states corresponding to the states on the
nucleon and 6 trajectories, despite the near linearity
of those trajectories. In the Carlitz-Kislinger model,
the odd-parity poles required by the MacDowell sym-
metry are on the second sheet of the j plane. These poles
can only be reached by passing through a fixed cut
with a branch point at j=n(0), and consequently do
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not lead to physical resonances. Despite these desirable
properties, the Carlitz-Kislinger model is not entirely
satisfactory. First, the fact that the cut is a fixed
cut rather than a moving (Regge) cut—while not pre-
cluded by any general argument —is not in accord
with the usual ideas about the structure of scatter-
ing amplitudes in the j plane. Second, and more im-
portant, the discontinuity across the cut diverges at
the branch point, in contradiction to a result derived by
Bronzan and Jones' using the unitarity relations for the
partial-wave amplitudes.

In the present paper, we discuss a simple model of the
Carlitz-Kislinger type in which the foregoing difhculties
are eliminated. In this model, the only singularities of
the scattering amplitude in the j plane are moving poles
and moving cuts, with pole and branch point trajec-
tories which are linear functions of I=8",

n~+(W) =no+n„'W',
n,+( )W= no+ n, 'W', n, '(o.„'.

There are no (physical) parity doublets in the model,
' J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967).


