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Starting from a Lagrangian where the p meson is treated as a Yang-Mills field, we calculate mvr scattering
amplitudes in the one-loop approximation. The summation of the strong-coupling perturbation series is
performed with a unitary-rational-function approximation, and the p appears as a true resonance. We
show that the interaction generates the d-wave fo resonance, and a very broad s-wave 0- resonance. The
model yields a version of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation, which agrees
very well with experiment, and our s-wave amplitudes are close to the current-algebra predictions. We
draw some conclusions on mw dynamics.

I. INTRODUCTION

ASSIVE Pang-Mills fieMs have raised consider-
s - able interest in recent years, in particular in

connection with the question of renormalizability. "
Prom a phenomenological point of view, we have the
very attractive idea suggested by Sakurai4 that strong
interactions may be mediated by vector mesons uni-
versally coupled to various conserved currents (I,Y,B).
On the other hand, in recent years much progress has
been done in the calculation of strong-interaction proc-
esses starting from 6eld-theoretical considerations,
owing to systematic use of rational-function summation
procedures for divergent series. ' ' The Pade approxi-
mation treats the renormalized strong-coupling per-
turbation series and, among other features, it leads to
partial-wave amplitudes which are exactly unitary;
furthermore, numerical results obtained up to now are
very encouraging, in particular in 7l.7I scattering. Since
the Yang-Mills theory behaves as a renormalizable one
in the one-loop approximation, it is of interest to analyze
its dynamical content along these lines.

In the present paper we study m7I. scattering where the
only vector held of interest is associated with the p
meson. In subsequent papers we propose to study more
complicated systems. Among its many interesting
features, the model has the advantage of prohibiting
exotic resonances since forces are repulsive in these
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channels. The I=1 p wave is elementary in the sense
that it contains the p-meson pole which is present in
the Lagrangian. VVe shall see how the unitarity proper-
ties of the Pade approximation allow us to handle un-
stable particles in Feynman graphs as far as direct-
channel poles are concerned —i.e., the final p meson
appears in the second Riemann sheet. Hence, the most
interesting predictions of the model concern s and d
waves, where we shall see that the fv is generated in good
agreement with experiment, and also that a very broad
s-wave cr resonance appears. Our Lagrangian contains
two parameters which are immediately fixed in terms of
the physical p mass and p width. The subtraction con-
stant of the second-order &x amplitude is chosen so that
Adler's self-consistency condition' is satisfied at that
order. In the course of this work, we obtain a version
of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
(KSRF) relation, ' which is slightly different from
the usual one and which compares extremely well
with experiment. In this sense, our amplitudes satisfy
the useful constraints of current algebra, and we
show that second-order corrections to scattering
lengths bring these close to Weinberg's values, "
thereby decreasing the "isospin-two 0. term. " Finally,
since p exchange generates a r resonance in the pres-
ent model, and since it was shown that o. exchange
can generate the p in the o- model, ' we observe a "recip-
rocal-bootstrap" situation between the p and the 0..
From the structure of Feynman graphs, one can
consider the o model as the superposition of two
s-wave forces, the 4 contribution and 0 exchange.
However, these two forces have to cancel each other at
s=t=e=m 2 because of Adler's condition, leaving us
with an important p-wave contribution. In the present
model we start only with the p-wave force and we are
able to generate the main features of s-wave amplitudes,
owing to the KSRF relation.

The paper is organized as follows. In Sec. II we
recall the basic properties of the Yang-Mills Lagrangian.
In Sec. III we discuss the structure of Born terms, the
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relation with current algebra, and. the KSRF relation.
In Sec. IV we discuss second-order terms and we give
the numerical results. Section V contains our concluding
remarks. The explicit calculation of first- and second-
order amplitudes is given in the Appendices, together
with our explicit renormalization procedure.

~ = 2(Bv~) kp u
y (2.1)

which is invariant under the group SU(2). Under an
in6nitesimal gauge transformation of the second kind
of SU(2), the pion field and its derivative transform
as

(2.2a)

B@c~ (B+c+86)XBv'R)+(Bjy8&) XÃ ~ (2.2b)

Since the Lagrangian (2.1) is invariant under SU(2), its
only variation under transformations (2.2a) and (2.2b)
comes from the last term (B„ban)X~. In order to
transform the Lagrangian (2.1) into a gauge-invariant
one, we must cancel these contributions. This is achieved

by introducing the covariant derivative

Bv~ ~ Dv'ry =
Byu+ gpss X~ y (2 3)

where p„ is a vector field which belongs to the regular
representation of SU(2). It transforms as

Pv~9u+~~XPv (1/g)Bv~~y (24)

thereby canceling the term B„B~of Eq. (2.2b). We now

have to add in the Lagrangian a term which contains
the kinematical part for the Geld y„and which is also

gauge invariant:

(2 5)

Gvv = Bvpv Bvgyy+gpv Xpv ~ (2 6)

It is easy to see that terms involving derivatives of
5~ will cancel out. Using Eq. (2.4), we have

B„p,—y B„p.+5~X(B„g.)
+(B„B~)Xp.—(1/g)B„B„B~, (2.7a)

Byway Bvgv & Bvpv+Blb X Byway Byjoy 8Gil XBypy,

+(B„h~)Xp, —(B„Boa)Xy„, (2.7b)

gpss Xgy ~ g(gv+BGilXpv) X(gy+BlDXpy)
—y„X(B,B~)—(B„Bra)Xy„, (2.7c)

so that G„„GJ'" is gauge invariant.
Under the previous considerations, the resulting

Lagrangian can be written as

Z=g'(B„++A„Xm)'—s'p'(u)'--'G G""

II. LAGRANGIAN

Following Yang and Mills, ~ we construct a Lagrangian
invariant under isospin gauge transformations of the
second kind. In order to do this, we start from the free
Lagrangian for the pion system,

III. BORN TERMS

In the zero-loop approximation, the xm amplitudes
depend on two parameters g and m. The quantity

~ g~
"' is essentially the pm.~ coupling constant which is

related to the physical p width. The parameter m is the
real part of the physical p-resonance mass (as we shall
see presently, the subtraction constants are chosen so
that higher-order corrections alter only its imaginary
part). In the three isospin channels, the Born terms for
mm —+ mm are (on the mass shell)

(
s —u s —t

2g ——+-
m' —t m' —u)

for I=0, (3.1)

t us —u — st-
gi 2— + ——— — for I=1, (3.2)

4 m' —s m' —t m' —u

(
s —u s t)——

g
——+m'-t m'-u)

for I=2, (3.3)

At this stage, the following points are worth keeping in
mind.

(1) The same procedure gives the minimal coupling
in quantum electrodynamics, when applied to phase
transformations. However, in that case, since the
group is Abelian, the vector Geld does not have the
charge of the group and G„, is a free-field term. %hen
the group is non-Abelian, the vector Geld is self-coupled
and there are interaction terms, even when only the
vector field is considered.

(2) Given a continuous internal-symmetry group,
one can always build in this way a vector Geld uni-
versally coupled to the conserved current associated
with the group.

(3) In electrodynainics, the minimal coupling with
a vector Geld yields a renormalizable Lagrangian in the
following sense: In the positive metric there exist
highly divergent graphs, but at each order, the sum of
too strongly divergent contributions cancels for on-shell
5-matrix elements owing to the conservation of the
current (Ward identities). Moreover, if the vector Geld

is given a nonvanishing physical mass, thereby breaking
the local gauge invariance, the previous property
remains, i.e., the most divergent terms due to the
k„k„/m' part of the vector propagator cancel. In the
non-Abelian case, renormalizability has only been
proven for the zero-mass. ' In the massive case, nothing
has been proven in general. In the one-loop approxi-
mation, the leading divergences from the k„k„/m' terms
cancel. In a given gauge, the remainder can be under-
stood as follows: %ith each vector-meson loop one
associates a similar loop involving a scalar negative-
metric particle with derivative couplings. This rule
does not hold any longer in the two-loop case where
more terms appear. '

In the present work we have calculated xx amplitudes
in the one-loop approximation,
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where s, t, and I are the usual Mandelstam variables.
Our normalization is such that the unitarity relation
for partial-wave amplitudes reads

or (s—4) "'
Imtt(s) = —

( [ ) t((s) )
', (3.4)

2E s f

ti(s) (3.5)
nt' s —ig(—s/3) [(s 4)—/s5"'(s 4)—

so that, by identification with a Breit-Wigner formula,
we obtain

where, as in all that follows, we have set the pion mass
to be unity: m 2=1. Since ns is the p mass, we have
m~760 MeV. A erst estimate for the value of g can be
obtained by using Eq. (3.2) as a E matrix, once pro-
jected on the p wave. Near the p pole, s~rn', we have

-'g(s-4)

Furthermore, as we shall see later on, our subtraction
constants are chosen so that Eq. (3.9) is satisfied at
each order of perturbation theory.

(b) In the limit where the two pion four-momenta
vanish, the current-algebra constraints (Weinb erg's
condition") state that we should have

lim T.„o(p„p,; p, ,p4)-M.e„'
oy2 0

2p&'po
(S.,S,& S.»—»)yO(pio, pos, p, p,), (3.10)

where f is the pion decay constant (f 94 MeV ex-
perimentally). Taking the same limit with our expres-
sion (3.8), it is easy to see that the coeflicient of the
isospin-one term is 6g/nt' so that, by identification with
Eq. (3.10), we obtain the relation

16m'g f,'/rn '=-', (3.11)
(3.6)

from which we can deduce the value of f . With I'=100
MeV and nt, =760 MeV, we obtain f 89 MeV in
remarkable agreement with experiment. This is to be
compared with the well-known KSRF relation which
reads, in the same normalization,

P is the p width (I' 100—110 MeV), yielding g 0.16,
which is our effective expansion parameter near
threshold.

The s and p-w-ave scattering lengths are of interest
in understanding the basic features of the model. Since
second-order corrections are small near threshold (this
is borne out by the calculation, as we shall see presently),
first estimates for these scattering lengths may be evalu-
ated readily from Eqs. (3.1)—(3.3). To order (nt, /nt, )',
we have

16or'gf.'/nt '=-', (3.12)

and which differs from the previous one by a factor ~~.

This can be understood as follows: In one calculation,
g is the residue of the p pole and this gives Eq. (3.11).
On the other hand, Eq. (3.12), taken as such, does not
agree as well with experiment (I', 165 MeV if f,=95
MeV). Therefore, g in that formula should rather be
understood as the value of the pew vertex when all
four-momenta vanish. Note also that in usual treat-
ments, the KSRF relation is obtained by assuming
dominance of Chrect p exchange, whereas in our model for
xw scattering, crossed p poles contribute for one-third
of the total amplitude at low energies.

(c) We notice that our scattering lengths could also
be obtained in the linear Weinberg amplitudes, "using
the prescription that the relative contribution of
isospin sero and isospin-two o. terms-is in the sante ratio
as the physical scattering lengths ao and as.

ote added in proof Inde'ed, in. the linear approxima-
tion a'+Ps+p(t+I), Eqs. (3.9) and (3.10) imply a ratio
of scattering lengths ao/as ——(7+5c)/( —2+2c), while
the ratio of I=2 to I=O t-channel amplitudes is in the
limit (3.10) oo/oo ——2c/(Sc+3); Weinberg's assumption
is c=0, while our case corresponds to c= ——„hence
ao/ao =&o/&o

The previous considerations show that the present
model incorporates current-algebra constraints and
vector-dominance ideas which appear here to be in
excellent numerical agreement. We finally recall that,
as is well known, 4 since the p meson is universally
coupled to the isospin current, the interaction is re-
pulsive in I=2 mz states and attractive in I=O andI=I. This feature is very pleasant, since it forbids the

s
lim — — e'~~ sin6~

x s—4

16g(rn /ntp)', I=3=0

gL(s —4nt ')/rn '5 I=l=1
.—8g(nt /m, )', 1=2, l =0. (3.7)

With g=0.16 and m, '=30 m ', we obtain for the scat-
tering lengths F0~0.134 m ' a2 —0.067 m ' and
ag 0.034 m

To understand these numbers, it is interesting to
study the soft-pion limits of our amplitudes. The
completely off-mass-shell contribution of the direct p
pole for (pi,n; p„a) ~ (po,y; p4, 8) is

t—u+ (p is —p, ') (po' —pp)/no'
g(~-vapo ~.»ev), (38)

tS —S

where s=(Pi+Po)', t=(Pi —Po)s, and a=(Pi. —P4)'.
With respect to current-algebra considerations, the
following comments are in order.

(a) Since our amplitude (3.8) is antisymmetric in the
invariants, Adler's self-consistency condition' is identi-
cally satisfied by the Born term; i.e., we have

lim T~e~o(pi) po) po, p4) =0, ps' po'= p4'=——ns„' (3.9).
PIts~o
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180

will be such that
Re(M, )-m. (4 5)

90 .
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I'IG. 1.I=1 p-wave phase shift for g=0.17.
Notice the passage through 180'. gti'(s)

t~' '~(s) =
h(s) —gt, (s)

(4.7)

(c) Once we have computed first- and second-order
terms, and after projecting on to definite angular mo-
mentum and isospin channels, we obtain the pertur-
bation series for partial-wave amplitudes,

t(s) =gti(s)+g't~(s). (4.6)

In order to sum this strong-coupling series, we use the
Pade approximation technique, and we build the [11,]
approxim ant

occurrence of exotic resonances. Furthermore, it is
interesting to note that the same problem can be
formulated in the more general SU(3) scheme where
exotic channels are repulsive and where the vector and
tensor octet trajectories can be shown to be exchange
degenerate up to second order of perturbation theory. "

[A&(s)]—'= s —m'+gC (s) .

The subtraction prescription is such that

(4 2)

ReC(m') =Re —C(s)
ds —a=m 2

=0 (4.3)

so that the final complex p mass M p which is given by

[hr(M ')?'=0 (4.4)

"D. Iagolnitzer, J. Zinn-Justin, and B. Zuber (unpublished).

IV. SECOND-ORDER TERMS AND
NUMERICAL RESULTS

In second order (one-loop diagrams), the theory
behaves as a renormalizable one in the sense that it
requires no more subtraction constants than would be
expected if it were renormalizable. Since the explicit
calculation of second-order terms is rather tedious, we
refer the reader to Appendix C for complete details. The
important points of the calculation are the following.

(a) In the second order, the proper ~4 vertex requires
one subtraction. The subtraction constant is chosen
so as to impose the Adler self-consistency condition'
on the second-order xw —& xw amplitude

lim T e,g'(pi, ps, p3,p4) =0, p22=p3'= p4' ——m. '. (4.1)
Pits ~0

Since our Born terms also satisfy this condition, our
amplitudes are consistent with the requirements of
partial conservation of axial-vector current (PCAC).

(b) The subtraction constants for the s~p vertex
and for the self-mass of the p are chosen so that our
real parameter m in Eqs. (3.1)—(3.3) is as close as pos-
sible to the physical p mass. Consider, for instance, the
inverse p propagator. To second order it can be written

t (s)
S—8$

(4 g)

gA (s) g8(s)
t~(s)- -- +— (4 9)

(s —m')' s —m'

where A(s) and B(s) have cuts from s =4m ' to in6nity
and are subtracted according to Eq. (4.3) for A(s),
and Re B(m2) =0. Accordingly& the Pade approximant
(4.7) behaves as

t[1,1](s) ~ (4 ]0)
* "'

(s —m')Ll —(gi )&(s)3—(gl )~(s)
It is clear from the preceding expression that the pole
of the Pade approximant lies in the second sheet, and
that its real part is close to m'. In this sense the Pade
approximation allows us to handle unstable pa, rticles
in Feynman graphs as far as direct charlie/ pole-s are
concerned. "Of course, there is still the problem that
the perturbation series and the Pade approximants
have singularities that the sum (the exact amplitude)
does not have —for instance, the pp cut in our case lies
on the physical axis—and we cannot really trust the
approximation near those singularities. However,
choosing to subtract at the physical (final) p mass
somewhat minimizes the importance of these draw-

backs since the p width is not too large.
Since the subtraction constant of the mw amplitude

is fixed by the Adler self-consistency condition, our
calculation contains two parameters g and m which are

'~ Such a situation was already encountered in the o model; see
Ref. 7.

thereby obtaining partial-wave amplitudes which
satisfy exact elastic unitarity in the region 4m ~&s

~& 4m, , and inelastic unitarity above.
(d) In this model, the I=J=1 channel is special in

that it contains an elementary particle, the p meson.
In first order, the pole lies on the real axis, but, owing
to the unitarity properties of our amplitudes (4.7),
it is displaced onto the second Riemann sheet, as it
should be, by second-order corrections. In this channel,
the first- and second-order amplitudes behave in the
vicinity of s=m' as
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6xed by imposing the condition that the p resonance in

the I=J=1 channel has its physical mass and width.
Once this is done, all partial-wave amplitudes can be
computed at once with no additional assumptions.

90.. 0"
5

&
(degrees)

60

I=I p WaM

We choose the value m=5.45m, and since there is
some uncertainty in the exact value of the p width, we
let our coupling constant g vary in a small range around
g= 0.16. The corresponding values of the (renormalized)

p mass and width —as dered, for instance, by the
position of the secortd sheet p-ole of the I=I=1 awspli-

tude, Eq. (4.10)—are

g=0.16, 3IIp 761 MeV—,—F,=105 MeV, (41 )
g=0.17, M, =761 MeV, I', =112 MeV.

One can also compute the pole of the renormalized p
propagator, Eq. (4.2). It is interesting to note that the
parameters of the p resonance obtained in these two
diferent methods are remarkably close, although the
pole structure of the four-point-function diagrams is
more complicated in this order than for the two-point
function. The resulting p-wave phase shift is plotted in

Fig. 1, where one notices that it crosses the value 180'
at E,. ,~1150 MeV. This is because of the vanishing
of the Born term

(2s+m' —4) 2ns') 2 s —4
g Q, 1+ ~--- —=0, (4.12)

s—4 s—4) 3 s—m'

where Qr is the Legendre function of the second kind
(see Appendix C). This feature can presumably be
tested experimentally. Above this value, b~' rises again,
and reaches 30' at 2 GeV, thus leaving open the possi-
bility of an I=J=1 resonance in the region 1.5 GeV,
as suggested by some models. "The p-wave scattering
length is a~=0.37 for g=0.16 and 0.39 for g=0.17, in

good agreement with the considerations of Sec. III.'

30

I I I I

360 440 520 600 680 760 840 920

-20 . 82(degrees) (b
0

FIG. 3. s-wave phase shifts for g=0.17:
(a) isospin zero; (b) isospin two.

I=0 aed I=2 d 8'uses

Higher partial-wave amplitudes are nonelementary
at this order in the sense that they all belong to Regge
families. The Regge trajectories —which are only de-
6ned for /&1—can be computed according to the
methods explained in Ref. 5. Their basic feature is that
they do not rise indefinitely as was found in other
models, ' but they resemble potential-scattering tra-
jectories. Since the interaction is repllsise in I=2 states,
no exotic resonance occurs in this model. The I=0 tra-
jectory passes through I=2 and gives a resonance which
we identify with the fs. In the range of parameters of
interest, the mass and width obtained for the fs
resonance are

g=0.16, 3E«=1321 MeV, I'«=227 MeV,
(413)

g=0.17, 3fy, =1278 MeV, I'«=260 MeV,

in favorable agreement with experiment" (mr, =1264
+10, 1'=151+25).The d-wave phase shifts are plotted
in Fig. 2. Note that the I=2 phase shift 82' is small and
negative, and it reaches —3' at 1300 MeV.

180
8

90 .

z& Mev)
0
0 900 1100 1300 1500

(b)2-10 52(degrees)

FIG. 2. d-wave phase shifts for g= 0.17:
(a) isospin zero; (b) isospin two.

"The Veneziano model predicts a p' resonance near the fo
mass; see, for instance, M. Jacob, Proceedings of the Lund Inter-
natzonal Con ference on ElerIzentary Particles, 1969, edited by G. von
Dardel (Berlingska, Boktryckenet, Lund, Sweden, 1969), p. 127.

s 8'aves

The most striking features of the s-wave amplitudes
are (a) that the I=O and I=2 phase shifts are respec-
tively positive and negative as was expected from Born-
term considerations, and (b) that the interaction gene-
rates an I=O s-wave resonance that we identify with
a 0- resonance. Since this resonance is very broad, we
compute the position of the associated second-sheet

'4 Notice that there is a numerical discrepancy of 20 jo between
values of scattering length computed with gg/gv and those
computed with f, as usual."Since previous Pade approximant calculations have yielded
abnormally seal/ resonance widths, we consider it signiGcant that
the fo width obtained here is large. Owing to imperfections of the
$1,1j approximant, our present Fg, is somewhat too large and
tends to increase as the mass decreases (the Born term contains
short-range forces, p exchange, while all other terms contain
long-range forces, two-pion exchange; in turn, higher partial
waves are badly approximated by the pt, tj at low energies).
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4
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g2T2
I

FIG. 4. First- and second-order s-wave amplitudes in the un-
physical region 0&s&4m: (a) isospin zero; (b) isospin two.

symmetry and some analyticity properties, provide
tests of crossing for partial-wave amplitudes in the
unphysical region 0~&s~&4m '. In our model, these
tests are positive in the sense that Roskies' relations"
are satisfied within a few percent, and that among
about forty Martin inequalities, only three are violated
(by a very small amount). The basic reason for this
stems from the fact that our amplitudes are based on
a well-defined perturbation series which, in second
order, satisfies these constraints exactly, as can be seen
very easily. Furthermore, in the unphysical region
0~& s ~& 4m ', the second-order term g'T2 is much smaller
than the Born term gTt (this can be seen in Fig. 4).
As a consequence, in this region the Pade approximant
(4.7) is not very different from the perturbation series. "
In this sense, the Pade approximation is a unitarization
method which is as smooth as possible, in that it main-
tains the basic structure of the Born term in a way
compatible with crossing.

Perhaps more interesting are tests of crossing which
can be made directly on physicat region amp-litudes.
These are provided, for instance, by dispersion relations.
The following sum rule" is of particular interest since
it relates s-wave scattering lengths and low-energy
partial-wave cross sections:

pole, and obtain, in the range of parameters considered,

g=0.16, M, =431 MeV, I', =546 MeV,
g=0.17, M, =424 MeV, F,=514 MeV.

4.14

2Co—582 1 dS

6 8n' 4 [S(S—4)]"'
X[o+-(S)—o++(S)] (ttt =1), (4 16)

As a consequence of the large imaginary part of the pole,
the phase shift 8p does not reach 90', although it is
large, as can be seen from Fig. 3. The I=2 phase shift
is small and negative, in good agreement with experi-
mental data, while bo' as it stands agrees well with the
so-called "down-down" solution. "The s-wave scatter-
ing lengths obtained are

g=0.16,

g =0.17,

co=0 17
@2=—0.057m

ap =0.18m
a~= —0.06 rn

Qp/Gp = —3
&

gp/Gp = —3.

(4.15)

It is interesting to note that second-order corrections
have brought these values into closer agreement with
Weinberg's current-algebra values (in first order, we
have ap/a, = —2).

Tesis of Crossing

It has already been emphasized' '~ that it is impor-
tant to check that the unitary Pade amplitudes are
compatible with crossing symmetry at low energies.
Martin's inequalities, " which are based on crossing

'6 J. P. Baton, G. Laurens, and J. Reignier, Phys. Letters
333, 525 (1970); E. Malamud and P. Schlein, in Proceedings of
Argonne Conference, 1969 (Argonne National Laboratory, Ar-
gonne, 1969), p. 106, and further references therein.

'7 J. L. Basdevant, G. Cohen-Tannoudji, and A. Morel, Nuovo
Cimento 64, 685 (1969).

"A. Martin, Nuovo Cimento 4'IA, 265 (1967);Nuovo Cimento

where 0.+ and 0++ are the ~+m and ~+m+ total cross
section. Neglecting asymptotic contributions as is
usually done, we retain only s-, p-, an.d d-wave contri-
butions to the integrand. The various contributions to
the right-hand side of Eq. (4.16) are

I=0 s wave:
I=2 s wave:
I=1 p wave (p):
I=O d wave (fp):

A p'= 0.049
Ago =0.016
Ap =0.036
Ag, =0.012

(4.17)

total: =0.081 )

while we have [see Eq. (4.15)]
L= (2ap —5a,)/6 =0.103. (4.18)

The sum rule (4.16) appears therefore to be violated by
20%. Since we believe that the value of the combin-

ation (4.18) of scattering lengths will not be changed
much by higher-order corrections (this value is close
to the current-algebra value), we have to conclude that

Letters 58A, 303 (1968); CERN Report No. TH-1008, 1969
(unpublished). The method has been extended to the general case
with isospin by G. Auberson, O. Brander, G. Mahoux, and A.
Martin, Nuovo Cimento 6SA, 743 (1970)."R. Roskies, Phys. Letters 30B, 42 (1969); Nuovo Cimento
65A, 467 (1970).

"Notice in Fig. 4 that we have ~g'Tp~((~gT&) except, of
course, near a zero of gT&, In the vicinity of such a zero, the I 1,1$
approximant loses its meaning, and in that case, the perturbation
series itself is a much better approximation to the amplitude."M. G. Olsson, Phys. Rev. 162, 1338 {1967).
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either the contribution of the I=O s wave will be in-

creased by 40—50'Po in higher orders or that asymptotic
contributions cannot be neglected (in fact the explicit
evaluation of these contributions in Ref. 22 accounts
perfectly for the present discrepancy). Note also that in
this sense, our phase shift Bo does not saturate Adler's
sum rule, "of which Kq. (4.16) is the on-shell version,
with the assumption that high-energy contributions are
negligible.

V. CONCLUDING REMARKS

Let us summarize what we have obtained. Our
Lagrangian contains a strong isospin-one force uni-
versally coupled to the conserved isospin current, repre-
sented by p exchange. In second order, the subtraction
constant is fixed by the Adler self-consistency condition,
and we are left with two parameters which are com-
pletely determined by the mass and width of the p
meson. We consider it signihcant that this interaction
generates dynamically (a) the d-wave fo resonance in
close agreement with experiment, (b) no exotic reso-
nances, and (c) a very broad s-wave o resonance with
isospin zero. We have seen that in this framework a
version of the KSRF relation obtains which is different
from the usual one owing to crossed-channel p exchange,
and which agrees very well with experiment. As a
consequence, our model satis6es the consequences of
PCAC and current algebra which are useful in calcula-
ting scattering lengths. Furthermore, second-order
effects tend to bring our scattering lengths close to
Weinberg's values. We have seen that our I=O s-wave
phase shif t probably exhibits the "down-down"
behavior.

Among all procedures to unitarize a Born term, the
Pade approximation seems most satisfactory in that it
preserves crossing symmetry to the maximum extent.
Besides that, it has the property of exhibiting the low-

energy spectrum.
In a previous calculation of the 0. model, ' it was

shown that the s-wave forces, and in particular 0. ex-
change, could generate the p-wave p resonance. In the
present calculation, p exchange generates an s-wave
cr resonance. In some sense, we have a reciprocal-
bootstrap situation between the p and the 0.. It is
interesting to notice that the r model~ and the present
"p model" seem to lead to similar features for the ~m.

amplitude. In this sense, we feel that many Lagrangians
are presumably equivalent if one calculates su%ciently
high orders, the main difference being the eKciency in
reproducing a given feature of the dynamics at lower
orders. For instance, the p meson itself is obviously re-
presented more accurately in the present model than in
the 0- model, although in the latter it can be considered as
being generated dynamically. This idea is also present
in chiral Lagrangians, " where one can, for instance,

» J. (".. Le Guillon, A. Morel, and H. Navelet, Nuovo Cimento
(to be published)."S.Adler, Phys. Rev. 140, 3736 {1965).

either realize the chiral symmetry by imposing the 0.

particle as in the linear r model, or by using nonlinear
Lagrangians which make no reference to this particle.

The previous considerations show that in order to
have the best possible representation of low-energy mx

scattering at low orders, the best choice would be the
complete phenomenological x+ Lagrangian, " where
both gauge invariance and current-algebra consider-
ations are taken into account. Notice, however, that
since the p, the 0., and the Aj are already present in the
Lagrangian, the predictive power of the theory (dynami-
cally speaking) will be somewhat smaller. Finally, it is
of great interest to extend the ideas developed in the
present paper to the more general case of SU(3) sym-
metry (exact or broken). Work on this subject is
under way. "

APPENDIX A: BORN TERMS

1. Born Term of (ss -+ ~~) Amplitude

(s—u s t )—
2gl

—+
&m' —t m' —u)

for I=0,

f—s s —u s t)—
2g— +g —— —

i
for I=1,

m'-s m' tm'--u&
t's —u s—t )—

gl
— —+

&m' —t m' —u)
for I=2.

Z. Born Term of (~w —& pp) Amplitude

(~(q) ~(q')) ~ (p.(&) p.(&'))

2
(2q —tt) &(2q' —t't')"

Ml""=g'
2

2
(2q' —k) &(2q —t't')"

g&

0
1

+g~ 2 '-—f(q —q') &(2k+k')"
s—m'

+g""(0'—0) (q
—q') —(q —q')"(2k'+k) "g

I=O

+g~ 0 ~g"" for~ I=1
—2 I=2.

"A complete review of chiral Lagrangians can be found in S.
Gaziorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 {1969).

» J. Schwinger, Phys. Letters 248, 473 (1967};see also Ref. 24.
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APPENDIX 8: UNITARITY CONDITIONS
IN (nn —+ nn)

1. m.~ Intermediate State

ImA (s, cosg)

~ s —4&»~2

8 s

Z. pp Intermediate State

1t s —4m2q»2
ImA(s, cos8) = —

~

gE s Z. Second Order -(nn~ sn) Scattering Amplitude

4[p(s,t)+ q (s,u)]+4[y(t,s)+ p(u, s)]
v(, t) —p(s») + v'(t ) —&(,s)
p(s, t)+q (s,u) + y(t, s)+rp(u, s)

+2[@(t,u)+ p(u, t)] 'I =0
fol I= 1

+2[p(t,u)+y(u, t)] I=2,

u"k'~

(nn ~ n7r) =g'
k~k~~ (

gM g» — g"'—
m'ik

APPENDIX C: SECOND-ORDER CALCULATION

1. Preliminary Remarks

second order, we compute the amplitude with one pion
off the mass shell and we impose Adler's condition at
s=t=l= p'.

Some contributions to the second-order amplitude
have a singular absorptive part at the p mass. For these
we restrict their real parts to be regular at the p mass,
in order to obtain a very small change in the real part
of the p mass in the Pade solution. Since the p mass is
larger than 2p, in the imaginary part of the amplitude
there remains a double pole, which in the Pade solution
gives the p width.

0 I=O

k&M„, =g- 1 '——(t—u)k„' for& I+1
m' —s

I=2.
If we compute the sum of all k„k„ terms, they give the
following contribution to the ns. ~ nn absorptive part:

We compute the second-order (~n —& 7') amplitude
by unitarity and crossing, as explained in Ref. 5. The
absorptive part of the scattering amplitude comes from
two contributions, with pp and ~m intermediate states.
We see that, owing to the preceding theoretical con-
siderations, the most singular terms, given by the con-
tribution of the k&k' of the two p, to the absorptive part,
cancel. This actually appears as a result of a Ward
identity which relates k&M„„ to the zap vertex. The
explicit calculation of the quantity k&M„„gives

with

~(s, t) =B,(s,t)+2T(t)+(s —u) [F,(t)+2V,(t)+I (t)]
y(t —u) [Z(s)+2 V(s)].

3. Definition of Functions

We give now the de6nition of the different functions
which corresponds as said before to graphs with a g„„
propagator of the p, in terms of the scalar functions.

(a) The box function:

By(syt) = (2s —4p'+ m')'B(s t) 2(2$ —4u'+—m') W(s)

+I(s)+4(2s —4p'+m') W] (t)

2$
[Wg(t) (t—2m') —Wr (4p, ') (4p, '—2m') ]

(t —4p')

0
m

2(t —u) ImL, (s) =g" 1 &—— (s —4m')
6 (m' —s)'

0
I=O

(b) The function T(s):

T(s) = —(-',s+m' —4p') Wg(s) .
s —4m')'&'

X(t—u) —
i

for& I=1
s

(c) The two-pion loop:

s—4p'
ImF (s) = — —ImI(s) .

3 (s —m')'
.I=2.

2' 2m2

X — ——Q]. 1+
Ls(s —4p')]'" s —4g') '

This result justifies the claim that for the one-loop
graPhs, we can comPute all the graPhs with a g» ProPa- The subtractions of (s —4p') I(S) are chosen to give
gator for the P, snd add a looP involving a scalar ghost a regular real part to F(s) for s=m'.
field of mass m to each p loop. (d) The two-pion contribution to nnp vertex:

This shows also that we need only one subtraction to
reconstruct by dispersion relations the complete ampli-
tude, starting from its absorptive parts. Im V(s) = — (2s —4p'+m')

In order to 6x the subtraction constant, we require
that the amplitude vanishes at Adler's point s = t =N =p'
for each order. The first order obviously does. For the
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where Q1(Z) is the Legendre function of the second kind
and the subtraction is chosen to give a regular real
part of V(s) for s=m'.

(e) The two-p loop and the ghost loop:

I
ImP1(s) = — (19s+32m') ImI1(s),

6 (m' —s)'

ImI-(s) = — (s—4m') ImI1(s),
12 (m' —s)'

where P1(s) and I.(s) are regular for 5=m'.
(f) The two-p contributions to the ororp vertex:

1 s+2m'

(c) IV1(s) and I1(s):

Imw (s) = -( )

Ls(s 4p')—]"'
s 2m'+—P(s 4p') —(s 4m')—]"'

X»—
s—2m' —L(s—4p') (s—4m')]'t 2

(s—
4m2~

't2

ImI, (s) =nl
s i

APPENDIX D: PARTIAL-WAVE PROJECTION
Im V1(s) =-

s—m s—4p,
For the complex-angular-momentum-plane continu-

ation of the partial-wave amplitude, we use the Frois-
)(L21(s+2m2 —sp2) Imw1(s)+ImI1(s)], sart-Gribov formula:

where V1(s) is subtracted to have no pole.

4. Absorpt221e Part of Scalar Functions

(a) The scalar box:

with

a((s) = dt' Im, A(s, t')Q1(Z),
4ts2

2

q2=-,'(s —4p') and Z=1+2t/(s 4p'). —

1 (s 4p2) 1(2

Im, B(s,t) = -l
4( s (m' —t1)(m' —t,)

Im2B(s, t) = ln
( st)»2 Al/2

A'"+t:- (t-4 ')]"'
6"2 —

P
—s(t —4m')]"'

(b) lV(s) and I(s):

1(s—4p2) "'
ImIV(s) = -l

4k s i
7r s—4LM,

2

ln 1+
Ls(s —4 ')]"' m'

(s—4p2)»2
ImI(s) =2rl

s i

(—st)'" LA(s, t)]"'
LA(s, t)]'~'+L —t(s —4p')]' '

Xln
A"' P t(s 4p')—]"'— —

A(s, t) =4m' —(s—4p') (t —4m'),
gX'

2m2
xe,(i+ for I=i

s —4p, 2

4(2s+m' —4p') ( 2m' )
2~io- -Ql 1+

s—4p' 4 ' s —4p, 'i
For the second order, the integration in the Froissart-

Gribov formula is done by using the Laguerre-Gauss
numerical-integration method. After a change of inte-
gration variable, we get

$=4M2 cosh'8,

where 3f2 is p' or m', respectively, for the two-pion or
two-p contribution to the absorptive part.

The formula for the absorptive part of B1(s,t) shows
that the Froissart-Gribov formula converges for
Rel& j.. For 1=0 and l= j., we use a subtracted form of
the same formula.

For the Born term, one obtains

(2s+m' —4p') ( 2m'
4&1o+—g Q~l 1+ for I=O

s—4p' k s —4p'

811 4(2s+m' —4p')
-', (s—4p')- +

m' —s S—4p2


