1860 H. S.

effects the transformation from the H.T.P. cum H.R.P.
to this I.T.P. cum 1.R.P. will of course be the solution
of (4.12) and (4.14) with J®w = Jw4 x> POk —xuP©)y,

Finally, it is hardly necessary to point out that the
choice of rotation pictures is not limited to ones in which
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operators behave like scalars. One could, in principle,
employ rotation pictures which impose any nominated
tensorial or spinorial character on operators. The
concept we have been discussing would thus appear to
have some utility.
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If & [the term that breaks scale symmetry and not SU3)®SU(3)] is a ¢ number, (or vanishes) all
components of the SU (3) ®SU (3) currents have the same dimension Jo=1;=3. In other words, o7/ implies
that a ¢ number 8 is present. Presence of a ¢ number § thus follows if the Schwinger term in the current
commutators is a (finite) ¢ number. We obtain the commutators of Jo* with the scale-symmetry-breaking
operators 3, #, and 6,* in terms of J;? and 9%7,%. As one of their consequences, continuity of the limit § — 0

implies that I;=3.

HE problem of whether, in addition to the scale-
and SU(3)®SU(3)-symmetry-breaking term u,
a ¢ number § breaking scale symmetry [and not
SUB)®SU(3)] is present in the Hamiltonian density
Bo0(x) of strong interactions, is of particular interest.!
We connect in this paper properties and existence of &
with the scale-transformation property (a major
problem itself) of the J;* [ the space components of the
(e=1-16) SUB)®SU(3) currents J,*]. As one of our
main results, a ¢ number § must be present if the J;®
have no dimension or a dimension ;3. In other words,
if 6=0 or a ¢ number then /o=1/;=3. Since it is known?
that I,=3 is incompatible with a (finite) ¢-number
Schwinger term (ST), our result implies presence of a
¢ number § in this case. Therefore, evidence that the
ST is a (finite) ¢ number indicates that a ¢ number & is
present.?

We will adopt in this paper the scheme of broken
internal and scale symmetry as developed in Ref. 1. As
has become customary, we denote by 6,, the “new and
improved” energy-momentum tensor of Ref. 4. As-
suming that scale invariance implies conformal in-
variance, we may write the dilatation current D, as*

D, (x)=2"0,,(x). 1)

* Supported in part by the U. S. Atomic Energy commission.
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The dilatation charge Qp is then given by

Qp(x0) =/d3x Dy(x). ©)

In this paper we are concerned with the algebraic
properties of the currents J,, D,, and their diver-
gences. Thus, the particular mechanism of scale-
symmetry breaking is of no importance to us. We note
that the dilatation charge Qp(xo) is time independent
if and only if the divergence of the dilatation current

94D, (x) =0, (x) ©)

vanishes. For basic canonical quantities X (x), the
definition in Eq. (1) implies that formally

[QD (xo),X (x)]= —z(lx—l-xf‘a,,)X(x) ’ (4)

with I,=1 (2) for bosons (fermions). Following Refs. 1,
5, and 6, we assume that Eq. (4) holds for some oper-
ators of physical interest such as, for example, the
currents. (The precise assumptions will be given later.)

However, we do not require that , is fixed by canonical

arguments since interactions might change the dimen-
sion of a field without necessarily destroying the form
of the commutator (4).

We next introduce our assumptions. We first assume
that the charge densities Jo* have a fixed dimension,-5-¢

5 G. Mack, Nucl. Phys. B5, 499 (1968) ; H. Kastrup, ibid. B15,
179 (1970); K. Wilson, Phys Rev. 179, 1499 (196g D. Gross
and J. Wess, Phys. Rev. D 2,753 (1970)

6 M. dal Cin and H. Kastrup, Nucl. Phys. B15, 189 (1970).Y
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ie.,
() [Qo(0)Jo* (@) 1=—i(3+="'0)0*(x).  (5)

In the above, we have inferred from charge algebra
that the dimension of J,® is 3. Namely, we assume that

() [Q°(o) () ]=if=s 2 (x) (6)

for the 16 SU3)®SU(3) currents J,2, a=1-16. (We
use the notation J,°=V,* for a=1-8 and J,*=4,°
for a=9-16.) It then follows by commuting Eq. (6)
for p=0 with Qp and using the Jacobi identity that
the dimension of Q is 0 (and thus Jo has dimension
3). Incidentally, it should also be noted at this point
that it follows from Eq. (6) that if any one of the 16
currents J,* has dimension 7, then all the J,* have this
dimension, i.e., /,2=1,.

Evidently, Eq. (1) simplifies for xo=0. We therefore
take all time components xo=---=y,=0 throughout
the remainder of the paper. Using” (compare also Ref.
8)

[00(0),M0]=—i [ Pradrl), ()

it follows immediately that the operators .S defined by

Skaz"/ By yuLo%(0),0,4(3)] ®)

have the property*7-?
iSx*=[0p(0),7x*(0) J+3:7:(0). )

[Since S%*=0 if and only if J;* has the unique dimen-

.sion 3, it follows that Eqgs. (8) and (9) provide an
obvious criterion? 7+ for the dimension of J;%.] In order
to obtain (8), one commutes (7) with J¢% uses the
Jacobi identity, Eq. (5), and the covariance of Ji%
Incidentally,?7” if Jx* has dimension I;, one derives from
Eq. (7) that

/ By plT(0),0,4) 1=ige3—B)T#(0),  (10)

another criterion for /; (since this ST vanishes if and
only if /z=3). We use Eq. (8) later on and determine
in Egs. (57)-(59) and (62) the equal-time commutator
(ETC) of Jo* with u, 8, and 6,».1°

We next assume that the divergences of the SU(3)
®SU(3) currents may be written as (3_/ denotes a

7 J. Katz, Nuovo Cimento (to be published).

8S. Coleman and R. Jackiw, MIT report (unpublished).
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J. Bernstein, D. Gross, R. Jackiw, and A. Sirlin, Phys. Rev.
Letters 25, 1231 (1970)] in which the criterion (9) for lo=Ix
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finite sum)
0T, (x) =22" 2*"(x), (11)
with '
(i) [Op(0),2%"(x)]=—i(lg=n+a'd)B*"(x), (12)

i.e., 9J,° splits into a sum of scalars with the dimen-
sions Jge.n. Equations (11) and (12) are much weaker
than the assumption that 9#7,® itself has a fixed dimen-
sion, as is sometimes made. For a large class of SU(3)
®SU(3)-breaking mechanisms [which include the
(3,3)® (3,3) model of Ref. 11 as well as the (8,8) model
of Refs. 12 and 13], the latter assumption implies, as
we shall soon see, that the SU(3)®SU(3) symmetry-
breaking part # has a unique dimension. Since the
question of whether or not # has a unique dimension
is in fact a major problem itself, we prefer to use Eqgs.
(11) and (12) as well as the SU(3)®.SU(3) symmetry-
breaking assumption given in Eq. (25). Finally the
assumptions on scale and SU(3)®@SU(3) symmetry
breaking fulfilled in Ref. 1 are introduced. According
to these, 890 may be split as

(iv)  Boo(x) =Boo(x)+w(x), (13)

where
/ d*[Q0(0),000(y)]=—1 / a3y boo(y) (14)

and (we allow for different w, with the same dimension)

w(x) =2""n wa(x), 15)
with
[astes0.011=~it=3) [yt a9
Using next" (compare also Ref. 8)
[QD,H]=ifd3x 6.+ (x) —1H , @an
it follows! from this that
O, (%) =22 (4— 1w, )wn(x) (18)

if >/ (4—1y,)wa(x) is assumed to be a scalar. To
derive (18) it suffices to introduce the decomposition
(13) into (17) and to use (14). Then the x-integrated
equation (18) follows. Since 6,* is a scalar and since
>0 (4—1u,)wn(x) is also a scalar by assumption, Eq.
(18) then follows from a theorem stated in Ref. 1.
Occasionally we will also use the expression

0, (x) =4600(x) —i[Qp (0),000(x) J+'d:000(x) (19) .

11 M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).

12 K, Barnes and C. Isham, Nucl. Phys. B17, 267 (1970).

B H, Genz and J. Katz, Nucl. Phys. B21, 333 (1970).

14 H, Genz, Phys. Letters 31B, 146 (1970).
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instead of (18). Evidently, (19) holds under the stronger
assumptions of the local Egs. (14) and (16), i.e.,

[Ob(0),000(x) J= —14 (4401 oo () (20)

and

[Op(0),wn(®)]=—i(lw, +'d)walx).  (21)

[The main conclusion on § is independent of (20), (21),
and (19).]

Equation (19) follows immediately from Eq. (18)
upon making use of Egs. (20) and (21). Alternatively,
it may also be obtained by making use of the definition
of Qp and the equal-time commutators [ Bk (y),000(x) ]
provided that the contribution of possible noncanonical
terms to the ETC i[Qp,000(x) ] vanish (even if they are
present in 5[ 0ok (¥),000(x) ).

The last assumption concerns the splitting of » into
an SU(3)®SU(3)-breaking and an SU(3)QSU(3)-
invariant term, i.e.,

(V) wx)=6()+u(x), (22)
where the scalars § and # have the properties
[0%(0),6(x)]=0, (23)
[ (x),0%(0) 1=07,2(0) (24)
and, for certain numbers ¢,
u(®)=2""5 cs0"T > (%) +2_ 0,5 cap[ Q4(0),047 % (x) ]
+2 a8, €are[0%(0),[Q7(0)04T () T4+ - - (25)

This possibility of constructing # from the current
divergences certainly holds in the (3,3)® (3,3) model
of Ref. 11 and the (8,8) model of Refs. 12 and 13.
However, it is much more general since, for example,
it also holds for any irreducible representation of
SU@B)®SU(3).

We shall then see from the above that if § is a ¢
number then S;*=0, i.e., the space components of the
currents have dimension 3. We observe to this end that
u splits into terms with fixed dimension «, ie.,
u(x) =2 s #s(x), where

[0p(0),0 (%) 1= —i(a+x'0)%a () . (26)

This follows since [using (5), (11), and (12)] each one
of the terms ¢30*J 2, cas[Q%0*J,%],... (and therefore
their sum, i.e., #) evidently is a sum of terms with fixed
dimensions. Adding in this expansion of % all terms with
the same dimension ¢, the unique labeling by dimension
[as assumed in (26)] is achieved. After splitting w into
>’s wp (with 8 the dimension of wg) we may write

w@) ="\ H@)+XZ " m(x) 27
and

8(x)=22" (). (28)
In the above, X is any one of the a or 8 and we have
defined 8(x) =w\—ux with wx=0 (ur=0) if no w, (up)
with dimension X exists. For later purposes let us note
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at this point that all ¢g\* defined by
p=[0%0(x)] (29)

have different dimensions for different N (namely, \)
or vanish. Likewise, all A defined by

Sue=i [ Sy p LT O] GO
have either dimension N\—1 or vanish. [To check this,
commute (29) and (30) with Qp and use the Jacobi

identity.] Since [from (23) and (28)] > » ¢2=0, it
then follows that
(%) =0, @31

since all ¢\ have different dimensions. Likewise the
condition

f &y 9 T1#(0) ()] =0 32)

is sufficient to ensure
Ak,u)\a=0 (33)
for all @, &, and A.

From (27) it follows that (18) may be written as
B4 (@) =2y (=N (@) + X\ (=N (x).  (34)

The reader should notice that (also for the g-number
parts)

>x (A=N)oa(x)5%0 implies 85%0. (35)
The condition, as may be seen from (25),
[ovsre@arion-o, o

implies (repeatedly using the Jacobi identity) Eq. (32)
and therefore (33). Since (36) can be found in the
literature'®:® (for the reader’s convenience we present
the derivation of Ref. 16 below), it remains to be seen
that (33) and 5320 implies that 6 is a ¢ number. This
follows since, upon substituting (34) into the definition
of S in Eq. (8), the only surviving term is

Seomi / Pyy[J000), Sh G—NhG)]. (7)

Thus, if J3* has no dimension or a dimension different

from 3, 3°/y» (4—\)6r(v) has a nonvanishing g-number

part. From this it then follows that é is a ¢ number.
To derive (36) we note that covariance and locality

imply

d
[iB00(x),J0(y) ] =0T ,*(2)6(x—y)+J k“(x)’a;ﬁ(X—Y)

a a
+X Jreere®() - ——8(x—y). (38)
p=2 0Xpy Xkp
5D, Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967);
R. Jackiw, ibid. 175, 2058 (1968).
18 H. Genz and J. Katz, Phys. Rev. D 2, 2225 (1970).
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In the above relation,

S, 9kt @ke g, () =0 (39)
is obtained from (13), (23), and (24) assuming
[Q%(0),600(x)]=0. (40)

Incidentally it should be noticed that j=0 has been
obtained for canonical currents,'®® using the asso-
ciative law'®8 or Schwinger’s action principle.’%:7
Commuting (38) with Jo* and using commutators of
charges with charge densities, we get (compare Refs.
15 and 16)

[Jo*(9),047u*(x) ]—[Q(0),947 u*(x) J3(x —¥)

a
—iferedr](z)8(x—y) =[0*(0),7 :c“(x)]ahé(x—Y)
Xk

d
—ifove] o (x)—o(X—y)+ f Z(x,y,5)d%, (41)
0 .

where Z denotes the contributions of the j’s in (38)
and

/ dPxZ(x,y,2) = / d3x 217 (2,9,2) =0 (42)

from covariance. It should also be noted that in order
to derive Eq. (41) one does not need to make any
assumptions about the existence of the ETC [J¢*(x),
Jx?(y)]. Thus the preceding derivation holds even
when infinities arise in the ETC. This is the case, for
example, in scale-invariant theories. (Recall that it
may be shown that the vacuum expectation value of
the Schwinger term must be infinite in scale-invariant
theories.27) Multiplication of (41) by (x—9¥)» and
integration over x then leads to

[0%(0),7n(0)]
=i (0) [ a5 [T #(0),07,0)],  (43)

from which Eq. (36) is obtained by use of charge-
current commutators.

In what follows, commutators involving J¢* are
calculated. In order to obtain reasonable simple ex-
pressions, we assume for the moment that 9#J,% and
J® have fixed dimensions /43¢ and /i, respectively. Then,
commuting (17) with Jo* and calculating the left-hand
side using the Jacobi identity, one obtains

zl: / a3 0,4(x),J o“(O):I

=(4—14%) 9T ,2(0)+ (5 —3)9%T,*(0) . (44)

17 J. Schwinger, Phys. Rev. 130, 406 (1963); Nuovo Cimento
30, 278 (1963).
18 H. Genz and J. Katz, Nucl. Phys. B13, 401 (1969).
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Since Eq. (9) under our present assumptions reads
m®=(3—1k)Tm*(0),

we may combine (8), (44), and (45) in writing

[0#(%),7 0° ()]

)
= (4—147)94T (%) 8(X—Y) —(lk—S)Jk"(x)g—a(x—y)

Xk

(45)

a [¢]
+Z’ Tkl...kp“(y)——‘" . '——5(]{—}’) . (4:6)

=2 Xk1 Xkp

The reader should notice the strong similarity between

Eqgs. (38) and (46), which are—possibly except for the

7 and 7 [see (49) J—identical if /4°=3 and lx=2.
Because of (46)

[0°(0),6,* () ]= (4—1a%)i04] u*(x) 47
is equivalent to
D9k QFeryy () =0. (48)

=2

Under the additional assumptions leading to (19), we
easily see that (48) [and thus (47)] is implied by (39)
[i.e., (40)]. Namely, commuting (38) for y=0 with
Qp we recover the form (46) and, as we already know,
the terms multiplying 8(x) and 9x9(x) [with 6(x) at
present the three-dimensional § function] must cancel
upon comparison [use 2"9,9:0(x) « 9x8(x)]. The only
ST of at least second order we get come from the j’s
themselves and from the §’s in [ (4+x79)600(%),J ¢*(0) ].
These therefore yield the terms involving 7. We then
have (comparing the coefficients of the derivatives of
8(x) and performing a translation)

[00(0), 7y, 1= —i[Trper, (¥)
+ (—=4+p+y"dn) Jir-1," () 1. (49)

Thus j=0 implies 7=0.? In order to get (48) from (39),
we need only know that X,z 8%1°**3%y"dy jky...5, (%)
=0, as is easily seen. Therefore Eq. (47) (which is often
assumed in the literature) is derived here [using (40)]
even if /%3 and ST of higher order are present in (38)
[and (46)].

Finally we calculate [independent of (20)] A defined
by

A / By 3L (0) ()] (50)

in terms of J% We need here (21) for all wg except for
w, or, equivalently, for all 8\ except for 84 (if any)

If 6,40 we define a new 900(‘10) by 900+54(‘w—54)
without changing our assumptions [e.g., (23) holds—
use (31)—also for the new 6. Upon calculating A for
this splitting with 8,=0, no part with dimension 3
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will be found. We write 6,# under our present assump-
tions as

0, (1) =46 () —i[ 0,8 () 4700 () +4u (%)
—i[Qp,u(x) JHa"duu(x) (52)

and get from (52) and (8)
i85 =[00(0), A T+3ise.
Therefore, using (9),
[00(0), Akt —J*(0)]=—3i(Aw*=J*(0)), (54)

i.e., A®—J3%(0) has either dimension 3 (notice that A
and S are local operators) or vanishes. For our new
splitting, A itself has no part with dimension 3. De-
fining Aga®=1% [d? y[J¢*(0),6:(y)], we have, in the
splitting of A [use (33)], 22/x Axa*=A4A® at most as
many terms with different dimensions (i.e., A—1) as
there are 8. Thus [Eq. (54)] Ax® precisely cancels all
parts of J® not having dimension 3. In the particular
simple case that the Jx* have a fixed dimension /x, the
result is

(53)

i / @ 1 [3(x),70°(0)]=0 for =3 (55)

= —Jk“(O) for Ix#3. (56)

Thus, from the splitting 6=2_") &, at most the term
with A=1;-+1 (there is none with /;=4) contributes in
the above equations. [In addition it should also be
noted that Eq. (56) is independent of 8,=0.]

Assuming, for simplicity of writing, the absence of
ST of at least second order in the ETC involving J¢?
we collect here the ETC obtained in the second half
of this paper [choosing 8;=0 and using Eq. (14)]

Lin(x),J o*(y) =047 (%) 5(X—Y) 5 (7
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i)
[26(x),J 0%(v)] =Jk“(x)a——6(x—y) for %3  (58)
Xk
=0 for I,=3 (59)
i[Boo(x),T0*(y) ]=0 for ;=3 (60)
d
=J (x)—06(x—y) for =3, (61)
and "
[6,4(x),J " (y) ] = (4—=1a") 0] ,*(x) 6 (X —Y)
d
— (I —3)Jk“(x)—~—6(x—y) . (62)
6xk

The last relation should be compared with the com-
mutator [e0(x),J0*(y)] noted in Eq. (38). If scale
invariance is broken as proposed in Ref. 1 [assuming.
Egs. (51)], the origin of the two remaining terms in (38)
(setting =0 in this equation) can be read off from
Egs. (13), (22), and (57)-(61).

Note added in proof. Let us now summarize our main
conclusions. We have shown that if § is absent or is
a ¢ number it then follows that I,=3. Conversely, if
I3, a ¢ number § must be present. Moreover, we
have derived [Q%(xo),0,#(%) 1= (4—14)i9%J ,*(x) (which
is frequently assumed in the literature) even if /73
and higher order Schwinger terms are present in Egs.
(38) and (46). [If they are absent in (38) then they are
also absent in (46).] The reader should also note our
results in Egs. (57)-(62). It follows from these equations
that if /=3 then 0o must be present. Furthermore, if
the limit 6 — O is continuous then /;=3.
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