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Crossing-Symmetric Expansions of Scattering Amplitudes,
Threshold Behavior, and Asymptotics*
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A two-variable, explicitly crossing-symmetric expansion of the scattering amplitude is discussed for the
two-body scattering of spinless particles (with arbitrary masses). It converges simultaneously in the physical
regions of at least two channels, has the correct threshold behavior, and allows for amplitudes growing
asymptotically as arbitrary powers of s and t. The expansion is based on the representation theory of the
group O(2, 1) in a basis not corresponding to any subgroup reduction and making use of Lame functions.

two-variable (or more generally, multivariable) expan-
sions of scattering amplitudes. The dependence on all
kinematic parameters (energies, angles, etc.) is made
explicit, the dynamics are contained in the expansion
coefficients, so that a greater separation of "kinematics"
and "dynamics" is achieved, thus giving a tool for
implementing general principles, mak. ing dynamical
assumptions, and performing phenomenological fits
to larger bodies of data.

The method of this approach (so far for two-body
scattering) is to consider the scattering amplitude as a
function of the momenta p, (or rather the relativistic
velocities v, =p,/nt, ) of the particles involved (v=1,
. . . , 4) and then show that, making use of the conserva-
tion laws and relativistic invariance, it is possible to
express the components of three of the momenta in
terms of the fourth. The scattering amplitude can thus
be considered to be the function of one four-momentum

only, i.e., the function of a point on a three-dimensional

hyperboloid v'=vo' —vP —vs' —vs'=1 (or on the mass
shell of one of the particles). The group of motions of
this space is the homogeneous Lorentz group 0(3,1)
and the natural thing to do is to expand the amplitude

f(v) in terms of the basis functions of this group.
Crucial in the obtaining of such expansions are three

related features —the choice of a Lorentz frame of
reference, choice of coordinates on the hyperboloid,
and choice of a basis for group representations.

In this paper our principal aim is to discuss crossing-
symmetric expansions, so we must choose such a frame
of reference and such coordinates that we obtain a
symmetric mapping of the Mandelstam variables s and
t onto some curvilinear coordinates n, P on the hyper-
boloid. In a previous publication, we have considered
this problem for the two-body scattering of spinless
particles with equal masses. Here we shall consider a
more general case.

I. INTRODUCTION

HE purpose of this paper is to discuss a new
expansion formula representing a general class

of scattering amplitudes and having the following
properties.

(i) It is a two-variable expansion, simultaneous in
terms of both the Mandelstam variables s and t.

(ii) The expansion is explicitly crossing-symmetric
term by term in two channels and converges simul-

taneously for amplitudes de6ned in the physical
regions of both channels. Both the direct and inverse
expansion formulas involve only amplitudes defined in
physical regions.

(iii) It automatically incorporates the correct thresh-
old behavior.

(iv) The simplest assumptions about the analytic
continuation of the expansion leads to amplitudes grow-

ing asymptotically as arbitrary powers of s and t.

(v) The expansion is based on the representation
theory of the group 0(2,1), using a basis that does not
correspond to the reduction of 0(2,1) to any subgroups.
The basis functions turn out to be Lame functions.

Our approach is part of a general program, ' 4 the
aim of which is to develop a scattering theory based on
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II. MAPPING OF MANDELSTAM VARIABLES
ONTO VELOCITY SPACE

As in I, we simplify the mathematics by restricting
ourselves to spinless particles and choosing the scatter-
ing plane to be such that the third space components of
all the momenta vanish. This makes it possible to
consider the momenta as three-dimensional objects and
to consider an 0 (2,1) hyperboloid, instead of an
O(3, 1) one.

To make the choice of the curvilinear coordinates
unique, we demand that the Laplace operator on the
hyperboloid allow the separation of variables in these
coordinates and that the corresponding eigenfunctions—the basis functions for our expansions —can be
written as the product of two identical functions. An
inspection of separable coordinates" leads us directly
to elliptic coordinates (see I), in which the nonzero
components of the momenta are

p, =m„( cnu—„cnp„, i snu, dnp„, i dnu, snp„, 0),
r= 1, . . . , 4 . (1)

Here cns, sns, and clns are the Jacobian elliptic
functions of modulus 0= 1/v2, with arguments in the

Pz = (—mr cnuq cnPq, —i(a+1)A, —i(a+1)B,0),
ps ——ms( —cnu cnp, s snu dnp, i dnu snp, 0),
ps ms(——cnu—cnp, i d—nu snp, i sn—u dnp, 0),
p4=( —mq cnuq cups+(ms —ms) cnu cnp,

iaA,—saB, 0), —
where

(2)

regions u,g (iE, iK+2K), p,E (iK, iK+2K), where
K=[I'(~&)js/4+7r is the quarter-period of the elliptic
functions.

To eliminate the redundant variables we must choose
a convenient frame of reference. We shall use the
coordinates of momentum ps as our basic variables.
In order to obtain simple properties under the crossing
transformation, we let us—=u, ps—=p and demand that
the transformation u ~p, p —+ 2E u, —ms —+ ms,

m3~ m2, m~ —+ m~, m4 —+ m4 should correspond to
ps + ps ps ~ ps pg ~ py p4 ~ p4. Further we

specify our frame of reference (a generalization of the
brick-wall system) by putting p&~~p4 (see Fig. 1). It is

easy to check that in such a frame of reference we have

A =ms snu dnP+ms dnu snP,

B=ms dnu snp+ms snu dnp,

cn Qy

cnspr

W (a/1) '(A '—B')—( [2mys —(a+1)'(A+B) '][2m/' —(a+1)'(A —B)'7}"'
2m 2

(4)

and

with
a =[—F+ (Fs—4XZ)'"j/2X,

4(A2+Bs) (ms+ms)2[2msms(A+B)2+ (m22 ms2)2j

F=4(As+ B') (ms+ms)$2msms(A+B)'
+ ( +ms)m'[s( msms)' mP+m—4'5}, (6)

Z = (2msms(A+B)'+ (ms+ms)'[(ms —ms)' —mP
m42j}2+4m4s(ms+ms)4(A2+B2 mls)

Such a frame of reference exists if u is real, the condition
for which is

(ms —ms)'& (m~ —m4)' . (7)

In the chosen frame of reference, all momenta
obviously depend on u and p only, which in turn can be
related to the Mandelstam variables s and t, so that
the scattering amplitude f(s,t)= f(u,P) is give—n as a
function of a point on the hyperboloid Pss=mss.

The properties under the crossing transformation are
of interest mainly when the two exchanged particles

' M. N. Olevsky, Mat. Sbornik 2'7{69),379 (1950).
~ P. Winternitz, I. Lukac, and J. Smorodinsky, Yadern. Fiz. V,

192 (1968) [Soviet J. Nucl. Phys. '7, 139 (1968)).' Bateman Manuscript Project, 8igher Transcendental Fgnc-
tions, edited by A. Erdelyi et al. (McGraw-Hill, Nevr York, 1953),
Vol. II, Chap. 13.

are identical. Let us further assume that m2=m~. In
such a case the formulas (2)—(6) simplify considerably.

Indeed for m2=m3 we can give the relation between
s, 1, u and u, P explicitly:

mP+ms +2(Km~ms/

)&[1—(1/Smq'ms'x') (2ms'x'+mq' —m ') ']"'

——,'(2ms'x'+mP —m4') }, (8)
Q=2m2 S

Pp-P2

Fzo. 1. Symmetric frame of reference.
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where

x=snn dnp+dnn snp,

y=cnn cnp.

Inverting these formulas, we obtain

cn40.

commuting operators,

Afia"'(n, P) = (I.a' —EP E—2')f~e'(n, P)
= —l(l+1)f(g"&(n,P),

(15)&f." ( P) =(E' !I--')f"(.,P) =hf." (,P),
&f"'(,p)=sf"'(,p), I'f "'( p)=pf "'(,p)

Here L3 is the generator of a rotation about axis 3, E~
and E2 are Lorentz boosts, and X and I' are reflection
operators, changing the sign of v& and e2, respectively.

The solutions of (15) can be written as

8m2'[(m~ —m4) '—u][(m~+m4)' —u]cn4p

X ( (u 4m—2') [(m~ m—4)
' u5—[(m q+m2) ' u5-

—(u —2m2') (s—t) '%4[(4m'' —u)(m22(s+t) st-
+m&'m4' —m&')P(s, t,u) 5"')

where

p(s, t,u) =stu Z'(as—+bt+cu)
d'A p,"(z)

— +[h —-,'l(l+1) sn'z]AD, "(z) =0. (17)is the Kibble function determining the boundaries
of the physical regions as solutions of the equation
g(s, t,u) =0. In (11) we have (for m2 ——m, ) To 6x the Lame functions completely, we standardize

them by imposingZ =m '+2m22+m '
Z'a =Z'b =mu'(mP —m42)'

Z'c = (mPm4' —m2') (mx'+m4' —2m2') .
(12)

Ap,+(eE+K) =1, —Ap+(z) ~;z+z —0,
ds

(18)

f~a"(n,P) =A~a" (n)A~a"(P), (16)

where it+a'=/(i+1), p,rj=+1, and A&&&(z) satisfy the(joh

Lame equation'

In the equal-mass case m~ ——m2 ——ns3 ——m4= 1 formulas

(8) and (10) simplify to those, given in I, namely, Aia (tE+E)=0, —Aia (z)~;z+z= —1.
ds

= 2 —x'+2y(1 ——,'x') "' u =2x' (13)

cn'
(s+t) '+2st(2 —s —t)

4(s+t)

1 stu(s+t —st) "'
~ (14)

2 s+t

We now notice that np (iK, iE+2K), pg (iE,
iK+2E) corresponds to the physical region of the s
channel; ng(iE, iK+2K), Pg( —iE, iK+2K) to-
the t channel; and ng(iE, iK+2E), pg(0, 2iE) to
the u channel. , Comparing with (1) we see that the
physical regions of the s and t channels get mapped onto
the entire upper and lower sheets of the hyperboloid
5 =$0 —p] pp 1p respectively.

Thus, we have the physical scattering amplitudes as
functions on homogeneous manifolds and we can
proceed to expand them in terms of the basis functions
of irreducible representations of the group acting on
these spaces, namely, the group 0(2,1).

III. CROSSING-SYMMETRIC EXPANSIONS

As was shown in I, the basis functions for irreducible
representations of 0(2,1), separable in the elliptic
coordinates (1), are eigenfunctions of a complete set of

9 T. %. B. Kibble, Phys. Rev. 11'F, 1159 (1960).

[Note that A~q+(z) and A~q (z) are symmetric and
antisymmetric about the center point z =E+iK,
respectively. ]

It is now possible to obtain an expansion formula for
a function f(n,p) defined over the hyperboloid, in terms
of the basis functions (16). Such an expansion was
derived in I using the Gelfand-Graev method of
horospheres" for functions square integrable with
respect to the invariant measure d'p/p ——

0
—-,'(cn'n

+cn'P) dndP. Here we only give the resulting expansion:

f(n, P) = — dl(2l+1)
8x'i

Xcotxl Q Q Q AT g,"
~
X„,(l,h)

~

'

X[A"'(l,b)A n" (n)Aia'(P)

+A ~"(t,h')An'( )A~gn~(P}5, (19)

A&&(l,h) = —— dn dp (cn'n+cn'p)

Xf(,P)A "( )A '(P), (2o)

where a= —~z, I is the interval (iK, iE+2E), and the

1o Bateman Manuscript Project, BigIIer Transdendental Func-
tions, edited by A. Krdblyi et al. (McGraw-Hill, New York, 1955),
Vol. III, Chap. 15.

» I. M. Gelfand, M. I. Graev, and N. J. Vilenkin, Generalized
Functions (Academic, New York, 1966), Vol. 5.
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f'(n, P) = dl (2l+1)
8+~i

Xcot~/g p g Ep,n~)„(l,h)~'
It, y=+ q=+y

X{qB"'(l, h) A is "(a)&ia'(2K P)—

+pB»~(/, h )Xiii»(a)Zion(2K —p)), (24)

ds
&u,,"(s)&ii4"(s) =—0

v2
(21)

Ni»i' and X„»(/,h) are normalization constants:

h summation in (19) is over a set of real discrete values, obtain the corresponding expansion
determined by choosing one arbitrary value ho and then

st+a~
selecting all values of h such that

and

dS
(%a') '= (t'ai "(*)j' (22) B"'(/,h) = —-',

q dn dP (cn'n+cn'P)
I 1'

Xf'(n, 2E—P)Aia&(n)Ap„. &(P). (25)

&+p(/, h) = — Ap,+(x)(i cnx) ' 'dx-, —

v2

~, (l,h)= Aii+(x)(i cnx) ' 'snxdx,

l+1
/i +(l,h) =-

&2
Ap, (x)(icnx) ' '(idnx)dx,

X(i dnx snx)dx.

(l+1)(l+2)
(l,h) =- Ay, (x)(icnx) ' '

(23)

Notice that the variables 2E—g in (24) are in the same
region as p in (19) and that the two expansions converge
simultaneously.

Now let us assume that the particles satisfy 2=3,
i.e., particle 3 is the antiparticle of 2, so that the
reactions in the two channels are identical. Independ-
ently of any analyticity problems, the amplitudes
must satisfy f'(s, t,l) =~f'(t, s,l), i.e.,

(26)

Comparing (19) and (24), we see that crossing sym-
metry (26) is satisfied trivially by putting

qB-(l,h) =+A-(/, h'), pB-(l,h') =aA-(/, h) . (27)

Formula (19) is the crossing-symmetric expansion
for which we have been searching. This expansion,
together with the inverse formula (20), was derived
rigorously only for square integrable functions, corre-
sponding to cross sections falling off to zero for s~~.
To describe physical amplitudes, corresponding to a
more general asymptotic behavior, we must generalize
expansion (19), making use of nonunitary infinite-
dimensional representations. The simplest possibility,
suggested by analogy with Regge-pole theory, is to
retain formula (19), but integrate over a shifted path
(with i4& ——,'). Formula (20) has to be modified in this
case and is in general not unique.

Let us now discuss the sense in which our expansions
are crossing symmetric. As in I, we only consider
amplitudes in physical regions, postponing a discussion
of the analytic continuation from one region to another
to a future publication. Contrary to I, we consider the
general expansion (19), without imposing additional
symmetries on the coefFicients.

Consider simultaneously the s-channel reaction
1+2-+3+4 and the t-channel reaction 1+3~2+4.
In the physical region of the s channel we have n
P (iK, iK+2K), Pg (iK, iK+2K) and we write expan-
sion (19) for the scattering amplitude f'(n, P) In the.
physical region of the t channel we again have ng (iE,
iK+2K); however Pg ( iK, iK—+2E). Making —use
of the symmetries of the Lame equation, it is easy to

In other words, we write the same expansion in both
channels and crossing symmetry is imposed trivially,
term by term, by means of Eq. (27).

cn' - 1+is[i+cos8%4 sin8](s —4), (28)
p 4~4; »=const

so that the threshold corresponds to the center point
n=P=iE+E. Putting n=iK+K+», P=iK+K+»s,
and expanding cn4n(cn4P) about this point, we find

= i4(1+cos8%4 sin8)"'(s —4)"'. (29)

Further, let us make the usual assumption" of
Hermitian analyticity f (s+i», t) =f(s i», t) along—

» R. J. Eden, P. V. LandshoG, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge U. P., New York, 1966).

IV. THRESHOLD AND ASYMPTOTIC BEHAVIOR

A. Threshold Behavior

Let us first consider the behavior of expansion (19)
near to the threshold, for simplicity considering the
case when all four masses are equal, so that a,P and s,t
are related. by (13) and (14). Let us approach the
threshold from the s-channel physical region along any
line, corresponding to a 6xed angle in the c.m. system.
Thus, putting s=2/(cos8 —1) '+4 we have
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the cuts in the s plane, so that

f*(u,P) =f(2K+2iK u,—2K+2iK P)—. (30)

We split the scattering amplitude into a symmetric
and an antisymmetric part, putting

f(u,P) =-,' [f(u,P)+f(2K+2iK —u, 2K'+2iE —P)]
+ ', [f(-,p) f(2E—+2 K—,2Ky2 K p)]-

=f.(-,P)+f.(-,P) (31)

or iK+2K), we find

=8't's "'(—,'(1—2t)a [—t(1—t)]'")"'. (35)

Using (34), we see that the postulated convergence of
our expansions is compatible with

(36)

and notice that (30) implies

f, (u,P) =f,*(u,P) =Ref(u,P),
f.(u,P) = —f.*(u,P) =i Imf(u, P) .

i.e., the amplitudes can grow as arbitrary polynomials
in s.

(32) If s ~pp for fixed u =up(0, we find that u and P
approach opposite end points with

Near the center point the function Ati+(iK+K+p)
and Zip (iK+K+p) can be expanded in even and
odd powers of e, respectively. Obviously only terms
with P =q in (19) will contribute to f.(u,P) and those
with p= —

q to f (u,p). Thus we find that each term in
the expansion of Ref(u, P) approaches a constant as s
goes to the threshold, whereas each term in the expan-
sion of Imf(u, P) goes to zero having a square-root
singularity at the threshold. Assuming uniform con-
vergence of the expansion, we immediately obtain the
correct threshoM behaviors:

I, g ( I, &12--&l4

2(4—u) 2 k4 —u
(37)

so that we can have

f(u») ttg K~ sg
S~oo; u=up(oo

(38)

Finally, if s —+~ for Axed c.m. scattering angle
(0, =const/0 or s.) u and P approach the same
end point, with

Ref(u, P) ~ const, Imf(u, P) (s—4)'t' (33)

B. Asymptotic Behavior

p =8"'(1—cose) "'s "'
ps =8"'(1+cose)"'(1—cos8) 't's 't'

so that the amplitude can behave as

(39)

We postulate that expansion (19) converges for some
positive value of If., determining the integration path in
the complex l plane, and study what sort of asymptotic
behavior is compatible with this expansion [let us
again stress that the inverse formula (20) must be
modified for non-square-integrable functions, the
rigorous mathematical treatment of which is in itself
a dificult problem]. Applying the Fuchsian theory"
of ordinary differential equations to the Lame equation
(17), we find that at the singular points sp iK or——
iE+2K the Lame functions behave as

&."()=e ()( —o)"'+e "()(-o)-', (34)

where pp(s) and &pi'(s) are regular at s=sp.
We can use this asymptotic behavior to study the

behavior of amplitudes for supp (or t —+pp) in any
direction in the Mandelstam plane, as long as the
variables u and P approach their end points.

For simplicity, let us again restrict ourselves to the
case of four equal masses and consider three different
asymptotic limits. Expanding about the end point so,
we have cn'(sp+ p) ~4p '(1—

~ p'+. ) for e ~ 0.
Consider 6rst s —+~, t=to(. 0 6xed. It follows from

the mapping (13) and (14) that both u and. P approach
the same end point. Putting u=sp+ p, P=sp+ ps (sp=iK

"E. L. Ince, Ordinary Differentia/ Equations (Dover, New
York, 1956).

f(u p)~p ap x~gpxl4—- (40)

The actual high-energy behavior naturally depends
on the properties of the amplitudes Ai'p(/, h) in the
expansion. A simple approach, analogous to Regge-pole
theory, would be to assume that we can shift the
integration path in (19) to the left in the / plane and
that the coeKcient A&p(/, h) has a pole in the / plane
for l=lo, —~&Relo(. a, dominating the asymptotics.
We then find that

f(,t)=f(,P) —(- )-", (41)

V. CONCLUSION

As was stressed in the Introduction, this investigation
is a step in a certain general formulation of two-body

which for t=const, I=const, or 8, =const, corre-
sponds to s'«', s'o or s"«', respectively.

Comparing these results with those of Regge-pole
theory, we find that the assumption that the crossing-
symmetric expansion (19) is dominated by a pole for
s —&~ corresponds to the dominance of a 6xed pole
in the complex angular momentum plane.

Note that the rigorously derived expansion (for
z = —ip) corresponds to amplitudes behaving asymptot-
ically like s "', s '~' or s '~' for t, I, or 8 fixed.



CROSSING-SYM M ETRI C EXPANSIONS 1879

scattering. We have shown how the approach, making
use of the geometry of velocity space, leads to crossing-
symmetric expansions . (for particles with arbitrary
masses) having reasonable threshold and asymptotic
behavior.

We plan to continue our investigation, in particular
to consider the problem of analytic continuation into
nonphysical regions and between physical regions, and
to establish the exact connection with Regge-pole
theory, i.e., to show how moving poles in the complex
angular momentum plane manifest themselves in the
properties of our expansion coefFicients. Further
problems under consideration are the relation of the
obtained expansions to various dual-resonance models,
the calculation of expansion coefIicients in various
models, and (one may hope) applications to the
description of specific scattering or decay processes.

The mathematical problems which arise are related
both to the development of group representation theory
in bases not corresponding to the reduction of a group
to any subgroup, and to expansions of non-square-
integrable functions in terms of nonunitary representa-
tions of noncompact groups.
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Some Features of Chiral Symmetry Breaking
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Some rather paradoxical features of chiral symmetry breaking are shown to be directly related to the fact
that the vacuum is supposed to be degenerate in the limit of exact symmetry. The importance of picking
the correct one of the many symmetry-limit vacua is stressed. A peculiar phenomena of spontaneous CP
violation appearing alongside SV(3)QxSV(3) breaking is observed. (In the model investigated here, the
effect is much too large to be at all related to that seen in weak interactions. ) For the (3,3)Q+(3,3) model of
symmetry breaking, it is shown that the rate for /C8 —+ 2x should be suppressed by a factor of PSV(3}
QxS U(3) breaking j . This may or may not be a difliculty. A number of other topics in chiral symmetry break-
ing are discussed briefly.

I. INTRODUCTION
' 'T appears to be reasonable to adopt a picture of the
- ~ strong interactions in which the strong Hamiltonian
H can be meaningfully written as

H =Hp+eH',

where Hp is SV(3)SSU(3) symmetric and H' contains
the (small) departures from exact symmetry. ' ' We
suppose that B' takes care of not only the corrections
to chiral symmetry, e.g., corrections to partial conser-
vation of axial-vector current (PCAC), but also the
corrections to SU(3) itself, e.g. , mass splitting. An ad-
vantage of this way of looking at the strong interactions

*Alfred P. Sloan Foundation Fellow.
The original suggestion that PCAC is related to chiral sym-

metry was due to Nambu and collaborators. Later Weinberg
pointed out that current-algebra results could be interpreted
as the consequences of an approximate chiral symmetry. The
present paper is based on ideas expressed in Ref. 2. More recent
papers on chiral symmetry are too numerous to list in any reason-
ably fair manner.

' R. Dashen, Phys. Rev. 183, 1245 (1969).

is that one can hopefully relate these two types of
symmetry breaking.

In the limit e=o the eight pseudoscalar mesons are
supposed to be Goldstone bosons and, hence, massless.
To first order in e, their masses squared are given by the
elementary formula

where n=1, . . . , 8 labels the mesons; X' is the density
of II', i.e.,

H'= d'z K(x,0) .

and (P~ is a covariantly normalized state, i.e., (P~P')
=2Pp3'(P —P'). Taken at face value, Eq. (2) has a
peculiar property. The left-hand side is necessarily
positive, but there does not appear to be any reason
why the matrix elements on the right-hand side cannot
be negative. One is thus led to ask the question of
whether positivity of the squares of the meson masses
places some restriction on X'.


