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A self-consistent quantum 6eld theory is proposed wherein the field equations for the Heisenberg 6elds
are postulated, The Heisenberg 6elds are required to be linear combinations of normal products of the
physical free fields, and the coefFicients of the expansion are determined self-consistently. 5'o g priori knowl-
edge of the equal-time commutation relations among the Heisenberg fields is assumed. Using a solvable
model, it is shown that local microscopic causality requires the existence of a bound state.

I. INTRODUCTION

'HIS paper aims to illustrate the main computa-
tional steps in a self-consistent formulation of

quantum field theory by means of a solvable model.
Special emphasis is placed on the self-consistent
identi6cation of the "composite particles" and on the
self-consistent determination of the equal-time com-
mutators among the Heisenberg fields. This situation
is diferent from the traditional formulation of quantum
6eld theory where canonical commutation relations
alc assumed foi Hclscnbcrg 6elds.

Let us brieQy discuss how self-consistency plays an
important role in formulating the quantum field theory. '
In a trad~t~o~al form of quantum 6eld theory one begins
with field equations (or with a Lagrangian) for Heisen-

berg operators which are assumed to satisfy equal-time
canonical commutators. One reason for the assumption
of canonical commutators was that it supplied us with

a convenient way of introducing a particle interpreta-
tion of quantized fields. Such an interpretation emerged
when the Pock space was adapted as a realization of the
canonical commutators of Heisenberg 6elds. In the
Fock space one can choose a basis in which each state
vector is represented by a series of numbers, each
number signifying the totality of particles in respective
partide states. However, this reason for canonical
commutators of Heisenberg 6elds turns out to be less

impressive when one observes that the particle numbers

concerned. in physics are not those of the "bare particles"
but of the experimentally observable (physical)
particles. Also one finds that the canonical commutation

relations usually possess a host of unitarily inequivalent
realizations" —i.e., frequently the Fock space of the
bare particles is not unitarily equivalent to that of the

physical particles. ' ' One may then pursue either of the
three following possibilities: (a) Forget the Fock space
of the bare particles and use only the Pock space of the

physical particles. (b) Try to formulate a new theory
in a nonseparable Hilbert space which includes all the

L. Leplae, R. N. Sen, and H. Umezawa, Progr. Theoret.
Phys. (Kyoto) Suppl. 637, (1965); H. Umezawa, Acta Phys.
Hung. XIX, 9 (1965).

2 L. Van Hove, Physica 18, 145 (1952); A. J. Wightman and
S. S. Schweber, Phys. Rev. 98, 312 (1955); H. Araki, J. Math.
Phys. j., 492 (1960).' R. Haag, Kgl. Dan@c Videnskab. Selskab, Mat. -Fys. Medd.
29, No. 12 (1955),
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realizations of the canonical commutation relations.
(c) Try to use only the algebraic aspects and forget
the realizations. In this paper we shall work with the
first possibility because of the facility in performing
practical computations.

Our task then is to formulate a quantum 6eld theory
where the field equations for the Heisenberg operators
are described in terms of the Fock space of the physical
particles. Since the physical particles are described by
field operators satisfying free-field equations with
observable masses and spins, the Fock space of the
physical particles can be built as a realization of the
canonical commutators of these free 6elds. Thus there
is no need to assume the canonical commutators of
the Heisenberg operators.

Our point of departure is the formal structure of
the Geld equations for Heisenberg operators
(i= 1, . . . ,m),

which we regard as given. Here Ai'&(8) are differential
operators and j"' are functions of. Heisenberg 6elds,
Let p&'& (i = 1, . . . ,m) stand for the free fields of physical
particles. We treat Q&' according to the well-known
formulation of the quantized theory of free fields.
Thus P&'& is a linear combination of creation and
annihilation operators and the Fock space is constructed
by applying the creation operators cyclically on the
vacuum state. We require that the Heisenberg fields
should. be linear combinations of normal products of
the physical free 6elds:

f"'(x)=X"'+C;,&'&'(x)+ d'yi d'ys

Here X('~ denotes a c-number constant and the dots
stand for higher-order normal products. ' Our problem

4 There is no reason to assume that e=&N.
~ Here we assumed the translational invariance of the system.

The expansion form should be modified when we consider cases
like crystals. In the relativistically invariant theory without any
spontaneous breakdown of Lorentz symmetry the c-number term
x(') does not appear unless P&'& is a scalar or pseudoscalar. The
problem of convergence of the expansion does not arise simply
because the normal-product terms are linearly independent of
each other; each expansion coeKcient is the respective matrix
element of P('&.
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is to find solutions of (1) in the form (2). To do this
requires a self-consistent determination of the physical
fields. This is because the physical fields can be iden-
tiGed only after we solve the Geld equations (1) while
we need the physical fields to write down expansion
(2).' To begin the self-consistent approach we prepare
as a candidate for the set of physical 6elds a small set
of free 6elds whose masses are unknown. Regarding
these free fields as physical fields, we write the Heisen-
berg Gelds P"' in the form (2) and feed this expression
into the field equations (1). We then obtain a set of
equations for the expansion coefficients (&'o,C,;,C;,;i,
. . .). By solving these equations, we determine expan-
sion (2) together with the masses of the physical
particles. When these equations do not admit any
solution, we modify the initial set of free 6elds and
repeat the computations. Such a modi6cation of the
initial set of free 6elds is frequently made by introducing
more members of the free 6elds. This is the way many
composite particles are successively brought into the
set of physical 6elds.

As an example, suppose that we are given a field
equation for the nucleon Heisenberg 6eld. We then
choose as the initial set of physical fields an isodoublet
free Dirac field which is regarded as the physical
nucleon. Writing the nucleon Heisenberg held in the
form (2) by means of normal products of physical
nucleons and then feeding this expression into the
field equation for the nucleon Heisenberg field, we
obtain a set of equations for the expansion coeKcients.
We may then find that these equations do not have a
solution unless they are modi6ed by introducing a new
member in the initial set of free fields. This new member
may turn out to be the physical deuteron. v

It is obvious that the success of the self-consistent
procedure depends on the initial choice of free 6elds.

To be more precise, there are additional constraints
to be imposed on expansion (2). One requirement is that
if we use incoming fields to describe the physical
particles then we require that effects of the in-fields
on the Heisenberg fields come only from the past.
This means' that the expansion coefficients in (2) are
of a retarded nature. 8 Another requirement is the
condition of microcausality, which states that two
local operators on a spacelike surface commute with
each other when their positions do not coincide. We
thus require that equal-time commutators among
Heisenberg operators are made up only of terms

A similar situation exists also in the LSZ (Lehmann,
Symanzik, and Zimmermann} formalism. In the LSZ formalism
the physical Gelds are determined by considering the weak limit
(t —+ + ~) of the Heisenberg Gelds. However, in order to perform
the weak limit, a preknowledge of the Pock space of the physical
particles is required.

This definition of composite particles is based on the irre-
ducibility of the physical Geld operator ring. See H. Ezawa,
K. Kikkawa, and H. Umezawa, Nuovo Cimento 25, 1141 (1962);

. H. Ezawa, T. Muta, and H. Vmezawa, Progr. Theoret. Phys.
{Kyoto) 29, 877 (1963).

'When the @'s are outgoing Gelds, the expansion coeKcients
in (2) are of an advanced nature.

proportional to the 8 function carrying powers of space
derivatives of finite order:

Here the symbol ~ signifies either anticommutator
or commutator: [A,B]~=AB&BA. This sign is
determined according to the usual rule. In (3), 8"
denotes the eth power of space derivatives; the highest
power l is required to be finite, and the coeKcients
a„&' &' can be operators.

There are no u priori conditions on the a„&' 'i. As a
matter of fact the coefficients a„"'& in (3) can be
computed when the expansion form (2) is determined.
Thus in a self-consistent formalism of quantum 6eld
theory the equal-time commutators of Heisenberg
6elds are to be computed. This poses an interesting
question: How general are the canonical commutators?
The above argument also suggests that the self-
consistent formalism may be able to treat cases where
the canonical formalism is inconvenient. In this
connection it would be an interesting problem to
calculate the commutation relations of electromagnetic
Heisenberg operators in quantum electrodynamics
without the Gupta-Bleuler photons of negative
probability.

In Sec. II we shall illustrate all the steps of the
self-consistent procedure by means of a solvable model.
We will 6nd that the condition of microcausality
plays an extremely important role: It is the condition
which determines the renormalization constant (s
factor) and which requires the existence of a composite
particle.

I et us close this section with a comment on the
Hamiltonian in the formalism under consideration.
Denote by P„ the translation operators:

Then expansion (2) shows that P„ is equal to the
translation operators of the free fields @"&:

The Hamiltonian H, satisfying

BP~'~(x)
=[y&'~(x) IIj

Bt

is that of the free fields, i.e., H=H(p&'&) = iP4. —
This is an example of the general feature that when we
consider any symmetry transformation the generator
of the transformation should be prepared not in terms
of the Heisenberg operators, but in terms of the free
6elds. We will see an example of this feature in Sec. II.

II. SELF-CONSISTENT CALCULATION

In this section we will exhibit the main steps of the
self-consistent procedure by means of a solvable model.
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which leads to (8,'" I
Kq. (6) I

1V,~, ,'"8,'") yields the relation

8
+z(~z P2)1/2 8in(&) 0

-Bt

Xzi n(w, )n(w, ) 1
(17) d, (q,r) =

(21r)z/ (4w w )1/1 w —wg+M

This shows that wi, ——(k'+/z')'/'. In a similar way the
matrix element (0 I

Eq. (6) I $,'") leads to

n(w, ) 1
+)zi"'

(2w )"'w —w, +ze

(18)
n(wi)

X d'l — ci(p+q —1, r) . (24)
(2wi)'/'

This means that m~=m, which is independent of p.
We have thus determined the energies of the physical
particles.

By considering the matrix element (O'
I
Eq. (7) I

8'"8'")
and using (15) and (16), we find. that

This, together with (22), leads to

Xzi n(w, )n(w, ) 1
d, (q,r)= — . (25)

(2zr)z/' (4w w,)"' w, w~+—is 1—XI(w,)

a, (q,r) =0. (19)

In a similar way, the matrix element (ll/'"IEq. (6)
I

X'"Ar'"} gives
(20)b, (q,r) =0.

)zii/' n(w )n(w) 1
c,(q, r) =

(2zr) 1/' (4w w )'/' w w, +ic—

Xn(wp)

(2w )"'w —w, +ze

Note that a change of normalization of il/ and 8 by a
common factor (i.e., f~ /zP, 8 ~ /z8) modifies only the
coupling constant (X~ /z9, ) in the field equations (6)
and (7). We are thus free to fix either zi or zz. We shall
set s2 ——1.

To determine the coefficients c~(q,r), we substitute
(15) and (16) into both sides of Kq. (7). Taking the
matrix element (1V,'"IKq. (7) IS,+, ,'"8,'"},we obtain

In (21) and (24) we have defined 1/(w, —w, ) by
1/(w, —w~+ze), so that c~(q,r) and d~(q, r) would be
of a retarded nature.

We will now show that the microcausality condition

(3) requires zi=1. Using (15) and (16) (with zz=1),
we And

(0 I [P(x),8(y) j&,=&„I Xi Q 8' )

=e"r d'p e'i*-» 1'[ci,(p,k) —z, '/'d, (l—k, k)$.

This should have the form of the right-hand side of (3).
This means that

ci ~(p,k) —zi'/'d~(l —p, k) =finite polynomial in p .

Using (22) and (25), we ffnd that zi'/' ——1. This leads to

(26)

n(wi)
X d'l ci(p+q —1, r) . (21)

(2w ) 1/2

The solution of (21) is
that

9'1+~'"
I [4'(*),8(y) 3/, =/, I

8~' )

even when x=y.
In a similar way we can show by considering

(27)

1
I~zii/' n(wy)n(w, ) 1 1 [cu(1+» k)+du+i(»p))

ci, (/l, r)=,(22) (2zr)'/'
(2zr)'/' (4wyw, )'/' w, wp+ic 1——XI(w,)

where
n'(wi) 1

I(w,) = d'l-
2w 1 w, w 1+1E—(23)

Evaluating

+ d'r c,(1+k, r)d,+i*(k,r)

= finite polynomial in p. (28)

Likewise substituting (15) and (16) (with z, =1) into
both sides of Kq. (6) and taking the matrix element

I= d'r c,(1+k, r)d, +i~(k,r), (29)
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we find using (22) and (25) (with si ——1) that that

1 2 n(wp)n(wg)

(2pr)' Ss'i (4«,wk)"'

1
X d'r[f(w, ) f*(w—,)]

n'(w, )

1
X—

wg wp+zp wz —wp —1p (wz —p )

Here we have dehned

l~n'(w)
(w) =

2w 1—XI(w)

(3o)

—[cp(leak, k)+.dp+i*(k, y)]
(2pr) '~'

+ d'r cp(1+k, r)d,+i*(k,r)

= (w~ —wp)A (y,k)

X d~ (34)
(w wg)—(w wp—) 1—l~I(w)

The contour C for this integral is made up of C~, C2,
and C3.. Ci moves below the real axis from ~ to p, C2
moves above the real axis from ~ to p, and C3 is the
infinite circle. The integral on the right-hand side of
(34) vanishes unless there is a poin. t wp inside of the
contour such that

which satisfies the relation 1—XI(wp) =0.

We can rewrite Eq. (30) as

dwl f(w) —f*(«)3I=A(y, k)

(35)

&')'"If(w) I'= Lf(w) f*(w)3/g~'i (31) Relation (35) does not have more than one solution
since I(w) is a monotonically decreasing function.

Let us assume the case where the coupling constant
X is such that (35) has a solution. This solution wp

resides on the real axis and wp(p. Then (34) becomes

1 1 w —[cp(1+k, k)+dp+i(k, y)jxI — — —, (2)(
k« —wg —zp w wp+zp —n (w)

where
1 1 n(wp)n(wk) 1

A(y, k) =- — — — . (32)
(2s)' si (4«pwca)'i' wg wp+i—p

We can further rewrite I:

I=A(y, k) dw

+ d'r c,(1+k, r)d„ i*(k,r)

1 n(wp)n(wk) B(wp)
(36)

(2pr)' (4«pwca)"' (wp —wg)(wp —wp)

Here B(wp) is defined by

B(wp)
+q(w),

1—'AI(w) wp —w

1
xI

kzz —zz +z zz —zz, +z )1—XI(zz)
—c.c. where g(w) has no pole terms at w=wp. Making use of

(35) we obtain

+2+iA (y,k) f(wk)—
n'(wg)

Kp f*(wp)—
n'(w, )

n'(w, )
B(wp)= ), d'r

2w, (w, —wp)'
(37)

= (w~ —wp) A (y,k) dw

1 —c.c.
(w wg+zE)(w— wp+'1p) 1 XI(w)— —

c,(1+k, k) — dp~~~(k, y) . (33)
(2~)"' (2pr)"'

Comparing (36) with (28), we see that microcausality
is violated because the right-hand side of (36) is not a
finite polynomial in p. Thus we need to modify the
initial set of physical fields.

Ke can obtain a clue in this direction by noting that
(29) was the contribution of the following term:

r. &»+.'-I eh) I»,++. .'-0.'-)
p, r

where the energies of the intermediate E'"0'" states are
Here c.c. means the complex conjugate. We thus And m+w, . We may thus expect that the microcausality



D E R I V A T I 0 N 0 F E Q II A L —T I M E C 0 M M U T A T I 0 N R E L A T I 0 N S 1895

g'H ~ gIH~'(+1+~2) (38)

condition can be secured by the effect of a single-
particle state which has the energy m+tt)3 and behaves
like X'"f)'n under the phase transformation (9).We shall
thus introduce a fermion 8'" which transforms as

under the transformation (9). Due to this nature, B'"
is called a bound state of E and 0. Our set of physical
fields is now (E'",O'",B'"). Since (14) and (38) should

induce the transformation (9), expansions (15) and

(16) are modified as follows:

g(S) —gin(a)+ d8Pd3(fdsr g intA)' ing in(. (q r)Sty x iwtt+— d3Pd3(t g (})A7 intB ineiy x—t(My+3—m)t+. . . (39)

p(+) pin(a)+ dspds~dsr g int+ + ing ind (q r)etp ~ x ~(wg wt(+m)t

+ d8Pd3)) It (1)0 intB iniety x t(M-p+3 wi)—t+. . . (4O)

n(wp)
g (1)=

M,+i 3()p m—(28()3—)"8

n(w), )
X d8& gs(p+1 —k) t (41)

(2W3)"'

n(tot)
hp(1) =

M +i—Wi —m (2'ly)) (

n(tt)k)
X d3I'3 g),(p+1—k) . (42)

(28()a)'"

From these relations we deduce that

Defining
hi(p) =gp(1) .

n(w(, )
p(p+1) =X d3i3 gk(p+1 —k),

(23()(,) ') 8

Eq. (41) can be written as

n(tt)p)
gp(1) =

My+i —'?Up —m (2'N )

Here My+i is the energy of the fermion B'" and gp(1)
and h, (1) are coeKcients to be determined. The reader
should convince himself that the inclusion of the 8'"
in (39) and (40) in no way affects our arguments from
the beginning of this section to (26).

By substituting (39) and (40) into the field equations
(7) and (6) and taking the matrix elements (X('"l
XEq (7) IB.+i'") and (f)i'"IEq (6) lB.+i'"), we ob«in
the relations

[t;p(1+k, k)+dp+i*(k, p))
(23r)"'

+ dtr(:p(1+k, r)dp+i*(k, r)+gp(1+k)hp+i"(k)

=finite polynomial in p. (48)

Making use of (36), (43), (45), and (47), we obtain
from (48)

O'= [1/(2 )'jB(M— ), (49)

where P means P(p+1+k). Equation (49) shows that
P(p+1+k) is a constant independent of (p+I+k).
The quantities gp(1) and hp(l) are now determined:

g, (1)=I (p)

as was expected. ' Equation (47) also shows that M,+i is
independent of p+1. My+i will be denoted by M in the
following argument.

We have seen that the quantities gp(1) and Itp(1) are
determined by (45) and. (43) up to the unknown
normalization factor P (p+1). This means that the field
equations (6) and P), although not requiring the
existence, are indeed consistent with the existence of
the composite particle 8'" of energy M. However, the
existence of 8'" is required by the microcausality
condition. This leads to a nonvanishing value of
P(p+1). To demonstrate this we shall study the matrix
element (27). Using (39) and (40), the microcausality
condition (28) is modified as

Substituting (45) into (44), we find that

XI(My~i —m) =1 .
Comparing this with (35) leads to

3IIp+( =it)o+m,

B(M m) "' —1 n(tt)p)
(50)

(23r) 3 M —m —tt)p (23()p) '(3

' The Bethe-Salpeter equation cannot be used to look for the
bound state here since we do not e priori know the commutation

(47) relations for the Heisenberg fields.
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