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Dispersion Sum Rules for Fixed-u ~N Scattering Amplitudes*
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We review the Axed-I finite-energy sum rules for pion-nucleon scattering amplitudes. We also derive
and test the continuous-dispersion sum rules for these amplitudes. The real part of the amplitudes is re-
stricted to appear on the right-hand cut (E7r ~ Ãvr) only, because no information is available for the
left-hand cut (ww —+ ÃX). The main result is an evaluation of the o-, 1, and g coupling constants.

I. INTRODUCTION

'N their prototype, dispersion rela, tions are used to
~ ~ evaluate the real part of an amplitude, knowing the
imaginary part from the unitarity condition. The total
amplitude is then fully determined, at least in principle.

The Axed-s, -t, and -I dispersion relations for mX
scattering were derived by Mandelstam' over ten years,
based on the principle of maximal analyticity of the
first kind. ' That the fixed-u (and 6xed-s) dispersion
relations are less well known in physics than the Axed-t

ones arises from the fact that a vast unphysical region
is involved in the dispersion integral. Both the numerical
calculation and comparison with experiment of the
6xed-u dispersion relations are very dif6cult, and thus
have received little attention.

Nevertheless, within the scheme of pole saturation,
there appeared 6xed-I superconvergent dispersion sum
rules which, if correct, allow correlation between the
MMM and the MBB coupling constants (tV=meson;
B=baryon). There are also fixed-u finite-energy sum
rules (FKSR)" which permit exploration of the baryon
Regge trajectories through analyticity.

In the present paper we have carefully examined the
earlier work of Refs. 4 and 5 (Sec. II), and have redone
the pertinent numerical analysis (Sec. III). In addition,
we derive and test the Axed-I continuous-dispersion sum
rules (CDSR) for the IrE scattering amplitudes. The
real part is conhned to appear in the physical region of
the right-hand cut (cVIr ~ iVIr) only, in the absence of
similar knowledge about the left-hand cut (IrIr —& Xg).
Such a lack of symmetry under s ~~ t also leads to a less
convenient form of the CDSR for Axed I than for fixed
i (Sec. IV).I
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1966).

4 D. Grif5ths and %. Palmer, Phys. Rev. 161, 1606 (1967);
D. S. Seder and J. Finkelstein, i'. 160, 1363 (1967); G. G.
Volkov, V. V. Kzhela, arid V. S. Zamiralov, Vadern. Fiz. 8, 1028
(1968) LSoviet J. Nucl. Phys. 8, 593 (1969)J.' V. Barger, C. Michael, and R. J. N. Phillips, Phys. Rev. 18$,
1852 (1969), and references therein; B. Kayser, Phys. Rev. D 1,
306 (1970).

V. Gribov, L. Okun', and I. Pomeranchuk, Zh. Eksperim. 1
Teor. Fiz. 45, 1114 (1963) t Soviet Phys. JETP 18, 769 (1964)j;
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II. FESR REVISITED

Following Barger, Michael, and PhiHips (BMP),'
a suitable set of u-channel amplitudes (regularized
parity-conserving hehcity amplitudes) for Reggeization
lS

F~(+u,s) = WA(s, u) —(guaM)B(s, u) . (I)
At 6xed I and asymptotic s, the superscripts on I' label
the m=7.I' quantum number of the I-channel Regge
exchange (S and 5).

A convenient independent variable is chosen as

x= -,'(s —l) = s M' II'+ sr—u= —t+3P-+—Ij,' ', u, ——

so that the Regge amplitudes read'

F+(Qu, x)+ rF+(Qu, —x)
=v"(&u)~(~ (~ v'u) x) (3)

xa I +r ( x)
—a I II—

R(u, (+u),x) =
sinmn„

~,(Qu) =u, (gu)+ ,', and r= (-—I)z-Ii'.
Proceeding in the standard way, ' ' one can derive the

FE SR for the crossing-odd amplitudes F+(gu, x)—F+(Qu, —x) ) fol tile ciossIIig-eve11 OIles F (Qu, x)
+F+(Qu, —x), and finally add them up to eliminate
F+(Qu, —x), obtaining

dx x'"LF+(Qu, x+is) —F~(gu, x—is) 1

g ~-(~&—»2+2~+i

:(~)+2u+ &

dX X"+ILF+(V'u, X+ie) &(gu, X——ie)j
g ~+ (6)—1/2+2k+2

2i~k + (6)- (~)+2k+2
where k is an integer. We recall the notation used,
& ( F=+, =+) &~(—+) & (+ —), & (——)
and similarly for the 6's.

The MacDowell symmetry' requires

F (gu, x)= F+( Qu, x), — —
s Writing F+(gu, x)&F+(QN, —x) allows the crossing relation

to be valid for all values of x, not just asymptotically.
9 S. %.MacDq~|",ll, Phys, Rev. 116, '174 (1959).
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which can be met by demanding

n, (—,Qu) =n, (+, gu)

V "(V'g) = —V"(—V'u) .

Parametrizing

n, (+, Qu) =n, '( u}+(Qu)n, '(u),
7+'(4u) = Vt'(u)+ (v'u)ys'(u),

;we obtain

rr, (—,gu) =a, '( u) (Q—u) n, '( u),

V '(V'u) = -Vt'(u)+(v'uh"(u) .

In this way we can avoid the branch point at n=0 in the
sum rules and treat the scattering region (g(0) on the
same footing as the spectral region (u) 0) t see Eq. (7)].

We have conjectured that since gu has appeared as
a multiplicative factor to B in Eq. (1), it is more likely
to appear in the residue function y(Qu) than in the
trajectory function n(Qu) on the right-hand side of Eq.
(3). Present high-energy backward. scattering' also
shows that n(gg) is well described by a function of u
only, so we put n, (&, Qu) n, ( =u) throughout this
article. This greatly simpli6es the form and the analysis
of the sum rules, but is not critical. "

The four FKSR (5) and (6) are therefore tr'ansformed
into forms analytic Rt g= 0 via (1) Rnd thc MRCDowcll

symmetry y+'(gg) =+yt'(u)+ (V'g)ys'(g):

B(x,u)
dx x"Disc

A (x,u)+MB(x,u)

+2
—ru)-illa (u) ll2+sk+1- —

= —2$

yt (u) n (u)+2&+1

B(x,u)
dx x"+' Disc

A(x,u)+MB(x,u)

-~ +(u)- pa+(u)-r/s+ss+s

y,+(g) n+(u)+20+2

Where D1SCB(X,g) =B(X+ie, g) B(X $e, u), C—te. If—thC

low-energy integral is known with confidence, one can
explore the residue functions 7t+(u) and 7s~(u), and
discover experimentally whether a world with parity
doublets exists or not. Present information on the
mw —+ XX reaction" is too incomplete to answer such
a question. Pole saturation coupled with the CDSR in
the following sections may help to solve this problem.

rs If the odd part of n (gu) is retained, Eq. (7) remains analytic
at m=0, but the right-hand side is replaced by more complicated
expressions."J.Hamilton, in High Energy I'hysjcs, edited by E. H. S,
Hurhop I',Academic, New York, 1967), Vol. j..

GI. NUMERICAL ANALYSIS

Two alternatives are possible for the evaluation of
the discontinuities of A(x,u) and. B(x,u) occurring in

(7).
A. Pole or Narrow-Width Ayyroximation

The eRective interacting I agrangians for exchange of
particles of spin & 2 are given in the Appendix. Standard
Feynman rules yield"

B~'+&(s,g) =grrrr '/(M' s), —

2 gg~' Ag
Aa'+&(s, u) =—

3 —1 p 3fg —s

1 2 gg~' Bg
Ba&~&(s,u) =—

3 —1 p 3f /tt
—s

A.&+'(t,u) =M.g..g.~rr/(M. ' t), —

g pmrrgt

A, &
—'(t,u) =—

B, '(t u) =gp.—.(g„+gt)/(Mp' t), —

Ay
A~"'(t,u) =gr-

Mg' —f

gtr7r7rg fNÃ s Q
Br&+&(t,u) =+

My~
—t 2M'

and zero otherwise. In the above expressions,

A a =-', (Ea+M) P (Ma+M) (Ea —M) cos8,

+(Ma M)(Ea+M)]—,

Ba ——-', (Ea+M}L3(Ea —M) cos8, —(Ea—M)],
Mg' —4y'

At =+gt~rr'" --- ——gtxrr"'
kg

(s—u)' —-', (Mrs —4M') (Mt' —4u')
x

SMARM'

To deal with unfamiliar couplings or exchange of par-
ticles with higher spin, a tractable method is to perform
a partial-wave analysis and to assume the narrow-width

approximation. For the s channel, ""each resonance

(with definite spin, J, and isospin) contributes an

'2 C. I'". Chew, M. L. Goldberger, I". E. Low, and V. Nambu,
Phys. Rev. 105& f337 (1957},The (~) in A and 8 refer to con-
ventional pion ssospin crossing and should not be confused with
the normality quantum number n = v I' = =lt= in Ii, or the signature
factor v= & in e or y.

"A. Barbaro-Galtieri et uL., Rev. Mod. Phys. 42, 87 (1970).
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TARSI.K I. Superconvergent sum rules for 8» and A». The numbers in the parentheses are those evaluated at u=O, using gqN 2/47t-
=0.37, g, /br=2. 4~0.4, g, =g, =g&/3. 7, M, =0.765 GeV, and Mf =1.264 GeV. A&, 8&, and Af are given in Eq. (9), with Az(u=o)
=0.771 GeV', Bg(u=o) = —1.02 GeV'. The sum of 31, 6, r, p, and f should add to zero, if the sum rule holds.

g I„l/2

—gNN '——47r(—14.6)
—:(g~N /~)'&~(u)

=4 (—25.8)
0
2' (g.+gt)

=4n-(22. 6+3.6)
gf gfNN( ) (s—u) /2M fM
=4~(—O.O85gf gfNN(»)

g I„=3/2

2gNN~2 =47r (29.2)

3 (g»-//) 2» (u)
=4 (—6.5)

0-g. (g.+gt)
=4m( —11.3&1.8)
gf~ n.gfNN (s u) /2~f~

g faring fNN )

A I» 1/2

0
~(g~N-/u)'A ~ (u)

=4 (19.6)
gtrl ngrrNN~cr

—2g, gt (s—u) /4M'
=4n- (—5.8&0.9)

gf Af (u)
=47' (—O.2OOgf

+0.114gf~~gf NN('))

A I»M/2

0
4(g» /~)'A ~(u)

=471-(4.9)
gtr en.go N N~ o

g, .g&(s—n,)/4M
=4m (2.9+0.5)

Af (u)
4' ( 0 200gfwag fNN

+0 114gfmsrgfNN ')

amount given by

1 A 1xl'M
( —n)

47/; 8 qP 31g' —s

(F.,+nM)Pg~gt '2( cso 8)

B. Phase-Shift Analysis Reconstruction

For the s channel, "
1 A &+& 1 gs+M]

f~(k&
z,+m

1 Qs —M

M s+nM
+ (F —nM)Ps &ted (cos8,), (10)

where n=vP=+j. , x is the elasticity, 1 is the total
width, 3f~ is the mass of the resonance, and

q
'= Ls—(M+t )'][s—(M —u)']/4s,

F. '= (s+M' p')'/4s, cos8, =1+—t/2q '

with each of them evaluated at s= Mg'. For the t chan-
nel, '4 "we have the corresponding result:

&
-C(+)-

4 p(+)

00 1
(2~+1)

Z even or odd Mg2 —t

Ng+Pg(cos8, ) (p,q,)~/p p
(11)

Ns—PJ'(cos8, )(p q )
—'/[J(J+1)]'"

"W. R. Frazer and J. R. Fulco„Phys. Rev. 117, 1603 (1960)."C. Lovelace, in Pior/;Nucleon Sca1tering, edited by G. L. Shaw
and D. Y. Wong (Interscience, New York, 1969).

where C'+'=A'+& —(1/p&')(p, q, cos8,)MB&~& p '= ,'t——M', q, '=4t p', and p&—q& cos8&=~(s —u). Equations
(10) and (11) are certainly convergent in the physical
region of the s and 3 channel, respectively.

It is easy to establish the equivalence between (10),
(11) and (8), (9) [and to show the correctness of the
expressions in (9)].It is however, regrettable that most
of the g's and the Eq's are not known, making it diK-
cult to perform a numerical analysis with the sum
rules.

f~
——P [f+P&+r'(cos8, ) —f&-P&,'(cos8,)], (12)

f2=+(f~-—
f& )P~'(cos8, ),

f& = [&&~ exp(2i8&) 1]/2—iq. .

For the t channel, " the physical region starts from
t=4M . Direct experimental information in the un-
physical region 4M'& t(4p' is not possible, although an
indirect method. such as extended unitarity allows one
to identify the phase of the amplitude near t=4p, ' with
the corresponding one from vrx scattering. The latter in-
formation itself is subject to great uncertainty, however.

Armed with these tools, we now evaluate the fixed-I
sum rules (7). We use de6n&te u-channel isospin ampli-
tudes: A "='"=A'+&—2A' &, A ~='"=A&+&+A& &, and
similarly for BI", corresponding to exchange of the X
and the 6, respectively.

First assume superconvergence4 and saturation with
AT, 6, 0, p, and f.The contributing amplitudes are shown
in Table I. The numbers in the parentheses are those
evaluated at u=0, using g~~ '/4~=14. 6, gqN 2/4~
=0.37, g, /4m. =2.4&0.4, g, =g„=g,/3. 7, Bg(u=0)
= —1.02 GeV', A q(u= 0)= 0.771 GeV', M, = 0.765
GeV, and Mf= 1.264 GeV.

The system N, 6, p, is certainly not closed. (A notori-
ous error has often been made by doubling the p con-
tribution. ) A more careful analysis, namely, inclusion of
all known ~X resonances, as well as inclusion of the 0-

and the f mesons, is again not satisfactory (e.g. , sub-
tracting A' t' from A'"), indicating that higher mesons
are necessary.

Unsuccessful assumption of superconvergence leads
to the use of FESR. BMP' considered the N (rP=+,



T&nLE II. The FESR $Eq. (7)g for )'1 =0 at @=0,using Eq. (14) for the left-hand cut, Eq. (12) and Ref. 16 for the right-hand cnt
(j. . S. stands for phase shift), and adding the nucleon pole to constitute the left-hand side (LHS). The right-hand side (RHS) uses
Kq. (13),i.e., the E and the Aq trajectories only; other trajectories are set equal to zero. Evaluation of the right-hand cut (in the LHS)
by Ineans of the narrow-width approximation (NWA) is shown in parentheses, with the dominant 6 contribution extracted. Data in
this Table are larger by a factor x than those of Table L (A in units of GeV ~, 8 in GeV 2, and x in GeV~.)

Left-hand cut
p f

Right-hand cut
P. S. (NWA, d,)

FKSR t Kq. (7)j
LHS RHS

&g1/2

&gp/2

g@3/2

+1/2

+1/S

@8/2

+3/2

0.0
—1.7

0.0
—1.7

0.0

0.0
—2.4

29.7
—9.2

—14,9

54.0
—16.7
—27.0

8.4

3.2
9.4
3,2
94

—4.8
—14.0

—14,0

—46.8
16.9
23.4

—8.4
25.2
9 ]

—12.6

0.9
0.0

—1.8
0.0

—45,9
0.0

91.7
0.0

—44.3
36.2
8.1
2.0

—62.4
48.7

—1.0
6.1

(—59.8, —50.9)
(36.8, 38.5)

(—37.6, —12.8)
(31.6, 9.6)

(—91.2, —81.1)
(65.0, 61.4)

(—15.8, —20.3)
(15.5, 15.3)

—57.2
51.5
18.0
5.8

—33.9
6.5

46,4
2.7

—38.7
1.5
0.0
0.0
0.0
0.0
3.0

—5.1

r= +') and tile As (TP= —
) r= —) 'tla)ectorles at. lllgh.

energy, and cut off at the CERN'6 phase-shift energy
(=2 GeV). In our notation,

ran (u) = —0.88+0.91u,

crt(u) = 0 29—+.0 84u, .
Vl+(u)+ (V'u) Vs+(u)

= —16ar[0.8(u —M')+ l8(+u+ M) ]eo s"/

I"(nlrb (u)+ 1) GeV ', (13)
—vl (u)+ (v'u) vs

—
(u)

167r[0—2+0 09.+u)[.1+Qu/Ma je " '"/—.
I'(cia(u)+1) GeV '.

The left-hand cut of (7) is saturated with the o, p, f,
and g, whose evaluation is made via (11),with the fol-

lowing parameters' ":

tlldes [Ãaa, ol" the fllst-1Tlollmllt FESR. (51)j, but little
can be said about the smaller Regge exchange ampli-
tudes [hs, or the zem-moment FESR (Ss)j.

To test the CDSR in Sec. IV, which includes the
FESR Rs R spcclal case~ wc nccd R morc Rccuratc sct of
Vq+. To this end we make a plausible assumption that
for v&0 the four FKSR for 8(+) and A&~) aresuper-
convergent and are saturated with the X, 6, p, o, f, and

g. The X, 1), and p are regarded known as before (Table
I), leaving the o, f, and g to be determined fmm the sum
lulcs. Thc cxpllclt folIIl of cRch contllbutlon ls glvcn ln
Table III, from which)73 can be determined fromm& &,

$2 from 8(+), E3+ from A& ) and E3, and Ã0+ and
.Vq+ from A (+) and X2, with Eo+ being further separ-
ated fmm ¹+by varying u (for the contribution from
the o is u independent).

Irl this scheme w'c obtain

o. 0.437 GeV

p 059k GeV

f 1.253 GeV

g 1.660 GeV

kg+

Efo+ =0.642 GeV'
X&+=075 GCV
%2+=4.69 GeV '
F3+=2.i GeV 3

iVO ——0 GeV'
~Vl ——4.05 GeV'
Xg =4.37 GeV '
Ã3 ——3.2 GeV 4

(14)

J Mg

0.437 GeV

p 0.765 GeV

f 1.264 GeV

g 1.663 GeV

EJ+

1.2 GeV'
1.2 GeV
9.0 GeV '
4.2 GeV '

0.0 GeV'
5.3 GeV'
5.2 GeV '
7.2 GeV 4

(15)

These parameters lead to the following conventional
coupling coTlstRnts:

g, g,rrrr/4rr = [1/M, (M' ——,'M ')]&Vs+= 1.77,

g, (g.+g,M„'/4M')/4a. = (3/M)X1+= 2.4,

g...(g.+g,)/41r= (3/&2)far ———8.58,

gf«[gm~'" glrrrr"'(I —,'Mg'/M') j—/4—a'

= (15/4)Mf.Vs+= 22.1,

gr, gr ~~"'/4n-= (15/2+6) M1MÃs ———15.7.

The numerical results for the 0= 0 case [of Eq. (7)]
a,re shown in Table II. %ith BMP we see that. reason-
able results are obtained for the dominant Regge ampli-

'6 D. J. Herndon, A. Barbaro-Galtieri, and A. H. Rosenfeld,
LRL Report No. UIL-20030 7I.E, 1970 (unpublished).

or ga~agalrx/4'lr= 3.311) gaaaga/4r= 2.41) gaaaga/41r= 8.9,
gf agfrrsrf'1/41r=18. 9, gr grrrs fsl/4a = —43.1, ln con-
trast to (14). (Both ¹+and, ¹+are expected to be sub-

ject to great uncertainty and shouM not be taken too
seriously. )

IV. CDSR

After the treatment of FESR, generalization to the
CDSR is quite straightforward. ~ The problem is how to
imbed the real part of the amplitude in the sum rules so
as to obtain. maximal useful information.

In the present situation reconstruction of the real
part can be made through the phase-shift analysis (12).
The partial-wave series is convergent in the physical
region, i.e., ~cosg.

~
&1; therefore, useful CDSR can be

derived by restricting the real part to appear in. the
region x„&x&X, where x„=M'+p' ——',u, correspond-
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ing to cosa, =1. For the ~~~XX cut, which starts
from x =M' —3p, ' —~~u, only the narrow-width ap-
proximation is available, as discussed in Sec. III. Note

that x„—x =4p, ' is greater than zero, so x„always lies
to the right of the mm branch point.

Thus, instead of (7), we have

dx(x, —x) e Disc
B(x,u)

.4 (x,u) +M B(x,u)

B(x,u)
dx(x —x,)&Disc e

—*'
&

A (x,u) +MB(x,u)

= —2z
yz (u) Ã~-&"' ""~e+' sin-'zr(n (u)+8+1)

cos-', zrp

yi (u) cos-,'2m (u) n (u)+8+1

B(x,u)
dx(x„—x)"x Disc +

A (x,u)+MB(x,u)

B(x,u)
dx(x x„)~—x Disc e

—' e
A (x,u)+MB(x, u)

pz+(u) iV~+ " ' ~ e+I sin —'zr(n (u)+8+1)
- sin-,'zr p+0(x„/!V)

-pi+(u) sin-', 2m+(u) n+(u)+8+1
(16)

= —2z
yp+(zz) V~+&" ' '+~+' sin —'zr(n (u)+p+~)

cos-~x8
-'yi (2z) slnzzrn+(u) n+(u)+ p+2

yz (u) !V -'"'—"'+~+' sin-', 2r(n (u).+P+2)—sin-', zrp+0(x„/Ã)
yi (u) cos-',-2m (u) n (u)+P+2

As usual, the continuous spectral function (x—x~)e
becomes analytic when p is equal to an integer and (16)
will reduce to the FESR .The different form of sum rule
(16) (as compared to the fixed-t CDSR) is due to the use
of the asymmetrical (x—x„)~ (under x ~ —x) instead of
a symmetrical (x' —x„z)~. This causes the presence of
the factor cospizrP or sinipzrP on the right-hand side of
(16). Even for one-Regge-pole dominance, the diffrac-
tionlike patternz (coming from the term of the form
(sin-', zr[n(u)+P+ ])/[n(u)+P+ ] for fixed u and
varying p) is now "modulated" or distorted by such a
factor. Thus, the "old" zeros at n(u)+P+ =2k (k
an integer) would still be there, but extra zeros at
p= integers also appear. Consequently, n~(0) would not
be so easily found from the low-energy integrals as in
the fixed-t situation. ' In practice, N=4 GeV' and x„
=0.90 GeVz (at u =0), so terms up to x~z/Ez have been
kept on the right-hand side of (16).

The CDSR (16) are deal. t with numerically by accept-
ing (13) as the high-energy Regge contribution, adopt-
ing the "CERN experimental" set" as the real and the
imaginary parts of the amplitude on the right-hand cut
(with the narrow-width approximation as supplement),
and using (15) as the left-hand cut contribution. Typi-
cal results are shown in Figs. 1 and 2. The u=0. P:=0
case is also shown in Table IV, to be compared with
Table II in which the X~~'s are taken from (14).

Before commenting on Figs. 1 and 2, we compare
Table IV with Table II. The zero-moment sum rules
(Sp) in Table IV are essentially input; the output does
not, however, appear as anticipated, namely, I.HS
being approximately zero. This arises from the differ-
ence between the 6 dominance and the phase-shift

reconstructions, used for the right-hand cut. Facing the
fa,ct that analytic continuation of the series (12) into
the unphysical region (~ cos8,

~
)1) may not be neces-

sarily more accurate'~ than the narrow-width approxi-
mation, we did not try to find the NJ+'s from Table
IV." Now one can envisage that Table II used the
first-moment sum rules (51) while Table IV uses Sp as
inputs; neither produces reasonable results for the other
part of the sum rules. [In (15), although!VI+ are made
larger to bring 50 work, a larger value of 3II, used there
left SI worse. ] In any case, were XI+ in (14) and (15) to
assume a larger value, N3+ could be made smaller, so the

g contribution would not exceed the p one.
Figures 1 and 2 show the CDSR for the amplitudes

xA ='t' and 8 "='~'. These amplitudes receive their
high-energy contribution from the N and 6&, respec-
tively. The magnitude of both sides of the CDSR (16)
in these figures differs, but the shape of the curves is
qualitatively reasonable, although far from ideal.

Owing to imperfect knowledge on the left-hand cut,
we are content in this work. with testing the validity of
(16) (i.e., LHS and RHS coincide), rather than attack-
ing the whole problem associated with the fixed-u
CDSR. These include, e.g. , inclusion of the N~ trajec-
tory, investigation on the fundamental problem of the
MacDowell symmetry [i.e., finding pi+(u), yz+(u) as a.

function of u], etc., and, above all, testing the validity
of the Mandelstam representation itself (which allows
the derivation of the fixed-u dispersion sum rules); all

"At u =0 the physical threshold x„lies in 0.28 &x~ &0.92 GeV'.
Below x„, cosg, is as big as 24.57 at T =0.05 GeV, or x=0.36
GeV'

t
x=m'(&+T )+-,'g."Recall that the lV J+'s in Eq. (15) were found from Table III.
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of these need a more accurate calculation of the low-

energy integrals. One possible way toward this aspect
may be to make P negative, so that the unknown and
uncertain contributions from the higher mesons are
made relatively unimportant.

In conclusion, besides being intrinsically interesting
in its formulation, the Axed-I CDSR have carried us
one step further than the FKSR5 in investigating the
amplitudes of zg backward scattering.

Xofe addedin manuscnPf Using the n. ew parametriza-
tion of Martin and Michael" on the nucleon trajectory,

12-
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8-
V

6)
(3

[ss] ai U-o

-2 nt 0/Ol-k)

RHS (IBMP)
0

Q5 1.0 1,Q

I'io. 1. Test of the fixed-g CDSR [Eq. (16)g for xA « i" st
ii=0 [the second equation of (16) divided by ¹+s$.The solid
curve is the left-hand side (LHS) integral using the meson coupling
constants of Eq. (15), the dashed one is the same integral using
Eq. (14); see Ref. 5. The di8ractionlike pattern is destroyed; this
means that either the curves do not have zeros at a distance
p = 1.0 from each other or they have no zeros at all. (The di6rac-
tionlike pattern is characteristic of the axed-t CDSR; see Sec. IV
for details. ) The dashed-dot curve shows the right-hand side
(RHS) of Eq. (16), using Eq. (13).The fact that x~ is not much
smaller than E prevents zeros from occurring at P =integers (i.e.,
both cos-,'~p and sin-', xP are present). If one were to include the
large error bars for the LHS curves, the result would look more
reasonable. For this erst-moment CDSR, the dashed curve is
better.
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FIG. 2. Test of the fixed-I CDSR )Eq. (16)g for J3»«31~ at g =0
[the first equation of (16) divided by ¹+&1.See Fig. 1 caption for
details. For this zero-moment CDSR, the solid curve is better.

"A. D. Martin and C. Michael, Phys. I.etters 328, 297 (1WO}.
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TaBLE IV. See Table II for details, except that the left-hand cut is evaluated with Eq. (15).

Left-hand cut
p

Right-hand cut
P. S. (NWA, a)

CDSR Lzq. (16)j for p=o
LHS RHS

xB1/2

xA'/2

XB3/2

X+3/2

B1/2

+1/2

B3/2

+3/2

0.0
—3.2

0.0
—3.2

0.0
—4.5

0.0
—4.5

22.3
—5.7

—11.2
2.8

70.9
—18.1
—35.5

9.0

3.5
19.2
3.5

19.2
—5.1

—27.5
—5.1

—27.5

—107.1
19.7
53.5
99

57.4
—10.6
—28.7

5.3

09
0.0

—1.8
0.0

—45.9
0.0

91.7
0.0

—44.3
36.2
8.1
2.0

—62.4
48.7

—1.0
6.1

(—59.8, —50.9)
(36.8, 38.5)

(—37.6, —12.8)
(31.6, 9.6)

(—91.2, —81.1}
(65.0, 61.4)

(—15.8, —20.3)
(15.5, 15.3)

—124.6
66.2
55.2
11.0
15.0

—11.9
21.6

—11.6

—38.7
1.5
0.0
0.0
0.0
0.0
3.0

—5.1

which in our notation reads

yg~+(u) =-2~(ag+b"u) e'~ /I'(u"( )u+ 1),
y2"+(u) = 2n(a~+. b~M') e'""/Ml'(n~(u)+ 1),

a"(u) = —0.84+1.03u,

the right-hand side of the CDSR (16) is considerably
improved. This improvement is due to their separating
off the kinematic factor gu in F+= WA —(gu+MB),
in the same way as done in Eq. (7).

On the other hand, the new parametrization of Halzen
et al. ' on the 6 trajectory, i.e.,

y&g (u) = 2x(ay+—beau)nge""/I'(as+ 1),
yg'

—
(u) = 2m(ay+ bgMg2) n'e""/M'I'(n'+ 1),

Apl =Ogl

has not improved the CDSR (16), although the width
of the 6 is 240 MeV here as compared to the BMP
value of 1 MeV. (A possible reason may be that their
parameters of the nucleon trajectory yield a wrong sign
for gxx. )

Pote addedin proof It has been po. inted out to us (by
C. H. Chan) that the second CDSR of Eq. (16) can be
generated from the first one by means of subtraction,
namely,

Lsecond equationge=x„[first equationje
—Lfirst equationje+'f (17)

Practically, one needs P as small as possible. Thus the
two (actually four) CDSR in Eq. (16) are independent

'0 F. Halzen et a/. , Phys. Letters 328, 111 (1970).

ifP is allowed only in the same range, as in Figs. 1and 2.
Moreover, the identity (17) breaks down as P ~ —1,
while (16) still holds there.
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APPENDIX

In the following eRective interacting Lagrangian den-
sities, 4 the boson fields have the dimension of mass,
while the fermion fields have the dimension of (mass) 3I',

in the natural units (b= c= 1). The coupling constants
g are therefore dimensionless.

Z...(x)=-,'.g.. Mm( )xm(x)o. (x),
&.»(x) g "4=(x)4'(x)'o(x)

Z pgp. (x) = gp-e~gg% g(x) ay7rg(x) ppg(x)

Z,~~(x) =ig„g(x)p„2~ P(x) t'„(x)
+(g'/2M)4'(x)& -'& |t'(x) ~ t'.(x),

Zf (x)= —(g~ /Mr)8„~(x) B.~(x)f„,(x),
~m" (x) = (gt»"'/2M) L' 0(x)v8'(x)

—W(x)V.'"|t (x)jf:(*)
+(gr~~"'/M')~A'(x)~ 0'(x)fu (x)

~AN (x) igNN 4'(x)7"'4(x)~(x)
de (x) =(g~N /u) gy(x)/'t2$(x) B„x(x)+Hc.

where 13~2 is the isospin projection operator of the pion-
nucleon system in the I= ~~ state.


