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A self-consistent quantum field theory is proposed wherein the field equations for the Heisenberg fields
are postulated. The Heisenberg fields are required to be linear combinations of normal products of the
physical free fields, and the coefficients of the expansion are determined self-consistently. No a priori knowl-
edge of the equal-time commutation relations among the Heisenberg fields is assumed. Using a solvable
model, it is shown that local microscopic causality requires the existence of a bound state.

I. INTRODUCTION

HIS paper aims to illustrate the main computa-
tional steps in a self-consistent formulation of
quantum field theory by means of a solvable model.
Special emphasis is placed on the self-consistent
identification of the “composite particles” and on the
self-consistent determination of the equal-time com-
mutators among the Heisenberg fields. This situation
is different from the traditional formulation of quantum
field theory where canonical commutation relations
are assumed for Heisenberg fields.

Let us briefly discuss how self-consistency plays an
important role in formulating the quantum field theory.!
In a traditional form of quantum field theory one begins
with field equations (or with a Lagrangian) for Heisen-
berg operators which are assumed to satisfy equal-time
canonical commutators. One reason for the assumption
of canonical commutators was that it supplied us with
a convenient way of introducing a particle interpreta-
tion of quantized fields. Such an interpretation emerged
when the Fock space was adapted as a realization of the
canonical commutators of Heisenberg fields. In the
Fock space one can choose a basis in which each state
vector is represented by a series of numbers, each
number signifying the totality of particles in respective
particle states. However, this reason for canonical
commutators of Heisenberg fields turns out to be less
impressive when one observes that the particle numbers
concerned in physics are not those of the “bare particles”
but of the experimentally observable (physical)
particles. Also one finds that the canonical commutation
relations usually possess a host of unitarily inequivalent
realizations?*—i.e., frequently the Fock space of the
bare particles is not unitarily equivalent to that of the
physical particles.!* One may then pursue either of the
three following possibilities: (a) Forget the Fock space
of the bare particles and use only the Fock space of the
physical particles. (b) Try to formulate a new theory
in a nonseparable Hilbert space which includes all the

1L. Leplae, R. N. Sen, and H. Umezawa, Progr. Theoret.
Phys. (Kyoto) Suppl. 637, (1965); H. Umezawa, Acta Phys.
Hung. XIX, 9 (1965).

2 1. Van Hove, Physica 18, 145 (1952); A. J. Wightman and
S. S. Schweber, Phys. Rev. 98, 312 (1955); H. Araki, J. Math.
Phys. 1, 492 (1960).

¥ R. Haag, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
29, No. 12 (1955).
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realizations of the canonical commutation relations.
(c) Try to use only the algebraic aspects and forget
the realizations. In this paper we shall work with the
first possibility because of the facility in performing
practical computations.

Our task then is to formulate a quantum field theory
where the field equations for the Heisenberg operators
are described in terms of the Fock space of the physical
particles. Since the physical particles are described by
field operators satisfying free-field equations with
observable masses and spins, the Fock space of the
physical particles can be built as a realization of the
canonical commutators of these free fields. Thus there
is no need to assume the canonical commutators of
the Heisenberg operators.

Our point of departure is the formal structure of
the field equations for Heisenberg operators ¢

(1=1,...n), .
AP Ox)=7W), €Y

which we regard as given. Here A (9) are differential
operators and j are functions of Heisenberg fields.
Let @ (i=1,...,m) stand for the free fields of physical
particles.* We treat ¢ according to the well-known
formulation of the quantized theory of free fields.
Thus ¢@® is a linear combination of creation and
annihilation operators and the Fock space is constructed
by applying the creation operators cyclically on the
vacuum state. We require that the Heisenberg fields
should be linear combinations of normal products of
the physical free fields:

§ O (3) =X+ Cosp D () + / dy / diys

XCip(x—y1,8—y2): P (y1)p® (y) : -+ (2)

Here X® denotes a ¢-number constant and the dots
stand for higher-order normal products.® QOur problem

4 There is no reason to assume that n=7.

5 Here we assumed the translational invariance of the system.
The expansion form should be modified when we consider cases
like crystals. In the relativistically invariant theory without any
spontaneous breakdown of Lorentz symmetry the c-number term
x® does not appear unless @ is a scalar or pseudoscalar. The
problem of convergence of the expansion does not arise simply
because the normal-product terms are linearly independent of
each other; each expansion coefficient is the respective matrix
element of ¢,
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3 DERIVATION OF EQUAL-TIME

is to find solutions of (1) in the form (2). To do this
requires a self-consistent determination of the physical
fields. This is because the physical fields can be iden-
tified only after we solve the field equations (1) while
we need the physical fields to write down expansion
(2).6 To begin the self-consistent approach we prepare
as a candidate for the set of physical fields a small set
of free fields whose masses are unknown. Regarding
these free fields as physical fields, we write the Heisen-
berg fields ¢® in the form (2) and feed this expression
into the field equations (1). We then obtain a set of
equations for the expansion coefficients (X©,C;,C; jx,
...). By solving these equations, we determine expan-
sion (2) together with the masses of the physical
particles. When these equations do not admit any
solution, we modify the initial set of free fields and
repeat the computations. Such a modification of the
initial set of free fields is frequently made by introducing
more members of the free fields. This is the way many
composite particles ‘are successively brought into the
set of physical fields.

As an example, suppose that we are given a field
equation for the nucleon Heisenberg field. We then
choose as the initial set of physical fields an isodoublet
free Dirac field which is regarded as the physical
nucleon. Writing the nucleon Heisenberg field in the
form (2) by means of normal products of physical
nucleons and then feeding this expression into the
field equation for the nucleon Heisenberg field, we
obtain a set of equations for the expansion coefficients.
We may then find that these equations do not have a
solution unless they are modified by introducing a new
member in the initial set of free fields. This new member
may turn out to be the physical deuteron.’

It is obvious that the success of the self-consistent
procedure depends on the initial choice of free fields.

To be more precise, there are additional constraints
to be imposed on expansion (2). One requirement is that
if we use incoming fields to describe the physical
particles then we require that effects of the in-fields
on the Heisenberg fields come only from the past.
This means! that the expansion coefficients in (2) are
of a retarded nature.® Another requirement is the
condition of microcausality, which states that two
local operators on a spacelike surface commute with
each other when their positions do not coincide. We
thus require that equal-time commutators among
Heisenberg operators are made up only of terms

6 A similar situation exists also in the LSZ (Lehmann,
Symanzik, and Zimmermann) formalism. In the LSZ formalism
the physical fields are determined by considering the weak limit
(t— =+ =) of the Heisenberg fields. However, in order to perform
the weak limit, a preknowledge of the Fock space of the physical
particles is required.

7This definition of composite particles is based on the irre-
ducibility of the physical field operator ring. See H. Ezawa,
K. Kikkawa, and H. Umezawa, Nuovo Cimento 25, 1141 (1962);
H. Ezawa, T. Muta, and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 29, 877 (1963).

8 When the ¢’s are outgoing fields, the expansion coefficients
in (2) are of an advanced nature.
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proportional to the 6 function carrying powers of space
derivatives of finite order:

D@ P0) s temty = é}an“'f)(x,y,t)a”a(x—y). ©)

Here the symbol =+ signifies either anticommutator
or commutator: [A4,B].=AB4BA. This sign is
determined according to the usual rule. In (3), 9»
denotes the n#th power of space derivatives; the highest
power I is required to be finite, and the coefficients
a,%? can be operators.

There are no a priori conditions on the a,(9. As a
matter of fact the coefficients a,®? in (3) can be
computed when the expansion form (2) is determined.
Thus in a self-consistent formalism of quantum field
theory the equal-time commutators of Heisenberg
fields are to be computed. This poses an interesting
question: How general are the canonical commutators?
The above argument also suggests that the self-
consistent formalism may be able to treat cases where
the canonical formalism is inconvenient. In this
connection it would be an interesting problem to
calculate the commutation relations of electromagnetic
Heisenberg operators in quantum electrodynamics
without the Gupta-Bleuler photons of negative
probability.

In Sec. IT we shall illustrate all the steps of the
self-consistent procedure by means of a solvable model.
We will find that the condition of microcausality
plays an extremely important role: It is the condition
which determines the renormalization constant (z
factor) and which requires the existence of a composite
particle.

Let us close this section with a comment on the
Hamiltonian in the formalism under consideration.
Denote by P, the translation operators:

0@ () =Y (x),P,] . )

Then expansion (2) shows that P, is equal to the
translation operators of the free fields ¢ :

Pu=Pu(¢(i)) .

The Hamiltonian H, satisfying
@ (x)
—_

ot

©®)

=[y®(),H],

is that of the free fields, ie., H=H(¢®)=—iP,.
This is an example of the general feature that when we
consider any symmetry transformation the generator
of the transformation should be prepared not in terms
of the Heisenberg operators, but in terms of the free
fields. We will see an example of this feature in Sec. II.

II. SELF-CONSISTENT CALCULATION

In this section we will exhibit the main steps of the
self-consistent procedure by means of a solvable model.
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The model is defined by the equations for the Heisen-
berg fields ¢ and 6:

d
(— +im)¢(x>
ot
PN / diy / 15 6(5—y)a(s—2)0 GWHE), (©)

d
(- +ite—v12:)oca
at

——in / dty / dialy—aly—W GWOIE). (1)

Here m and u are constants with dimensions of mass
and @(x—7y) is of the form

&(x—y)=a(|X—Y|)5(tx—ty) . @®

The function &(|x—y|) is introduced in (6) and (7)
to avoid infinities in the following computations.

As for the microcausality condition (3), we assume
the anticommutator for the ¢ field and the commutator
for the 6 field. Accordingly, ¥ and 6 will be called
fermion field and boson field, respectively. The coeffi-
cients @, in (3) are still unknown and will be determined
through the course of computation. We also assume
the commutator in (3) when ¢ =y (or ¢f) and ¢y P =49
(or 7). Throughout the following computations, it
is important to maintain the order among the Heisen-
berg fields on the right-hand sides of (6) and (7).
This is because their commutation relations are still
unknown. The field equations (6) and (7) together with
the microcausuality condition are the basis of our
considerations.

Note that the field equations (6) and (7) are invariant
under the phase transformations

¥(x) > Y (x)ei,

0(x) — 6(x)ete . ©)
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Since we do not assume any knowledge of the equal-
time commutation relations of ¥ and 6 (except the
microcausality), we cannot write down the generator
for the above transformation.

To start the self-consistent calculation we need an
initial set of free fields as a candidate for the set of
physical incoming fields. Let us try the following choice:
one physical fermion ¢ and one physical boson 6.
Their energies, which are still unknown, will be denoted
by m, and w,, respectively:

1

‘l/in(x)= (2 )3/_2 /dap Npinei(p~x—mpt), (10)
™

oin(x) = R /dap fpine (- x=upt) (11)
T

Here N, and 6, are the annihilation operators of
the N,i» and 6, particles, respectively:

[Npin:qu]+ =[0,0,""]=8(p—q). (12)
We shall write the Fourier form of @(|x—y|) as
d3
a(|x—y|)= e Va(wy) . (13)

(27]')3/2 (_pr)llz

We assume that the Heisenberg fields ¢ and 6 are
expanded in the form (2) in terms of normal products
of ¢ and 6™, Let us first consider a special solution
where the transformations in (9) are induced by the
following in-field transformations:

PR () — Y (x)ere,

0 (x) — 00 (x)etez , (14)

Expansion (2) then reads

g(x) — zlll2ein(x) +/d3Pd3qd3r Nqin‘pr+ q__rinorincp(q,r) eip - x—i(wr+mp+q-r—mq)t

+/d3pd3qd3r 0__p+q+rin1'0qin0rinap(q’r)eip-x—i(wr+wq—wq+p~p)t+ ceey (15)

‘p(x) - zzl/win(x) +/d3pd3qur eqinTNp+q_rin0rindp(q,r)eip- x—i(wrtmptq—r—wq)t

+/d3pd3qd3r N_p+q+rin’r]vqinN‘inbp(q’r)eip-x—i(m;+mq—mq+,_p)e+ .o

Here three dots stand for higher-order normal products,

each of which contains at least five in-field operators.
Let us now feed (15) and (16) into (7) and

consider the matrix element (0| Eq. (7)]6«™). We then

(16)

find

[ it —voe oloma =0
at ’
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which leads to

d
[ +ite—ve =0, an
at

This shows that w,= (k2+u?)'/2. In a similar way the
matrix element (0|Eq. (6)|N,™) leads to

i}
(— +im>¢i“(x) =0. (18)
at

This means that m,=m, which is 1ndependent of p.
We have thus determmed the energies of the physical
particles.

By considering the matrix element (6| Eq. (7)|6»6™)
and using (15) and (16), we find that

(Ip(q,l')=0. (19)

In a similar way, the matrix element (N»|Eq. (6)
| NinNin) gives
bP(qar ) =0 .

Note that a change of normalization of ¥ and 6 by a
common factor (i.e., ¢ — ay, 6§ — a6) modifies only the
coupling constant (A — a?\) in the field equations (6)
and (7). We are thus free to fix either z; or 5. We shall
set zo=1.

To determine the coefficients ¢,(q,r), we substitute
(15) and (16) into both sides of Eq. (7). Taking the
matrix element (V| Eq. (7)| N prq—r™8:%), we obtain

(20)

212 a(wp)a(w:) 1
eo(ar) = ,
(2m)3/2 (4wpwr)1/2 Wy —wp+ie
Na(wp) 1
(2wp) V2 Wy —wp+ie
a(w)
x [ aramin. G
(2w
The solution of (21) is
N21? a(wp)a(w,) 1 1
cplgr) = , (22)
(27)372 (dawywe) 2 we—wptie 1—N (w;)’
where
a?(wr) 1
I(w,) = /d“l———— _— (23)
2wy we—witie

Likewise substituting (15) and (16) (with z2=1) into
both sides of Eq. (6) and taking the matrix element
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(84| Eq. (6)| N pyq—r6:") yields the relation

A1 a(wg)e(w:) 1
dp(q,r)——- .
(27)32 (4wqw:)'? w—wg+ie
1
gl a(wq)
(2w Y2 we—wq+ie
a(w)
X / & a(ptq-11). (24)
(2wy)V/?
This, together with (22), leads to
N1 a(wg)a(w:) 1 1
dy(at) = : . (25)

(2m)32 (dwqwe)!/? we—wq+ie 1L —N (w;)

In (21) and (24) we have defined 1/(w:—wq) by
1/(w.—wq+1ie), so that ¢,(q,r) and dy(q,r) would be
of a retarded nature.

We will now show that the microcausality condition
(3) requires z;=1. Using (15) and (16) (with z,=1),
we find

O [¥(),0(y) Jramty | N1—i™05)
= e“‘Y/dﬁJ eV o (p k) —2112d,(1-k, k) J.

This should have the form of the right-hand side of (3).
This means that
c1—p(p,k) —21/%d,(1—p, k) =finite polynomial in p .

Using (22) and (25), we find that 2;,'/2=1. This leads to

OI[¥ (@),0(5) Jtyms, | N6 =0, (26)
even when x=y.
In a similar way we can show by considering
(W™ | [0 (@),0(9) Jigmey | 6™ 27)
that
(2m)iie [Cp(H‘k k)+dp11(k,p)]
o [ i )4
=finite polynomial in p. (28)
Evaluating

_ / & 6y (1K, 1)dy " (1), (29)
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we find using (22) and (25) (with z;=1) that

1 2 a(wp)a(ws)

(2m)? 87% (dwpwy)t/?

1
X/ o[ f () — f*(a0:) ]

a*(w,)
1 1 1
x[ - - ] . (30)
W, —Wp+ie W —wi—ie (w,2—p?)/?
Here we have defined
Ae?(w) 1
fw)= —_—,
2w 1—N(w)
which satisfies the relation
w(@?—u)'2| f(w) |2= —[f(w) — /*(w)]/8x% . (31)

We can rewrite Eq. (30) as

I=A(pk) / ol f(a0) — ()]
\ w

1 1
X< - )
W— Wi —1€ w—wp-l—ie/a2(w)

where

1 1 a(wp)alwk 1
Alpk)= 1 (wp)a(wy)

. (32)
(27)3 w1 (Awpwi)'/? wr—wpt-ie

We can further rewrite I:

I=A(pk) / dw
I

1 1 \ 1
xl:( — —c.c.:|
w—wtie  w—w,+ie/1—N(w)

Wy Wp

f(wi) —

+2riA (p,k)I:

a2(wk)

e |

a*(wp)

= (wk—w,)4 (p,k)/w dw

1 1
X[ —c.c.:‘
(w—wr+ie)(w—wp+ie) 1—N(w)

1
~ G = ).
m

(33)

Here c.c. means the complex conjugate. We thus find
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that

1
(2#)3/—2[%(1—{—1{’ k)+dp1*(k,p) ]

+ / @ cp(14-k, 1)dp 1 (k1)

= (wx—w,) A (p,k)

d | ! ! 34
X/C w(w—wk)(w—wp) 1—)\I(w)' (39

The contour C for this integral is made up of Cjy, Cs,
and Cj: C1 moves below the real axis from « to g, Cs
moves above the real axis from « to u, and C; is the
infinite circle. The integral on the right-hand side of
(34) vanishes unless there is a point w, inside of the
contour such that

1—N\ (wo)=0. (35)

Relation (35) does not have more than one solution
since I (w) is a monotonically decreasing function.

Let us assume the case where the coupling constant
X\ is such that (35) has a solution. This solution w,
resides on the real axis and wo<u. Then (34) becomes

1
Gl R ()]

+ / % (14K, r)dp 1 * (k1)

1 a(wp)a(w) B(wo)
= . (36)
(27)? (dwpwi)'? (wo—wi) (Wo—wy)
Here B(wy) is defined by
1 B(wo)

1—N(w) - We—W

+77(w) )

where n(w) has no pole terms at w=w,. Making use of
(35) we obtain

2 T

(37)

Comparing (36) with (28), we see that microcausality
is violated because the right-hand side of (36) is not a
finite polynomial in p. Thus we need to modify the
initial set of physical fields.

We can obtain a clue in this direction by noting that
(29) was the contribution of the following term:

2 AN [0 | N 14— 0:™)
p,r
XAV p1aer 07 Y1 () | 67)

where the energies of the intermediate N»9i* states are
m—+w;. We may thus expect that the microcausality
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condition can be secured by the effect of a single-
particle state which has the energy m-wo and behaves
like Nirgi» under the phase transformation (9). We shall
thus introduce a fermion B™ which transforms as

Bin Binei(a1+a2) (38)

1895

under the transformation (9). Due to this nature, Bi
is called a bound state of NV and 8. Our set of physical
fields is now (i@ Bin), Since (14) and (38) should
induce the transformation (9), expansions (15) and
(16) are modified as follows:

0(x> =0in(x)+/d3f)d3qd3r NqinTNp_‘l_q_ringrincp(q’r>eip'x—iwrt+/d3Pd3l gp(l)]\flin‘l‘Bp_l_lineip-x—i(Mp+1—m)t+ s (39)

Kb(x) — ‘pin(x) _+_ /d:ipdsqur 0qinTNp+q_rin0rindp(q,r)eip~ x—i(wr—wgtm)t

Here M, is the energy of the fermion B™» and g,(1)
and 7, (1) are coefficients to be determined. The reader
should convince himself that the inclusion of the Bin
in (39) and (40) in no way affects our arguments from
the beginning of this section to (26).

By substituting (39) and (40) into the field equations
(7) and (6) and taking the matrix elements (NV»|
XEq. (7)| Bps1™) and (6| Eq. (6)| Bp41™), we obtain
the relations

) A a(wp)
0= Mo—wy—m (2w,)?
o(wy)
X [, @)
(2wi)1/*
a(wr)
he(1) =
Mypi—wi—m (2wy)'/?
a(wk)
x [ g r-n. @)
(2uwy) 12
From these relations we deduce that
m(p)=g,(D) . 43)
Defining
a(wy)
et =) [ o, ()
Wi
Eq. (41) can be written as
B+  a(w,)
&)= ’ (45)
Myp—wy—m (2wy)?
Substituting (45) into (44), we find that
MMpp—m)=1. (46)
Comparing this with (35) leads to
M ypr1=wotm, (47)

+/d3pd3l hp(l)glinf3p+li§:e¢p~x—i(Mp+1—w1>t+. -+, (40)

as was expected.’ Equation (47) also shows that M, is
independent of p+41. M 4, will be denoted by M in the
following argument.

We have seen that the quantities g, (1) and %,(1) are
determined by (45) and (43) up to the unknown
normalization factor 8(p-+1). This means that the field
equations (6) and (7), although not requiring the
existence, are indeed consistent with the existence of
the composite particle Bi* of energy M. However, the
existence of B'™ is required by the microcausality
condition. This leads to a nonvanishing value of
B(p+1). To demonstrate this we shall study the matrix
element (27). Using (39) and (40), the microcausality
condition (28) is modified as

1
(__)37[61,(14-1{ , k) +dypir*(k,p)]

+ f @ ¢y (1K, 1)dp* (K1) + gy (1K) s 1* (k)

=finite polynomial in p. (48)

Making use of (36), (43), (45), and (47), we obtain
from (48)

B =[1/(2m)*1B(M —m) (49)

where 8 means 3(p+1+4k). Equation (49) shows that
B(p+1+k) is a constant independent of (p+1+k).
The quantities g,(1) and %,(l) are now determined:

() =(p)

|:B(M—m):|1/2 1 a(w,) 0

(2m)3 M—m—w, (2w,)1/2
® The Bethe-Salpeter equation cannot be used to look for the

bound state here since we do not a priori know the commutatlon
relations for the Heisenberg fields.
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Equations (39) and (40) show that
H=m/d3k Nkin‘l‘Nkin_l_/dSk wkgkin'l’ekin

+M/d3k Bki’ﬂBki" (51)
acts as the Hamiltonian:

P a0
29 _m, 2 w2
ot at

According to (14) and (38) the transformation (9) can
be generated as

exp(—iamy —iame)¥ exp (iann—+icame) =€y

. . . . ) (53)
exp(—iamy—1iaems)0 exp (tamy—+iogme) =€ ,

where the generators are

ﬂN=/d3k ((VkinTATkin_l_BkinTBkin) , (543,)

ﬂ0=/dak (akixﬂ‘gkin_*_BkinTBkin) . (54b)

The eigenvalues of 9y and 7 are called the N number
and 6 number, respectively. For example, ny=1, 75=0
for |N), ny=0, ne=1 for |6), and gy=ns=1 for
| Bin), etc. The terms denoted by three dots in (39)
and (40) do not contribute to any calculation confined
to the subspace made up of the states of (ny<1, 9<1).
We have thus determined ¢ and 6 completely as far as
the above subspace is concerned. In the Appendix
we present calculations of higher-order terms in (39)
and (40).

Knowing expansions (39) and (40), we can evaluate
the equal-time commutators for the Heisenberg fields.
Here we confine our attention to the above subspace.
The result is the canonical equal-time commutators.

To look for solutions of other types, we need to
modify (14). Since the transformation (9) keeps the
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Heisenberg field equations (6) and (7) invariant,
corresponding transformations of the in-fields maintain
the invariance of the in-field equations. Because the
infield equations are linear homogeneous differential
equations, we may consider the following possibilities:

(55a)
(55b)

‘bin — eicwu'/,in ,
i — eferergint (4,01 +doaig) .

Here di=d>=0 unless the physical mass of ™ is zero.!0
When the constants ci, ¢35, di, and ds are specified, we
write down the expansion of ¥ and 6 in terms of physical
fields and then follow the steps of the self-consistent
procedure. Any specific choice of the constants is
justified only when it leads to a sensible self-consistent
answer. It can even happen that 6 and N® do not
transform (ci=ca=d1=d>=0). Still there may appear
other composite fields whose transformations still
induce the Heisenberg field transformations in (9).

III. CONCLUSION

In Sec. IT we illustrated the main steps of the self-
consistent procedure by means of a solvable model.
In this model it so happened that the existence of a
composite particle was required not by the basic field
equations, but by the condition of microcausality. The
equal-time commutation relations for the Heisenberg
fields were not assumed, but calculated; and the
result of this model turned out to be the canonical
commutators. The method gives rise to an interesting
question: How general are the canonical commutators?
It would be an interesting problem to apply the self-
consistent procedure to quantum electrodynamics with-
out the Gupta-Bleuler photons of negative probability.

APPENDIX

We shall now show how the coefficients of the higher-
order normal-product terms in the dynamical map (2)
can be determined.

The expansion for 6 is

g(x) =0in(x)+/d3pd3qd3r NqinTNp+q_rin0rineip-xcp(q,r)e—iw,t+ /dSPd3l gp(l)Aflin’rBP+lineip~xei(m—-M)l

+/d3pd3qd3rd3sd3u Yp(q)r,s’u)NqinTorin'l’osineuinZVp_‘_q+r_s_uineip-xei(wx-—‘ws—wu)

+/d3Pd3qd37’d33d3u Nqin'l'ZVrin’l'ATsin]\Tp_!_q_H__s_uinouineip~xe—-iwutZP (q,r,s,u)

+/d3pd3qd37d3s Nqin’[’erinTBp+q+r_sin0sineip-xe—-i(ws—'wr)te—a'(M—m)tGp(q,r’s)

10 When d;7#0 or d2740 there occurs the spontaneous breakdown of symmetry.
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_|_/dspdaqdardssNqim‘Nrin‘rBN_(H_‘_sinNsinXP(q’r’s)eip-xe—i(M—m)t

+/dspd3qd37’d35 Bq+r+s—pin1'Nq inorinosine— ip Xt (M—m—wg—wr) th(q,r,S)

+ dspd3 d3r qum‘ Bp “_xinfgrin Rp(q,r) PR R ol I R
q

The expansion for ¥ (x) is

Y(@) =yin(x)+ / Bpdqdireinr-xeiwretd (¢ r)0g ™ Ny qr™0,in / @3pd® hy(1)0int By, yingipxgtior-20)e
+ / dPpdiqdirdisd®u N ™10, 210, N JnN oy 1oy ingie Teitur—ue—DD (g 1,5, 1)
+ / A3pdiqddrdds N im0t By, oy, JnN ingiv sgritus—IDi4 (q1,5)
-+ f d*pd3qdPrd®s Byyqyeys™ N PN ing,inein xgiM—2m—vs)t B (q r,s)
+ / d*pdPqdPrd®sd®u 0,110,100 0N oy o4 g uiPe Xeimic (g 1,8, 1)

+/d3pd3qd3rd3s 0qin‘l‘orini‘gsian_*_‘H_l__sinKp(q’r’s)eip'xei(wq+wr-wg—M)t
+/d3pd3quf qun‘l’Brian_’_q_rineipxe—imt+ cen,

Here the three dots stand for higher-order normal-product terms.
By taking the following matrix element (Bi»|Eq. (7)| Bn™®8,i"), we obtain

N(27)3/2 a(wr)a(Win-m) M/ (2r)32 (wn)o(Wi—m—n)
Rojma(ln)= ——— f & hi—x*(n)g.(m —r) -+ / &3 h* @) g () ———————.
Wn=—Wntm—1 dww l—-n—m) V2 qpy— Watm—1 4wn'wl—m—n) 1z

Similarly, by taking the matrix element

(Nyi*Nvi2| Eq. (7)| NwinBnin) ,
we obtain

A a (wv+ u——m—w) a (wm—u)
X m+w—'—“(uywyv) -X mw—v—u (vyw’u) =

m _M (zwv+u—m—w) 1/2

A o (wm w— l-—u)a ('wv — —w)
+ / a— O X vt ta (bW, 1) = Xt et (i, w,1) ]
m—M (4wm+w——l—uwv+u—-m—w) 1/2

A e (wm w— l——v)a ('w —m—~w)
+ M /dsl ! b EXVH-m—l—v(l;W;v) —Xw+m—l—v(V,W;l)j .
m—

(4wv+u—m—ww mw— l—v) 1/2

Similarly the other coefficients may be computed by taking the appropriate matrix elements. We may find that
these coefficients do not admit a consistent solution. In that event we must modify the dynamical map (2) by
adding new physical fields.



