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scattering. We have shown how the approach, making
use of the geometry of velocity space, leads to crossing-
symmetric expansions . (for particles with arbitrary
masses) having reasonable threshold and asymptotic
behavior.

We plan to continue our investigation, in particular
to consider the problem of analytic continuation into
nonphysical regions and between physical regions, and
to establish the exact connection with Regge-pole
theory, i.e., to show how moving poles in the complex
angular momentum plane manifest themselves in the
properties of our expansion coefFicients. Further
problems under consideration are the relation of the
obtained expansions to various dual-resonance models,
the calculation of expansion coefIicients in various
models, and (one may hope) applications to the
description of specific scattering or decay processes.

The mathematical problems which arise are related
both to the development of group representation theory
in bases not corresponding to the reduction of a group
to any subgroup, and to expansions of non-square-
integrable functions in terms of nonunitary representa-
tions of noncompact groups.
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Some rather paradoxical features of chiral symmetry breaking are shown to be directly related to the fact
that the vacuum is supposed to be degenerate in the limit of exact symmetry. The importance of picking
the correct one of the many symmetry-limit vacua is stressed. A peculiar phenomena of spontaneous CP
violation appearing alongside SV(3)QxSV(3) breaking is observed. (In the model investigated here, the
effect is much too large to be at all related to that seen in weak interactions. ) For the (3,3)Q+(3,3) model of
symmetry breaking, it is shown that the rate for /C8 —+ 2x should be suppressed by a factor of PSV(3}
QxS U(3) breaking j . This may or may not be a difliculty. A number of other topics in chiral symmetry break-
ing are discussed briefly.

I. INTRODUCTION
' 'T appears to be reasonable to adopt a picture of the
- ~ strong interactions in which the strong Hamiltonian
H can be meaningfully written as

H =Hp+eH',

where Hp is SV(3)SSU(3) symmetric and H' contains
the (small) departures from exact symmetry. ' ' We
suppose that B' takes care of not only the corrections
to chiral symmetry, e.g., corrections to partial conser-
vation of axial-vector current (PCAC), but also the
corrections to SU(3) itself, e.g. , mass splitting. An ad-
vantage of this way of looking at the strong interactions

*Alfred P. Sloan Foundation Fellow.
The original suggestion that PCAC is related to chiral sym-

metry was due to Nambu and collaborators. Later Weinberg
pointed out that current-algebra results could be interpreted
as the consequences of an approximate chiral symmetry. The
present paper is based on ideas expressed in Ref. 2. More recent
papers on chiral symmetry are too numerous to list in any reason-
ably fair manner.

' R. Dashen, Phys. Rev. 183, 1245 (1969).

is that one can hopefully relate these two types of
symmetry breaking.

In the limit e=o the eight pseudoscalar mesons are
supposed to be Goldstone bosons and, hence, massless.
To first order in e, their masses squared are given by the
elementary formula

where n=1, . . . , 8 labels the mesons; X' is the density
of II', i.e.,

H'= d'z K(x,0) .

and (P~ is a covariantly normalized state, i.e., (P~P')
=2Pp3'(P —P'). Taken at face value, Eq. (2) has a
peculiar property. The left-hand side is necessarily
positive, but there does not appear to be any reason
why the matrix elements on the right-hand side cannot
be negative. One is thus led to ask the question of
whether positivity of the squares of the meson masses
places some restriction on X'.
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The question just stated turns out to be closely
related to an apparent paradox which has been dis-
cussed by Kuo' and by Okubo and Mathur. 4 Kuo
points out that a specific symmetry-breaking term X'
can be subjected to SU(3) jg)SU(3) transformations and
that the new X' thusobtained looks as though it de-
scribes a world which is different, in a physically signifi-
cant way, from that described by the old one. This is
to be contrasted with SU(3) alone. Making an SU(3)
rotation on 3C' does not introduce new physics. It
appears, according to Kuo's work, there might be an
inherent ambiguity in the de6nition of X'.

The answer to both questions raised above is buried
in the fact that the vacuum is not supposed to be an
SU(3)SU(3) singlet even in the limit s —+0. In fact,
there is a whole continuum of vacua which are all
equivalent as fax as Bp is concerned. On the other hand,
the complete Hamiltonian H =H,+eH' is supposed to
have a unique vacuum. As e goes to zero, this unique
physical vacuum goes over to one of the many vacua
which are degenerate in the symmetry limit. Therefore,
3." not only determines how the symmetry is broken
but also which of the many vacua of Hp is relevant for
physics. This has the following consequence. The
physical meaning of SU(3) is that subgroup of SU(3)
I3SU(3) under which the vacuum is a singlet in the
limit e —+ 0, and hence can be used to classify particle
states. But since X' determines which of the vacua of
H p is the relevant one, it follows that the physical SU(3)
group is not independent of X'. Therefore, if we choose
a coordinate system in SU(3)SU(3) space in which

physical SU(3) plays a special role, then X' cannot
have arbitrary properties in that coordinate system.
This, it turns out, resolves the paradoxes of possibily
negative squares of meson masses and Kuo's
transformations.

A large part of this paper is devoted to a thorough
explanation of the points mentioned above. The be-
havior of a ferromagnet in an external field is used to
bring out the physics of the problem —the problem
evidently being one of, given 3C', how to 6nd the correct
vacuum of Hp. The machinery to do this work is de-

veloped for an arbitrary group rather than just SU(3)
SU(3). There is a reason for this. The group SU(3)
SSU(3) has some special properties which tend to
obscure the basic physics. Later, specializing to SU(3)
SSU(3), several examples are worked out in detail.
Also, it is shown that if one does everything correctly,
the squares of the meson masses come out positive for
any 3C'.

Most of the above is done in Sec. II. The discussion

may seem rather long and formal to some readers. It is
the author's feeling, however, that the determination of
what it is that breaks SU(3)SSU(3) and SU(3) is one
of the most important problems in particle theory. To
do this in the case of SU(3)SU(3), one needs a real

' Y. Kuo, Phys. Rev. D 2, 342 (1970).' S. Okubo aud V. Matbur, Phys. Rev. D 2, 894 (1970).

understanding of how theories with degenerate vacua
work. Some surprising things can happen. In the middle
of Sec. III a phenomenon of spontaneous CP violation
is illustrated. Here one starts with a CP-invariant Bp
and an 8C' that appears to preserve CP, but the resulting
theory shows CI' violation. What happens is that X'
picks out not one but two vacua which are CP images of
each other. The CP violation found in a model in Sec.
III is much too large to be in any way related to the
effects observed in weak interactions. It does suggest,
however, that further research along this line might be
interesting. The reasons for taking the vacuum of Hp
to be SU(3) symmetric, not just SU(2) symmetric, and
what this implies about the hypothetical ~ meson are
also reviewed in Sec. III. Section III ends with a dis-
cussion of the "allowed domains" for symmetry-break-
ing parameters discovered by Mathur and Okubo. ' It is
found that their disconnected domains are actually
interconnected by theories exhibiting spontaneous CI'
violation.

Section IV contains some points of more immediate
relevance. After deriving a general formula for the
trilinear coupling of Goldstone bosons, it is shown that
the decay amplitude for E—+ 2m is of order Ge' in the
(3,3)6(3,3) model, ' r where G is the Fermi constant.
This is to be contrasted with a decay like A-+s+1V,
whose amplitude is simply of order G. The rate for
E,' —+2m does not appear to be depressed by the
indicated factor of e4. This may or may not prove to be
a problem for the (3,3)(l)(3,3) model. In connection
with this, the rationale for X' belonging to (3,3)8 (3,3)
is reviewed. It is pointed out that the meson masses
can be fitted with X', a linear combination of SU(3)
singlet and octet from any representation (X,X)
(X, X) of SU(3)SU(3). A consequence of this is
that the smallness of ns ' does not necessarily imply that
SU(2)SU(2) is a better symmetry than SU(3) or
SU(3)SSU(3), contrary to what seems to be commonly
believed.

The various sections and subsections are written so
that to some extent they can be read independently.
Notational conventions relating to SU(3)SU(3) are
listed in the beginning of Sec. III.

II. GENERAL PICTURE

A. Ayyarent Paradox

Suppose for the sake of argument that eX' is —N8, an
I=O, I'=0, even-parity member of (3,3)9(3,3). (We
write —48 rather than just Ns for reasons which will

become apparent later. ) Then according to Eq. (2),

m. '= —(P i ds(0) i P.)+0(s')
= (coilst)d~~s+0(s ) ) (4)

' V. Mathur and S. Okubo, Phys. Rev. D 1, 2046 (1970).
6M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,

2&95 (1969).'S. Glashow and S. steinberg, Phys. Rev. Letters 20, 224
(1968).
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in'which we have naipely used SU(3), which is supposed
to be exact in the limit e —+0, to evaluate the matrix
element. The trouble with Eq. (4) is that d p changes
sign as 0. varies so that at least one ns ' must be negative.
Where is the mistake? We have tacitly assumed in Kq.
(4) that the SU(3) group under which ir, E, and it form
an exact octet when p =0 is the same SU(3) under which
—ris is the eighth component of an octet. This is not
necessarily the case. The two may differ by an SU(3)
SU(3) rotation.

Some insight into the above problem can be gained
by looking at the behavior of a ferromagnet in an ex-
ternal magnetic field. This will also give us an oppor-
tunity to state some basic facts about theories with
degenerate vacua.

In the absence of an external field, a ferromagnet has
an infinity of ground states

~
M) which are labeled by a

direction of magnetization M. These states lie in differ-
ent orthogonal Hilbert spaces. The Hilbert space built
on any given ground state

~
M) contains enough states

to make a complete theory of the ferromagnet. Strictly
speaking, then, we ought to think of M as defining a
particular theory rather than a particular state. We will
not always make this distinction, but the reader should
take care to remember that since

~
M)'s lie in different

Hilbert spaces, operations such as taking linear com-
binations of these ground states are not allowed. Also,
it is intuitively clear that general angular momenta J
and rotations e'"'J cannot exist in any one of the
Hilbert spaces. Clearly, only rotations around an axis
parallel to M can be defined in the particular Hilbert
space built on

~
M). A local spin density S(x) does exist

and one can write a formal expression J=J'S(x)d'x for
the angular momentum, but it is not really well defined
because the integral will in general diverge at spatial
infinity. The mathematical structure of more compli-
cated theories with degenerate vacua or ground states
is similar.

If the magnet is placed in an external field, the ground
state is unique. Obviously, the state of lowest energy is
attained when the magnetization is parallel to the
external field. We can say, then, that a perturbing
external field picks out one of the many Hilbert spaces
which are equivalent as far as Ho is concerned. If the
perturbation is turned off, the magnet remains in this
particular Hilbert space.

The Goldstone bosons in a magnet are spin waves
and there is a formula similar to Eq. (2) which gives
their "mass" (energy at rest) to first order in. an external
field. Now suppose that all our lives we had been talking
about systems magnetized along the s axis. Someone
might then calculate the first-order mass of spin waves
for a magnet polarized along the s axis but with a
perturbing field pointing along the x axis. Upon doing
so he would find complex masses, just as Eq. (4) ap-
pears to give complex masses. In this case the interpre-
tation is quite clear. A magnet polarized along the s

axis is unstable when placed in an external field along
the x axis. The complex-mass spin waves are simply an
indication of this instability. The real masses of spin
waves are, of course, to be computed by perturbing a
magnet with a field pointing along its direction of
magnetization.

The way to resolve the paradox of Eq. (4) is now clear.
If SU(3)SU(3) were as simple as the rotation group,
things would be as easy and intuitive as in the ferro-
magnetic case. It is not, however; therefore we have to
develop some machinery.

B. Two Theorems

Below we state and prove two theorems which are not
quite trivial generalizations. Df the elementary varia-
tional principle for the lowest-energy level of a
Hamiltonian.

Let j,I'(x, t), @=1,2, . . ., n, be currents satisfying

L .(,t), , (y,t)j= c...b ( -y)j.o(,t), (5)

where C,~,. are the structure constants of a compact
Lie group. Furthermore, assume that the Hamiltonian
B and its density K can be written in the form

H =Hp+pH',

XdPx = XpdPx+ p X'dPx,

where the term eX' has the property that

ip(X'(x, t),j.'(y, t)j=8'(x —y) pj„j,&(x,t) .

Now let us define formal charges Q, by

Q.= j'(x,0)d'x,

which may not exist as operators because of troubles
related to the integration over infinite space. Neverthe-
less, by virtue of the b function in (7), the commutator of
Q, with X' exists and is

ip[Q.,X'(-0))=B„jJ'(0) .

Assuming further local commutators of the general form

Lj'(x,t),~.j "(y,t)j=ph'(x-y)~. (x), (1o)

where 0-,~ is some local operator, allows one to define
the double commutator of the Q's with X', i.e.,

—pLQ. LQp x'(o)jj=~.p(0).

Continuing in this way, one can clearly define a finite
transformation of X'(0) through the formula

e'" X'(0)e '"'o=X'(0)+iTpi Q,X'(0)j+, (12)

where pp=(cpi, . . . ,co ) are the group parameters. The
point here is that e'"'oX'(0)e-'"'o exists as a local
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operator even when Q itself fails to exist because of the
spatial integration in (8). Note also that terms like
V,O(x —y) on the right-hand side of Eq. (10) can be
allowed and will have no effect on e'"'oX'(0)e ' 'o. We
now state and prove a general theorem.

Theorem 1.Let
~
vac) be the vacuum state for H =H p

+pH'; then with the above notation,

(vac
~

e' 'oeX'(0) e '"'o
~
vac),

the vacuum expectation value considered, is a function
of «i and has a (at least local) minimum at «& =0.

Proof. Let F(«i) equal (vacate'" oeX'(0) e'" o~v 'ac).
First, we prove that pp=0 is a stationary point of F(«i).
This is almost trivial since OF(0)/O&p, is equal to
(vac~ [Q„X'(0)]~vac) =(vac) O„jp'(0) [vac) =0 by Eq.
(10) and translational invariance. To show that «i=0
is actually a local minimum, we need the matrix of
second derivatives

BGog Bcob

=(vacua LQ. LQ p «'(0)]]
I
vac)

=(vac
I LQ p, EQ., X'(o)]]I

vac)

= (vac
~
o, (0p) ~

vac) = (vac
~
a p, (0) ~

vac), (13)

where the symmetry of the right-hand side (under
a ~ fi) is a consequence of the Jacobi identity LEq. (5)]
and the vanishing expectation value of LQ„X'(0)],
Since X b is a real symmetric matrix, it can be diagonal-
ized by an orthogonal transformation. Let us suppose
that this has been done and call the transformed matrix
iV,p= Ob x„w here x„are the eigenvalues. Applying the
same numerical index transformation to currents,
divergences, and so on, we obtain new operators

g &, 8„g I", 0- b, etc. We are, of course, looking for a
positivity condition on the eigenvalues X„To this end,
we note that using Eq. (10) and standard current-
algebra techniques, one has

(vacua

o„(0)i vac) =I,

=i de(vac
~
T*(O„goI"(x),O„$,"(0))

~
vac), (14)

where T* is the covariant time-ordering symbol, which
we assume takes care of any Schwinger terms which
should be added to Eq. (10).The time-ordered product
on the right-hand side of (14) is one of those which is
well known to be non-negative. More precisely, for each
index a, either the integrated time-ordered product is
positive definite, or else the operator O„j,"(0)annihilates
the vacuum and hence vanishes identically. Thus each
eigenvalue X, is strictly positive or else the correspond-
ing current g,& is conserved and. Q, commutes with X'.
From this, it clearly follows that «i=0 is an (at least
local) minimum of F(pp).

Question I.s «i=0 always a global minimum of F(«p)?
We conjecture that it is, on the basis that if the oper-
ators e '"'o exist and can be applied to

~
vac), then

Theorem 1 is a direct consequence of the elementary
variational principle for the lowest-energy state ofH.
The minimum in the elementary variational principle
is a global one. We pause only to note that F(pp) does
have a global minimum somewhere. We may assume
that Ii is continuous. Furthermore, the parameter
space of a compact group is compact. By the usual
theorems then, F(«p) does have a global minimum.

Now let us assume that the parameter e in H=HO
+eH' is small. If we expand in powers of e, an interesting
result emerges.

Theorem Z. Let
~
0) be the vacuum of H p, H p~ 0) =0,

which is the limit of the vacuum of H p+ pH' as p -+ 0;
i.e., ~

0) = lim, p
~
vac), where (Hp+ eH ) ~

vac) =0. Then
(O~e' 'oeX'(0)e '"'o~0) considered as a function of «i

has a minimum at ~=0.
This result follows immediately from Theorem 1.
We can use Theorem 2 to answer the following kind

of question. Suppose we have some symmetrical
Hamiltonian Ho which has a degenerate vacuum. We
might chose one particular vacuum ~0) and ask what
perturbations eH' have the property that the vacuum
for Hp+eH' goes over to

~
0) as p —+ 0. The answer is,

of course, just those perturbations whose densities
satisfy Theorem 2. For example, let Ho be the Hamil-
tonian for a ferromagnet in the absence of external
fields, and let cX' be —pS B,where 8 is the spin density,
8 is the external field, and ti is a number. The Q's are
now angular momenta J, and

~
0) becomes some parti-

cular ground state ~M). The matrix element in Theorem
2 is then

—pB (M~e'"'&S(0)e"J~M)

=—„QB,R;;( )(MiS;iM)

= —Q 8;F.@(«i)cV„

since p(M
~

S
~
M) =M, where If;, is the obvious rota-

tion matrix. Clearly, —P;;8;If;,(«i)M; is a minimum
at as=0 if and only if B and M are parallel. Thus the
state

~
M) is obtained as the p ~ 0 limit of the perturbed

ground state only if 8 is parallel to M. This is the
expected result.

C. Syrmnetry Breaking in Theories
with Goldstone Bosons

Let the group generated by the formal charges

Qi, Q&, . . . , Q be called g. Evidently, g is the sym-
metry group of Ho with cH' breaking the symmetry.
As before, we denote the e =0 limit of the vacuum of H
by ~0). In general, ~0) will be invariant only under
some subgroup g'C g. Let us label the generators Q, so
that Qi, Qp, . . . , Q (rn&n) are the generators of b'.
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They have property that

Q, i0)=0, a=1, 2, . . . , m.

The remaining currents j,", a=m+1, pu+2, . . . , n,
must make Goldstone bosons out of the vacuum. That
is, there must be n —m spinless bosons $, whose mass
vanishes in the limit e =0 and which have matrix
elements

(4(C) I j:(0)I vac) = —ig"(2f,)-,
a=m+1, m+2, . . . , n (17)

satisfying

lim (2f,) '&0, a=up+1, m+2, . . . , I (1.8)
e-+0

Let us recall the physical meaning' of g and g'. It is
that for small enough e, the particle states of H =Ho
+pH will fall into (slightly split) multiplets corre-
sponding to irreducible representations of g'. The full

group g does not produce multiplets. The rest of the
approximate symmetry is accounted for by the (now
slightly massive) bosons f, They .dominate the diver-
gences B„j,& for a& m in a PCAC-like way and thus
satisfy low-energy theorems, etc. , in the usual way.

Note that we have not yet said how g' is determined.
The 6rst question is to what extent is b' determined

by Ho alone. To answer this, let us note that since Ho
is invariant under g, then if one g is a possible candi-
date so must be Ug'U ' where U is any transformation
in g. (The notation Ug'U ' means take all transforma-
tions V in g'and replace them with UVU '.) Moreover,
we can assume that the transformations g'-+ Ug'U '
are all the freedom that Ho allows. Further freedom
would imply additional symmetry in Ho. Thus, looking
at the symmetric Hamiltonian alone tells us that g'
belongs to a class of (isomorphic) subgroups of b. The
perturbation eH' then has to select a particular mem-
ber of this class. Note that if the vacuum of Hp+pH'
is unique then, because of the condition ~0)=lim, „p
)&

~
vac), g' must be unique.

We leave to the reader the instructive exercise of
translating the ferromagnetic example into the above
abstract language.

It should be recognized at this point that for many
purposes, one does not really need to pin down g'. After
all, g' -+ Ug'U ' is just a transformation of coordinates
in group space. Many things in our approximately
symmetrical world are independent of such a change of
coordinates. Examples are the numbers of particles in
g' multiplets and the number of (almost) Goldstone
bosons. In fact, it is rather easy to see that pinning
down b' is necessary only if we wish to look at the
details of symmetry breaking. In the latter case, how-
ever, it is mandatory. At the risk of repeating the ob-
vious, let us return to the paradox of Eq. (4) for an
illustration of this point. There Ho is supposed to be
SU(3)SU(3) symmetric, The perturbation —p6p is

to be thought of as being the eighth component of an
octet with respect to some standard SU(3) subgroup of
SU(3)SU(3), call it SO(3). In Eq. (4) we assumed
that g'=SU(3), but it really is U 'SU(3) U, where U is
some SU(3)SU(3) transformation. With respect to
U 'SU(3)U, which is the ordinary SU(3) one uses to
classify states, —Ns is not just the eighth component of
an octet. Hence Eq. (4) is wrong. Below we show how
to compute U explicitly.

W(n, P)upW '(n, P) =dpp(n, P)up

+Lother members of (3,3)g (3,3)j, (20)
with

dpp(n, P) =Re(-,'gx) Tr(nhpP) =Re(-', gp) Tr(PnX, ), (21)

where up is the even-parity SU(3) singlet in (3,3) (3,3),
and Xp is the usual SU(3) matrix

1 0 0

X8= —0 0 (22)

-0 0 —2

Equation (20) is useful because up is the only member
of (3,3)g (3,3) which can have an expectation value in
the vacuum ~0); thus

—(0iW(,P)u, W '(,P)i0)
=—Re(p+p) Tr(Pnkp)(0 j up

~ 0) . (23)

D. Resolving the Paradox

%e can use Theorem 2 to compu te the U which
relates g' and SU(3) in the example mentioned above.
The full group g is now SU(3)SU(3) and b' is
ordinary SU(3).

If up is the member of (3;3)g(3,3) which is the
eighth component of an octet with respect to ordinary
SU(3) [not SU(3)j then, by definition,

6X' = —Ns ———UN8 U

This form for eX' is convenient because Theorem 2 then
tells us that the vacuum expectation value

—(Oi VUupU 'V '(0)

considered as a function of the arbitrary SU(3)SU(3)
transformation V is a minimum when V is the identity
transformation. Combining V and U into one trans-
formation 8', this is equivalent to saying the—( 0~ Wu, W ') 0) wil-l have a minimum when W=U.
To parametrize S"it is easier not to use the exponential
form e'"'~, but rather to label 8" by the two three-by-
three uni tary matrices with determinant 1, and call
them n and p, which appear in the de6ning representa-
tion of SU(3)SSU(3). Thus, we write W(n, p) where n
and p are suitable matrices. The special case W'(n, n ')
is a pure SU(3) rotation.

Now since up is a member of (3,3) (3,3), one knows
that
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It is obvious now, that once the sign of {0~up~0) is
known, the problem has to be reduced to maximizing
or minimizing Re tr(Pnlb, p). We shall assume for this
exaiiiple 'tliat (0 ( up ( 0) ls ilegative. Tll llliilliiiliiii of
Re tr(Pa)ip) is then required. To find it, we define the
matrIx

0 0'
y= 0 —1 0

0 0
(24)

Re tr(nPXp) =Re tr(uPpp
—

'yXp)

= —Re((1/~~)L(~A ')ii+(~Pp ')»+2(~Pp ')»j}
& —(1/~3) (4) (25)

in an obvious notation. The inequality in the last line

of Eq. (25) follows from the fact that uP(p-' is unitarity
and the two sides are equal if and only if nPy ' is the
unit matrix. Thus, the lV which minimizes

—{Oi WupW 'iO)

is one for which nP = pp. This determines W up to a pure

SU(3) rotation which can clearly be ignored. Without

any loss of generality then, we can take W=W(O, pp).

Working out Eq. (19) one then finds

eX' = p(2V2up —up) .

It will be shown below that this ~3." gives positive
squares for the meson masses.

and the fact that f =f„=fx to zeroth order in p, one
can compute the masses for x, E, and g. Their squares
come out positive but wrong. The X' of Eq. (26) is
simply an example, not a correct theory of SU(3)
SU(3) breaking.

F. KQO s Tx'ansfox'111atlons

Kuo' has pointed out that transformations of the
form —up~ ip(292up —up), which carries Eq. (4) into
Eq. (26), appear to make SU(3)SSU(3) breaking
ambiguous. This is not the case, however. The reason
that it looks as though there might be an ambiguity
is that operators connected by Kuo's transformations
appear to have different SU(3) properties. One just has
to remember that physically SU(3) is that subgroup of
SU(3)SU(3) that leaves

~
0) invariant. Therefore

what one means by SU(3) depends on pX'. When every-
thing is worked out, one will and that the physical
SU(3) properties of pX' are unchanged by Kuo's
transformations.

III. SOME DETAILS ABOUT SU{3)gSU{3)

A. Assumytions and Conventions

The Q's of the previous section become the vector
and axial-vector charges defined by

F = V,ox,0d'x,

E. Positivity of the Squares of Meson Masses

We will now show directly that the squares of the
masses of Goldstone bosons come out positive in order
e. First, we do the general case and then return to the
example.

It was shown in Ref. 2 that in order e the mass--

squared matrix for the Goldstone particles p' & is given

by

ts&.p=4f.fp(0~ o. (0)p~0)+0(p'),
a, b=m+1, m+2, . . ., n, (27)

where o,p and the f's are defined by Eqs. (10) and (17).
The matrix u', p clearly has non-negative eigenvalues if
and only if the matrix (0~ o, (0)p~ 0) does. But as one can
see from the proof of Theorem 1, (0~a, (0)p~0) has non-

negative eigenvalues provided only that ~0)=lim, p

)& ~vac). Therefore, if one does things correctly, the
masses squared always come out positive.

For the pX' given in Eq. (26), {O~o,b~0) is easily
evaluated; one 6nds

(Olo.plO) =p(&a) Re trL(~J pp~p) j{OluplO),
a, b=1, 2, . . . , 8. (28)

The eigenvalues are —(V3){0(up
~
0), —(542/9){0

~
up (0),

and (—v2/2){0~up~0) which are all positive by virtue
of our assumption that (0~up~0)(0. From Eq. (27)

A.p(x,0)d'x, a =1, 2, . . . , 8

(29)

where p l' and A l' are the vector and axial-vector
currents whose time components are supposed to satisfy
Gell-Mann's well-known SU(3)SSU(3) commutation
relations.

Breaking the strong Hamiltonian up into Hp+ pH' as
in Eq. (1),itis assumed that pH'is small enough so that
the SU(3)SU(3) symmetric world -described by H, alone
gears some resensblurIce to the real strong intergctions.
Allowing this assumption, we need to ask what the
symmetric world looks like. Defining as usual (0) as the
limit of the vacuum of Hp+ pH' as p-+ 0, it ps further
assumed that the group which leaves

~
0) invariant is some

SU(3) subgroup of SU(3)SSU(3). Just which SU(3)
subgroup this is depends, as we saw in Sec. II, on the
properties of eH'. As has been discussed previously, the
above assumptions lead to a world with approximate
SU(3) multiplets of particles and approximate PCAC
for X') Xp RIll 'Q.

By a suitable choice of coordinates in SU(3)SU(3)
space, we can always take the SU(3) group leaving

~ 0)
invariant to be that generated by the vector charges.
Therefore, we write

&,~0)=0, a=1, 2, . . . , 8 (convention). (30)
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Having made this convention, eH' can no longer have
arbitrary properties with respect to the SU(3) group
generated by Iiz, I"2, . . . , Iis. We saw this in detail in
Sec. II and there is no need to go through the arguments
again. From now on SU(3) will be assumed to have the
usual meaning, i.e., the group generated by the vector
charges.

The eight pseudoscalar mesons x, E, and g become
massless Goldstone bosons in the limit e =0. They have
matrix elements

( (q) Ia. (0)10)= —
q /2f. ,

(K(q) ~
Ax~(0) ~0) = q/p—2fx,

(&(q) I W„(0) I 0) = —
q /2f„

(31)

in an obvious notation. As p goes to zero, f ', f» ',
and f„' all approach a common 6nite number f '

B. Digression on x Mesons

There seems to be a (perhaps natural) desire to have a
strange scalar "~"meson whose role would be to domi-
nate the divergence of the strange vector currents.
From a theoretical point of view the x, if it does turn
out to exist, would be a peculiar object. It sounds as
though "I~: dominance" would be similar to "pion
dominance" or ordinary PCAC. This is not the case,
however.

As explained in Ref. 2, the dominance of divergences
of axial-vector currents by the pseudoscalar-meson poles
is a consequence of the special role of m, E, and g in the
limit &=0. If we want ~ dominance to come about for
the same reason, then the symmetry group of ~0)
should be SU(2) not SU(3). This would make ~ a Gold-
stone boson like x, E, and y and would ensure a domi-
nance up to terms of order e. The trouble with this idea
is that if the symmetry group of ~0) is only SU(2),
then there is no reason whatsoever to have SU(3)
multiplets of particles. For example, one can write an
SU(3)-symmetric nonlinear Lagrangian in which the
only particles are a massless ~ and, say, a nucleon. This
is not what we think of as SU(3) symmetry. Of course,
one can conceive of a theory where the ~ is a Goldstone
boson and SU(3) groupings of states still exist. While
such a theory is rather arbitrary and contrived, it is a
possibility. Suppose such a picture were correct. Then
a typical z dominance relation would be

tained in &BC' is smaller than the spontaneous breaking
contained in the asymmetrical vacuum of Ho. This is
unlikely to be the situation since, if it were, the mass
squared of the f~: should be small compared to a typical
SU(3) breaking like mx~' —m, s.

Ke see then that there is no way to get a sensible,
clean prediction of either the existence of a ~ meson or
meaningful ~ dominance out of SU(3)SSU(3) sym-
metry. Furthermore, there is no experimental evidence
for a strange scalar meson at a low enough mass to be
interesting. It is for this reason that we take the vacuum
of Hp to be fully SU(3), not just SU(2), symmetric.

If the reader is still bothered by the apparent lack of
symmetry between the vector and axial-vector diver-
gences, the following point should be understood. It is
the structure of Pp which determines (up to a group
rotation) the invariance group of ~0) and hence the
number of Goldstone bosons. The number of currents
which have divergences, on the other hand, is deter-
mined by t.H'. In general, there is no connection between
the number of Goldstone bosons and the number of
divergences.

These remarks should not be interpreted as meaning
that scalar mesons cannot, for some unknown dynamical
reason, still play an', important role in symmetry break-
ing. What we have~in mind here is something like the
tadpole model of Coleman and Glashow. There is, of
course, nothing wrong with using an "effective" ~ pole
to parametrize the strange vector divergences.

C. (3,3)9 (3,3) Symmetry Breaking

It has been suggested by Gell-Mann, Oakes, and
Renner' and by Glashow and steinberg that X' belongs
to the (3,3)8(3,3) representation of SU(3)SU(3). In
the following, we shall assume that

(i) X' belongs to (3,3)g (3,3),
(ii) X' is invariant under some SU(2) subgroup of

SU(3)SU(3) which can become isospin,
(iii) X' is invariant under CP or some SU(3)8SU(3)

transformations of the usual CP operation.

Then it is easy to show that e3". can always be written
in one of the two forms

pX'= U(gp —V2gs+2&sp+V28gs) U ', 0& & (33)

or
(~zr ~s)gus'=GsN. /2f. +o(p), (32)

pX = —U(lp —V2gs+28Np+V28gs) U-', 0&g (34)
where g~~~ is the matrix element of the vector charge
between nucleon and A, and the error term +0(p) has
been included to remind the reader that our hypothetical
z-domminance contains errors of order e. In the limit
p -+ 0, Eq. (32) becomes exact and nontrivial since M'N

and 3fz are no longer equal in the symmetry limit. For
the real case with pWO, Eq. (32) will be useful only if the
error term is considerably smaller than (M&—M's) gNsr,
or in other words, if the explicit SU(3) breaking con-

(Oj Upi 0)&0. (3S)

The parameter 8 can be restricted to positive values,

where U is some SU(3)SSU(3) transformation. We
must distinguish between Eqs. (33) and (34), which
differ only by a sign, because there is no SU(3)g SU(3)
transformation that takes one into the other. By con-
sidering both cases, we are free to make the convention



DASH E N

since there is an SU(3)SU(3) transformation which
has the effect of taking h to —b.

We now want to determine the U's in Eqs. (33) and
(34). To do this, we require that the symmetry group of
j0) be ordinary SU(3) and use Theorem 2. The calcu-
lation is almost identical to the example worked out in
Sec. II. Using the notation defined in Sec. II, we write

(0j W(n, P)(u, —veau, +2',+v2cu, )W-&(n,P) j 0)
=Re tr(nPM)(0j uo j 0), (36)

where the matrix M is

If eX' is given by Eq. (33) then, taking account of Eq.
(35), U is equal to that 8'(n, P) for which Re tr(nfl)
is maximized. On the other hand, if ~X' is given by Kq.
(34) we evidently want the minimum of Re tr(nPM).
It is easy to find the maximum of Re tr(nPM). We state
without proof that it comes when nP is the unit matrix,
Then without loss of generality we can take U' to be the
identity transformation. Hence,

~X'=uo —v2us+28uo+~2hua, 0& b (33')

0 0'
M=0 5 0.0 0

(3&)

for the case when eX' is given by Kq. (33). Finding the
minimum is more dificult, but again we only state the
answer. If 5+2) thc minimum comes when

1g~&(1 &g2)1/2

0
0

0
0

1+—,'b'&i-5(1 '8')—"'-

and if 2& 8 it comes when

0 0
nP= 0 —1 0

0 0

Up to an SU(3) rotation, the Hamiltonians for Eq. (34)
are

yp' = (1+x/ )uo —v2(1 —p)us~3)(1 —i
$ ) i»po

0&8&2 (34')

eX'= —uo+vlus+28eo+v28u8, 2&8 (34")

where m, is the odd parity SU(3) singlet in (3,3) (3,3).
With assumptions (i)—(iii) above and with the conven-
tion (Ojuoj0)&0, Eqs. (33'), (34'), and (34") list all

possible symmetry breaking Hamiltonians for which

j 0) is invariant under ordinary SU(3). Note that the X'
of Kq. (34') violates CP. We will return to this point
later.

Kuo's transformations take the Hamiltonians of
Eqs. (33'), (34'), and (34") into objects not in this list.
Thus applying one of Kuo's transformations to ~X'
takes one to a theory where the symmetry group of

j 0) is not ordinary SU(3) but some transformed SU(3).
If we assume that the true eX' belongs to (3,3)g (3,3),

it is not hard to see which member of the above list is
relevant. The Hamiltonian in Kq. (34') violates CP
and is out. The one in Eq. (34") gives, by way of Eq.
(2/), m, '&m ' and is also out. This leaves Eq. (33')
which, with small 5 to get a small m 2, is the Gell-Mann-
Oakcs —Rcnncr model.

D. Syontaneous CP Violation

As pointed out above, the Hamiltonian in Eq. (34')
violates CP. This may seem surprising since assumption

(iii) above seems to preclude CP violation. The point
here is that Eq. (34') does not conserve the normal CP
operator but is invariant under UCI'U ', where U is
the SU(3)SSU(3) transformation in Kq. (34). How-
ever, UCPU-' does not take

j 0) into itself and there-
fore the theory defined by Eq. (34') violates CP. This
is a real CI' violation which cannot be "rotated away. "
To verify this, we will show in Sec. III E that for the
eX' in Kq. (34') the decay amplitude for g -+ 2m is non-
vanishing in order e.

The & sign multiplying eo in Kq. (34) indicates
that there are two solutions for ~R' in this case. These
correspond to two separate worlds which are CI' images
of each other.

It would be nice to think that the CI' violation ob-
served in weak interactions comes about through a
phenomenon like that described above. Clearly, Eq.
(34') has nothing to do with the observed CP violation.
Equation (34') gives CP violation whose strength is
on the order of SU(3)SU(3) breaking which is orders
of magnitude too strong. The interesting thing about
Eq. (34') is that it shows that spontaneous CP violation
can really occur and that, in certain circumstances, one
can actually predict when it will occur. One simply has
to take an otherwise harmless looking &X' of the class
given by Kq. (34), choose 5&2, and out comes CP
violation. It is a very interesting question whether
some more complex or simply more clever theory could
give spontaneous CP-violating effects of the magnitude
observed in weak interactions.

E. Domains of Mathur and Okubo
i

Mathur and Okubo' have pointed out that the param-
eters (vacjuojvac), (vacj usjvac), and &2a=ratio of u8
to No in ABC' cannot have arbitrary values, but are re-
strlctcd to ccltaln domains. Apart from .the fact, that
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they use U(3)U(3) rather than SU(3)SU(3), we
can think of their results as just the requirement that
Theorem 1 be satisfied. If pX' belongs to (3,3)Q3(3,3),
then (vac

I W(nP) 4X'W '(n, P) I
vac) can be expressed in

terms of (vacllpl vac), (vacl Npl vac), and their param-
eter a. Requiring this quantity to be a (local) minimum
when W is the identity gives the SU(3)@SU(3)version
of Mathur and Okubo's domains. We shall not discuss
the general case here but rather assume that e is small
so that (vacl upi vac) may be neglected and Theorem 1
becomes Theorem 2. Neglecting (vaclpbplvac& in the
formulas of Mathur and Okubo, being careful to use
only SU(3)SU(3) [not U(3)3 U(3)] results and re-
membering our convention (ol 44pl 0) &0, one finds that

—1&8&1 (40)

is the allowed domain for a.
The work of Sec. III C is very illuminating with

with regard to Kq. (40). For Eq. (33') one has ib= (3—1)
X(1+23)-' with 0&5, while for Zq. (34") a is
(1+3)(—1+23) ' with 2&3. One easily sees that
these two cases cover the allowed range of a. Equations
(33') and (34") join smoothly at ib =

p or 3 = ~ . Nothing
in particular happens at this point, because 8 = ~ is
only a singularity in our parametrization of eX and
not a true singularity in any physical sense. What
happens if we try to push a out of the allowed range?
Consider the point u= —1. We can get to the left of
this by letting 5 become negative in Eq. (33'), but since
the resulting e3." is not in our list we have to make an
SU(3)SU(3) transformation to satisfy Theorem 2.
The result is that one ends up with the CP-violating
X' in Eq. (34') for some small positive value of 3. Note
that Eqs. (33') and (34') join continuously at 3=0.
Mathur and Okubo did not, of course, allow CP
violation. The other end point a=+1 can be crossed
by formally letting 5 become less than 2 in Eq. (34").
Again an SU(3)SSU(3) rotation is required and again
one ends up with Eq. (34') but this time with 5 near 2.
As before, we note that Eqs. (34') and (34") join con-
tinuously at 8 =2 or a = 1.

Evidently, the following picture has emerged. We
may think of the parameter a as having any value be-
tween —pa and +bp. If lal is greater than 1, how-
ever, an SU(3)SSU(3) rotation must be made and the
result is a CP-violating Hamiltonian of the form in
Kq. (34'). Since a is not an SU(3)SSU(3) invariant,
this parameter loses its original significance after trans-
forming to Eq. (34').

Physically, the way one would know that a=&1 are
peculiar points is that m ' as computed from Kq. (27)
vanishes at a= —1, while m, ' vanishes at a=+1. The
vanishing of m ' at a= —1 is a consequence of the fact
that B„A,& for 44=1, 2, 3 vanishes there and SU(2)
SU(2) is exact. On the other hand, at a= —1 the
vanishing of m„ to first order in ~ is an accident; the
divergence B„Ap" is nonzero at a=+1. (Presumably

m, ' is nonvanishing in order p' at a=+1.) If one tries
to go out of —1&@&1without rotating to Kq. (34'),
then either m ' or ns„' will become negative.

IV. MORE ABOUT (3,3)8 (3)3)

A. Formula

There is an amusing general formula for the trilinear
couplings of Goldstone bosons. We will first derive it
for the general case and then specialize to SU(3)
SU(3).

Using the notation of Sec. II, we define

where q, = —q, —qb. By Eq. (17) one has

F(m. ',mb', m, ') = —ig, b„ (42)

where g, b, is the trilinear coupling of the Goldstone
particles. Simple current-algebra calculations then give

F(o,mb', m, ') =F(m, ',o,m, ') =F(m, ',mb', 0) =0 (43)

a11d

F(0,0,0) =gf,fbf, [(ol [ Q[ Q)[gb) pX( )0]]]l0&

+(0ILQb, [Q LQ. «'(0)]]]lo&] (44)

Now we expand F as

F(m, ',mb', m, ') =F(0,0,0)+Fi(0,0,0)m. '+Fp(0, 0,0)mb'

+Fp(0,0,0)m, '+O(p'), (45)

where Fi(x,y,s) = (8/Bx)F(x,y,s), etc. However, Zq. (43)
then tells us that Fi(0,0,0)m, '=Fp(0, 0,0)mb'=F4(0, 0,0)
Xm, '= ——,'F(0,0,0)+O(p'). Therefore, we find that
F(mg' mb' mg') = —piF(0,0,0)yo(p') and

g. .= —4f.f f.[(ol[g.,[g.,[g,'x'(0)]]]lo&
+ (o

I [g„LQ.,Lg„.x'(o)]]]
I 0&]+o(. ), (46)

which is the desired formula. The following remarks
are in order.

(i) According to Eq. (46), g, b, always vanishes in the
limit e=o. For SU(3)SU(3) this is a trivial point
since parity forbids a trilinear coupling of pseudoscalar
mesons. This result will, however, be useful in discussing
the weak decay E~2z.

(ii) Although Eq. (46) does not appear to be sym-
metric in a, b, and c, it actually is. This follows from the
Jacobi identity and the fact that (ol [Q,pX'(0)]l0)
=0+0(p')

The vacuum expectation values of [Q,[gb,bX']]
and [Q,[gb,[g„pX']]] give, respectively, the mass
matrix and trilinear coupling of Goldstone bosons in

2
q 2~b2 qb2~ 2

~
2

F(q qb q ) = 4gf fbf
mg, mb my

x e'" '*e'"'"(0
I T*(B„g,"(pp) 8 jb"(y) Big,"(0))

I 0)

Xd4~d4y, (41)
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order e. What about fourth- and higher-order commuta-
tors? It is known' that (0 I [Q„[Qi„[Q„[Qq,eX']]]]

I 0)
is the order e term in meson-meson scattering, i.e., it
acts like a quadrilinear coupling. Presumably the
pattern continues. Also, it is worth pointing out that
(OI [Q„eX'(0)]IO)=0+0(e) is easily shown to imply
that to order e' the matrix element of eX' between
Goldstone bosons and the vacuum vanishes. In other
words, there are no tadpole diagrams. Thus, there
seems to be a simple interpretation of the expectation
values of all commutators of Q's with eX'.

Equation (46) can be used to compute the peer cou-

pling for the CF-violating interaction in Eq. (34). A

simple calculation shows that it is proportional to
&3(1—~5')'~'(0INoI0) and is therefore not zero.

B. X~2~
Let us now apply Eq. (46) to the decay E —+2~.

Writing
H =Ho+GH g +eH', (47)

where GII~ is the nonleptonic part of the weak inter-
action, we observe that if Hw is built of the V+A
currents then

[F, , HO+GHg]=0, a=1, 2, . . . , 8 (48)

where F, =F,—F,'. We shall take Eq. (48) as our

theory of nonleptonic weak interactions. It follows from

Eq. (47) that Ho+GH~ describes a world with eight
Goldstone bosons. That is, adding GH~ to Ho leaves

zr, E, and q massless exact Goldstone particles. Accord-

ing to the above discussion then, the Em.m vertex
vanishes' when ~=0 and the term of order e is given by
Eq. (46). We will now show that for X' belonging to

(3,3)Q(3,3), the order-e term also vanishes so that
E~2m occurs only in order Ge'. The proof is quite
simple. For eX' belonging to (3,3)Q3(3.3), one can

easily show that

(0
I
[F;,[F.—,[F;,.Xf']]]IO)

+(o I [F LF. [F. X']]]
I o)

=g C.i„g(OI [Fd,ex']I0)+d. i„(0Iex" I0), (49)

where C &,& and d, &, are numbers, X" is equal to X'
with No replaced by wo and Ns replaced by vs and (0 is

now the vacuum for Ho+GHw. But (OI [Fd,eX']I 0)
vanishes by Theorem 2 and (0 I

X"
I 0) vanishes by CF.

(We neglect CF violation in the weak interactions. )
The above result that E~ 2~ occurs only in order

Ge' is peculiar to (3,3)(3, 3) breaking. For X' in, say,

(8,8) the process takes place in order Ge. Is this bad for
the (3,3)Q(3,3) model? It is hard to say. In order to

8 R. Dashen and M. Vileinstein, Phys. Rev. 183, 1261 (1969),
9Actually this is a consequence of SU(3) and CI' alone. It is

well known that the amplitude for E~ 2'. must be of order 6
times SU (3) violation.

decide, one has to look at some rates. For a two-body
decay, the rate is given by

r(a ~S+C)=[g(sac)]'V (50)

where q is the momentum of the decay products in the
rest frame of A and g is a dimensionless number. For
(3,3)8 (3,3) breaking, one would expect g(E,'urn-) to be
of order e'G while g(1tsE) or g(ZmÃ) should be of
order G. (One can easily see from the old PCAC—
current-algebra calculations of I'-+ mr+AT that hyperon
decays are allowed when H =Ho+GH s .) The momenta

q in E,o~ 2m and in A —+ m. +X, Z ~ ir+1V, and
ir+A are all similar, differing by at most a factor of 2.
Furthermore the mean lifetimes for A —+ 7i+1V, Z ~ ir

+E, and —+ ir+1lj" are all within a factor of 2X10 '
sec. Thus, in the (3,3)8 (3,3) model, one would expect
the lifetime for E, —+ 2m to be roughly 2e ')&10 "sec.
If e is, say) 3 to sy this would give a lifetime of about
2&10 to 10 ~ sec. Experimentally the lifetime for
E,' —+2m. is 0.8)&10 ' sec. In other words, the e'

suppression factor in r(E, ~ 2~) does not seem to be
there in the real world. Admi. ttedly, it is dangerous
to compare decay of light bosons and heavy fermions.
Perhaps the dimensionless g defined by Eq. (50) is not
the relevant object, but it is not clear that any other
quantity is more relevant. Also, it is quite possible to
imagine a dynamical enhancement in the amplitude for
E,0 —& 2ir or a suppression in F~ w+S which could
account for a factor of 10 in the amplitude or 10' in the
lifetime. Note that any 3'. will give a factor of &' in

P(E,O-+2~); (3,3)(EI(3,3) simply makes things worse

by adding another factor of &'.

We leave it to the reader to decide whether the above
situation shows a real difiiculty with either the (33)
9(3,3) model for iX' or a weak interaction which
satisies Eq. (48). Below we will examine the (3.3)
Q (3,3) model from a different angle. Also it should be
noted that the trouble with E—+ 2x could be due to
slow convergence of the expansion in powers of e. Such
a possibility (which does not mean that the net effect
of eX' is large) was discussed in Ref. 2.

C. Why (3,3)8 (3,3)? Or Is SU(2) SU(2)
Really Better Than 8U(3)P

In view of the above discussion, it seems worthwhile
to review the rationale for (3,3)Q (3,3) symmetry
breaking. Let us begin with Eq. (27) for Goldstone
boson masses. Specializing to SU(3)SSU(3) and noting
the definition 0 & in Eq. (11),we have

m' i,
———4f'(OI [F,',[Fi, EX'(0)]]IO)+0(e')

a, b=i, 2, . . . , 8 (51)

with tn', q being the mass-squared matrix for the
pseudoscalar mesons. Now suppose that ~3."belongs to
the representation (X,X)63(X,X) of SU(3)SU(3),
where X is any SU(3) representation. Let the (unique)
even-parity SU(3) singlet in (X,X)(X, X) be called
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Op and the (unique) even-parity eighth component of
an octet be called 08. Then we may suppose that

pBC' =CpOp+CpOs (52)

Given the fact that the pseudoscalar masses squared
satisfy the Gell-Mann —Okubo mass formula, it follows
from Eq. (55.) that by suitably choosing Cp and Cp one

can fit the pseudoscalar masses with pX' belonging to any
representation (X,X)(X, X). We note also that terms
in pX' belonging to (X,Y)g(X,Y) for YWX do not
contain an SU(3) singlet, and therefore do not con-
tribute to the pseudosclaar masses in lowest order.

Since the pseudoscalar masses are essentially the only
violation of SU(3) SU(3) [as opposed to SU(3)]about
which we have much accurate experimental informa-
tion, one might ask what is so special about (3,3) (3,3) t
The answer, paraphrasing the arguments of Gell-Mann,
Oakes, and Renner, runs as follows, The pion mass is
very small compared to the E and g masses. I.et us see
what happens if we choose the ratio of C8 to Cp in Eq.
(52) so that Eq. (55) gives np '=0. The remarkable
fact pointed out by Gell-Mann, Oakes, and Renner is~

where Cp and Cs are numbers. Dehning Clebsch-
Gordan coefBcients 2 and 8 by

[F.',[F&',Op]] =A.~.&0p

+[other members of (X,X)9 (X,X)) (53)
and

[F.',[FpP,Op]] =8, d, pOpp

+[other members of (X,X)9 (X,X)], (54)

where d, &, is the symmetric SU(3) symbol, Eq. (51)
becomes

np'. p=(CpA. b p+Cp&adults)(0IOp~0)+0(p') (55)

that only for (3,3)9(3,3) does this produce an eX'
which commutes with the axial-vector charges F,' for
a=1, 2, 3. In other words, for eX' of the form in Eq.
(52), only (3,3)Q(3,3) has the property that SU(2)
3SU(2) becomes exact when tn ' goes to zero (keeping
nplc' and np„' finite). For other representations (X,X)

(X,X) with X/3, the smallness of np, ' is accidental
and SU(2) SSU(2) is no better than SU(3)SSU(3) in
general.

The question then arises of whether SU(2)SU(2)
is really a much better symmetry than SU(3)3SU(3)
or SU(3) itself or have we been misled by an acciden-
tally small np 't The author's feeling is that SU(2)
SSU(2) really is a better symmetry. One should,
however, let experiments decide. The experimental
situation is not that clear. A manifestation of the break-
ing of SU(2) 3SU(2) is the error in the ordinary Gold-
berger-Treiman relation. It is in error by about 15%
which is not much different than some SU(3) violations
like (Mq —M~)/3f~ 0.2. One's general feeling is that
PCAC for E's and the g is much worse than PCAC for
pions, but we really do not know that this is true. It
could be that the larger masses of E and g just makes
PCAC for these particles more difficult to handle but
not intrinsically less accurate. There are not yet any
really clean tests of E or p PCAC. Experimentally, one
cannot argue with a statement that pion PCAC
[SU(2)SU(2)], E and g PCAC [SU(3)SU(3)],
and SU(3) are all equally good, to about 20% on the
average. Of course everyone's feeling, including the
author' s, runs to the contrary. Neveretheless, it is
clearly important to obtain some hard facts. Wein-
stein and the author" have suggested some explicit
tests of the (3,3)Q (3,3) model. We may hope that some
new imformation will be available in a few years.

'OR. Dashen and M. Weinstein, Phys. Rev. 188, 2330 (1969).


