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eRects the transformation from the H.T.P. elm H.R.P.
to this I.T.P. cine I.R.P. will of course be the solution
of (4.12) and (4.14) with J&s'»= J»+x"P«'s —xsP&»"

I inally, it is hardly necessary to point out that the
choice of rotation pictures is not limited to ones in which

operators behave like scalars. One could, in principle,
employ rotation pictures which impose any nominated
tensorial or spinorial character on operators. The
concept we have been discussing would thus appear to
have some utility.
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If S [the term that breaks scale symmetry and not SU(3) 49SU(3)] is a c number, (or vanishes) all
components of the SU(3) SU(3) currents have the same dimension /0=4 ——3. In other words, 30&4 implies
that a q number 5 is present. Presence of a q number 8 thus follows if the Schwinger term in the current
commutators is a (finite) c number. We obtain the commutators of J0 with the scale-symmetry-breaking
operators 5, u, and p„&in terms of Jf,' and B&J„.As one of their consequences, continuity of the limit 5 ~ 0
implies that 4=3.

HE problem of whether, in addition to the scale-
and SU(3) SSU(3)-symmetry-breaking term I,

a q number b breaking scale symmetry Land not
SU(3)SU(3) j is present in the Hamiltonian density

Has(x) of strong interactions, is of particular interest.
We connect in this paper properties and existence of 8

with the scale-transformation property (a major
problem itself) of the Js' [the space components of the
(a=1—16) SU(3)SU(3) currents J„'].As one of our
main results, a q number 8 must be present if the J~
have no dimension or a dimension l~&3. In other words,
if 6=0 or a c number then lo ——lp=3. Since it is known'

that is=3 is incompatible with a. (finite) c-number

Schwinger term (ST), our result implies presence of a

q number 5 in this case. Therefore, evidence that the
ST is a (finite) c number indicates that a g number 8 is
present. '

We will adopt in this paper the scheme of broken
internal and scale symmetry as developed in Ref. 1. As
has become customary, we denote by 0„„the "new and
improved" energy-momentum tensor of Ref. 4. As-

suming that scale invariance implies conformal in-

variance, we may write the dilatation current D„as
D„(x)=*e„,(x) .

* Supported in part by the U. S. Atomic Energy commission.
~ M. Gell-Mann, Caltech report (unpublished).
~ H. Genz and J. Katz, Nuovo Cimento Letters 4, 1103 (1970).
' See, e.g. , R. Jackiw, R. van Royen, and J. West, Phys. Rev.

D 2, 2473 (1970), for a discussion of this evidence and its implica-
tions for Schwinger terms.

4 C. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N. Y.)
59, 42 (1970).

The dilatation charge Qn is then given by

Qn(xs) = d'x Do(x) .

In this paper we are concerned with the algebraic
properties of the currents J„,D„,and their diver-
gences. Thus, the particular mechanism of scale-

symmetry breaking is of no importance to us. We note
that the dilatation charge Qn(xs) is time independent
if and only if the divergence of the dilatation current

B~D„(x)=e„"(x) (3)

vanishes. For basic canonical quantities X(x), the
definition in Eq. (1) implies that formally

LQn (xs),X(x)$= i (i,+ x—&r)„)X(x), (4)

with l,= 1 (—', ) for bosons (fermions). Following Refs. 1,
5, and 6, we assume that Eq. (4) holds for some oper-
ators of physical interest such as, for example, the
currents. (The precise assumptions will be given later. )
However, we do not require that l is 6xed by canonical
arguments since interactions might change the dimen-

sion of a 6eld without necessarily destroying the form
of the commutator (4).

We next introduce our assumptions. Ke erst assume
that the charge densities Jo have a 6xed dimension, ' 5 '

' G. Mack, Nucl. Phys. BS, 499 (1968); H. Kastrup, ibid B15, .
179 (1970); K. Wilson, Phys. Rev. 179, 1499 (1969); D. Gross
and J. Wess, Phys. Rev. D 2, 753 (1970).' M. dal Cin and H. Kastrup, Nucl. Phys. B15, 189 (1970).$
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instead. of (18).Evidently, (19)holds under the stronger
assumptions of the local Eqs. (14) and (16), i.e.,

[QIl(0),8oo(x)7= i—(4+x'81)8oo(x) (20)

[Q (0) w„(x)7=—(l „+x'8)w (x). (21)

)The main conclusion on 8 is independent of (20), (21),
and (19).7

Equation (19) follows immediately from Eq. (18)
upon making use of Eqs. (20) and (21). Alternatively,
it may also be obtained by making use of the de6nition
of QII and the equal-time commutators i[8oo(y), 8oo(x)7
provided that the contribution of possible noncanonical
~e~~s to thc ETC i[Q&,8oo(x) 7 vanish (even if t ey are
present in i[8ol, (y),8oo(x)7)

The last assumption concerns the splitting of m into
an SU(3)SU(3)-breaking and an SU(3)SU(3)-
invariant term, i.e.,

at this point that all q),
' de6ned by

vl'= LQ' 81(x)7 (29)

have different dimensions for different X {namely, X)
or vanish, l.ikewise, all 6 de6ned by

d'yyo[Jo (o) u1{y)7

since all qg have diBerent dimensions. Likewise the
condition

d'y yI[Jo'(0),u(y)7 =0 (32)

have either dimension X—1 or vanish. [To check this,
commute (29) and (30) with QI& and use the Jacobi
identity. ] Since [from (23) and (28)7 Q'&, pe=0, it
then follows that

(v) w(x) =b(x)+u(x),

LQ'(0) 8(x)7=0

[iu(x),Q'(0) 7 =B&J„'(0),

(22)

(23)

(24)

is sufhcient to ensure
(33)

8„&(x)=p'), (4—X)bl, (x)+Q'1 (4—X)ul(x). (34)

0
for all u, k, and A..

From (27) it follows that (18) may be written as

and, for certain numbers c,

u(x)=Q'oco8&J„'(x)+Q',o ,c[oQ (0),8"J„'(x)7
+Z'. o .c.o..[.Q (o) LQ'(o)8"J.'(x)77+" . (25)

This possibility of constructing I from the current
divergences certainly holds in the (3,3)8 (3,3) model
of Ref. 11 and the (8,8) model of Refs. 12 and 13.
However, it is much more general since, for example,
it also holds for any irreducible representation of
SU(3)g SU(3).

Ke shall then see from the above that if 8 is a c
number then S~ =0, i.e., the space components of the
currents have dimension 3. Ke observe to this end that
I splits into terms with 6xed dimension n, i.e.,
u(x)=g' u (x), where

The reader should notice that (also for the g-number

parts)
P'I, (4—X)81{x)&0 implies 5/0. (35)

The condition, as may be seen from (25),

~ yy. [J"(0),8 J. (»7=o, (36)

implies (repeatedly using the Jacobi identity) Eq. (32)
and therefore (33). Since (36) can be found. in the
literature" " (for the reader's convenience we present
the derivation of Ref. 16 below), it remains to be seen
that (33) and So 80 implies that li is a g number. This
follows since, upon substituting (34) into the definition
of S 111 Eq. (8) tile 01lly sulvlvlllg 'tcllll ls

[QII (0),u„(x)7 = i (n+x'—81)u (x) . (26)

w(x) =P'1 Bl(x)+Q'1 u1(x)

8(x) =g'I, bp, (x).

(27)

In the above, X is any one of the n or P and we have
defined Bl(x) =w), —u1 with w), =0 (up=0) if no w„(up)
with dimension X exists. For later purposes let us note

This follows since [using (5), {11),and (12)7 each one
of the terms co8&J„»,c,o[Q'', 8"J„o7,. . . (and therefore
tllcll' sum~ I.c.~ u) evidently ls a sulll of tcl'Ills wltll fixed
dimensions. Adding in this expansion of I all terms with
the same dimension e, the unique labeling by dimension

[as assumed in (26)7 is achieved. After splitting w into
p'pwp (with p the dimension of wp) we may write

S"=i d'yy LJ '(o), 2'. (4—&)4{y)7 (37)

Thus, if JI, has no dimension or a dimension diferent
from 3, P'1 (4—X)81(y) has a nonvanishing g-number
part. From this it then follows that 8 is a q number.

To derive (36) we note that covariance and locality
imply

[i8-(x),Jo (y)7 =8"J.'(x)&(x-y)+J"(x) 8(x-y)
8$1p

8+2' io —o:(y) "—8(x-y). (38)
p=2 ~&I,I ~XA, a

"D. Gross and R. Jackie, Phys. Rev. 163, 1688 (1967);
R. Jackiw, ibid. 17'S, 2058 (1968).

~6 H. Geng and J. Katz, Phys. Re@. D 2, 2225 I'19)0).
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In the above relation,

goy. . .gopj„a(x) 0 (39)

is obtained from (13), (23), and (24) assuming

[Q (0),epp(x)7=0. (4o)

Since Eq. (9) under our present assumptions reads

S„=(3—lo)J (0),

we may combine (8), (44), and (45) in writing

I'~. ( ),J"(y)7

(45)

Incidentally it should be noticed that j=0 has been
obtained for canonical currents, " " using the asso-
ciative law"' or Schwinger's action principle. ' '
Commuting (38) with Jo' and using commutators of
charges with charge densities, we get (compare Refs.
15 and 16)

[Jo (y) ~'J.'(x)]—LQ'(0), ~"J.'(x)7~(x—y)

8
if'"~-"J:(s)~(x-y)=LQ'(0),J"(*)7 &(x-y)

Bgy

8

~&A,

+E' ".-., (y) " ~(x-y) (46)
p=2 Bg@1 Bxyp

The reader should notice the strong similarity between
Eqs. (38) and (46), which are—possibly except for the

j and r [see (49)]—identical if leap 3and ——l&=2.
Because of (46)

8
if"'J&'(x)— b(x y)+—Z(x y s)d's (41)

OSIS

where Z denotes the contributions of the j's in (38)
and

[Q'(0) 0 (x)7= (4 lg')—i8 J '(x)

is equivalent to

(47)

(48)

d'xZ(x, y,s) = d'xxoZ(x, y,s) =0

from covariance. It should also be noted that in order
to derive Eq. (41) one does not need to make any
assumptions about the existence of the ETC [Jp'(x),
Joo(y)7. Thus the preceding derivation holds even
when in6nities arise in the ETC. This is the case, for
example, in scale-invariant theories. (Recall that it
may be shown that the vacuum expectation value of
the Schwinger term must be inhnite in scale-invariant
theories. ' ') Multiplication of (41) by (x—y) and
integration over x then leads to

[Q'(0),J-'(o)7

=if'-J„'(0) d'ss„[J—o'(0) 8&J '(s)] (43)

from which Eq. (36) is obtained by use of charge-
current commutators.

In what follows, commutators involving Jo are
calculated. In order to obtain reasonable simple ex-
pressions, we assume for the moment that B~J„and
JI, have Axed dimensions l~' and 1j„respectively. Then,
commuting (17) with Jp and calculating the left-hand
side using the Iacobi identity, one obtains

i d'x e„~(x),Jo (0)

= (4—4 )B~J„(0)+(i&—3)a"J, (0) . (44)

"I.Schwinger, Phys. Rev. 130, 406 (1963); Nuovo Cimento
30, 278 (1963).

~8 H. Genz and I. Katz, Nucl. Phys. B13,401 (1969).

d'y yo[Jo'(0),w(y) ] (50)

in terms of Jo . We need here (21) for all wp except for
w4 or, equivalently, for all 8& except for 84 (if any)

i[Qg&(0),bg (x)7= (X+x"8„)bg (x) . (51)

U 84/0 we de6ne a new Ooo(w) by 8oo+84(w 84)—
without changing our assumptions [e.g. , (23) holds-
use (31)—also for the new 87. Upon calculating 6 for
this splitting with b4 ——0, no part with dimension 3

Under the additional assumptions leading to (19), we

easily see that (48) Pand thus (47)7 is implied by (39)
[i.e., (40)]. Namely, commuting (38) for y=0 with

Qn we recover the form (46) and, as we already know,
the terms multiplying 8(x) and 8&5(x) [with 5(x) at
present the three-dimensional 8 function7 must cancel
upon comparison [use x"8„8&8(x)oo 8&8(x)]. The only
ST of at least second order we get come from the j's
themselves and from the j's in [(4+x"oj„)8pp(x),Jo (0)7.
These therefore yield the terms involving 7. We then
have (comparing the coefficients of the derivatives of
8(x) and performing a translation)

[Qn(0) jo - o;(y)7= —i[re -o.(y)

+(—4+~+y "~-)jo,- o;(y)] (49)

Thus j=0 implies i =0.' In order to get (48) from (39),
we need only know that P', o 8"&"'Bo~y"8j&,...1,,(y)
=0, as is easily seen. Therefore Eq. (47) (which is often
assumed in the literature) is derived here [using (40)7
even if l~/3 and ST of higher order are present in (38)
[and (46)].

Finally we calculate [independent of (20)7 6 de6ned
by
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will be found. We write 8„~under our present assump-
tions as

8
[ib(x),Jo'(y)]=1&'(x) 6(x—y) for /&83 (58)

BSA;

0„~(z)=4/ (x) i—[Qn, //(z)]+x "a.S(x)+444(x)
i—[Qg&,44(x)]+x "8 1(x) (52)

=0
i[goo(x),l 0 (y)] =0

for /I =3 (59)
for /443 (60)

and get from (52) and (8)

i5'I'=[Qn(0), 14 ]+»~I .

Therefore, using {9),

(53)

i d'x x4.[b(x),JO (0)]=0

= —Jg (0) for /483. (56)

Tlllls, fI'0111 tllc spllttlIlg 5=+ 1 51, at lllost tile tcl'111

with X =/1+1 (there is none with /I, =4) contributes in

the above equations. [In addition it should also be
noted that Eq. (56) is independent of 84=0.]

Assuming, for simplicity of writing, the absence of
ST of at least second order in the ETC involving Jo,
we collect here the ETC obtained in the second half

of this paper [choosing 84=0 and using Eq. (14)]

[i44(x),J;(y)]=a~J„(x)s(x y), — (57)

[Q (0) ~ —~ '(o)]=—»(~"—J"(0)), (54)

i.e;, AI,'—Jl'(0) has either dimension 3 (notice that 6
and. 8 are local operators) or vanishes. For our new

splitting, 6 itself has no part with dimension 3. De-
f»ng ~&,, =i fd'y y&PO'(O), /', (y)], we l ave, in t e
splitting of 6 fuse (33)], p'1 /4, 1 =A~ at most as
many terms with different dimensions (i.e., X—1) as
there are bq. Thus [Eq. (54)] AI, precisely cancels all

parts of Jl, not having dimension 3. In the particular
simple case that the Jl, have a fixed dimension /~, the
result is

8
=A (x) 8{x—y) for /I, ——3, (61}

BX/r

and

[i~."(~),~o'(y)] = (4—4') ~"~.'(~) &(x—y)
8—(/I, —3)/& (x) h(x —y). {62)

BSA;

The last relation should be compared with the com-
mutator [ie,o(x),J, (y)] noted in Eq. (38). If scale
invariance is broken as proposed in Ref. 1 [assuming
Eqs. (51)],tllc ol'lglll of thc two 1c111MI11Ilg tclIIls 111 (38)
(setting j=0 in this equation) can be read off from

Eqs. (13), (22), and (57)—(61).
cV0/e added in proof. Let us now summarize our main

conclusions. Ke have shown that if 6 ls absent ol is

a t, number it then follows that l&=3. Conversely, if

3~&3, a q number 8 must be present. Moreover, we

have derived [Q'(xo),0„"(x)]= (4 /4)i B—I'J„'(x)(which

is frequently assumed in the literature} even if /I, /3
and higher order Schwinger terms are present in Eqs.
(38) and (46). [If they are absent in (38) then they are

also absent in (46).] The reader should also note our

results in. Eqs. {57)—(62). It follows from these equations

that if t~=3 then 000 must be present. Furthermore, if

the limit 6 ~ 0 is continuous then lg, =3.
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