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The renormalization-group method of Gell-Mann and Low is applied to Geld theories of strong inter-
actions. It is assumed that renormalization-group equations exist for strong interactions which involve one
or several momentum-dependent coupling constants. The further assumption that these coupling constants
approach 6xed values as the momentum goes to inhnity is discussed in detail. However, an alternative is
suggested, namely, that these coupling constants approach a limit cycle in the limit of large momenta.
Some results of this paper are: (1) The e+-e annihilation experiments above 1-GeV energy may distinguish
a fixed point from a limit cycle or other asymptotic behavior. (2) If electrodynamics or weak interactions
become strong above some large momentum A., then the renormalization group can be used (in principle)
to determine the renormalized coupling constants of strong interactions, except for U(3) && U(3) symmetry-
breaking parameters. (3) Mass terms in the Lagrangian of strong, weak, and electromagnetic interactions
must break a symmetry of the combined interactions with zero mass. (4) The AI =-, rule in nonleptonic
weak interactions can be understood assuming only that a renormalization group exists for strong
interactions.

I. INTRODUCTION

T large momenta radiative corrections in quantum
electrodynamics grow logarithmically. At an

energy of about 10' eV the radiative corrections are of
order 1 instead of order rr (n is the fine-structure con-
stant), and at infinite energy the radiative corrections
are infinite. As a result, the Born approximation to
quantum electrodynamics is unreliable at energies of
10' eU or higher. This raises a challenge: Can one find
an approximation to electrodynamics which is valid
for these energies?

The academic nature of this challenge is evident.
Quantum electrodynamics neglects the interactions of
photons with hadrons and the weak interactions of
electrons, not to mention interactions not yet dis-
covered. Any of these interactions could appreciably
alter the electron-photon interaction at high energies.
In any case, 10"eU is an energy hopelessly beyond the
range of any conceivable accelerator. Nonetheless, some
notable authors have tried to meet this challenge. ''
This paper is concerned with the work of Gell-Mann
and Low, ' who studied in particular the behavior of
the photon propagator in the limit of large k', k being
the photon momentum. To study the photon propa-
gator, Gell-Mann and Low used a method which has
since become known as the renormalization-group
approach. The renormalization group was invented by
Stueckelberg and Petermann'; its role in the Gell-
Mann —Low analysis is discussed in the book of
Bogoliubov and Shirkov. 4

* Work supported by the U. S. Atomic Energy Commission.
f Present and permanent address.' M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1.954).' L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl.

Akad. Nauk. SSSR 95, 773 (1954); 95, 1177 (1954); 96, 261
(1954).' E, C. G. Stueckelberg and A. Petermann, Helv. Phys. Acta
26, 499 (1953).

4N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quanti2, ed Fields (Interscience, New York, 1959),
Chap. VIII. An important recent reference on the renormalization
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Gell-Mann and Low suggest that their analysis may
apply to theories of strong interactions as well as
electrodynamics, and that in strong interactions their
results might apply at energies more accessible than
10 eV. In practice, the storage-ring experiments to
measure the total cross section for e+-e annihilation
into hadrons above 1-GeV momentum transfer (and
perhaps the SLAC deep-inelastic scattering experi-
ments) explore a range of momenta relevant to the
Gell-Mann —Low theory. Clearly the time has come to
explore in detail the consequences of the Gell-Mann-
Low theory for strong interactions.

The basic formula in the Gell-Mann —Low theory for
electrodynamics is a differential equation for a quantity
eq. Let the renormalized photon propagator be written
Is 'd (k'/ms, e'), where k is the photon four-momentum,
e is the renormalized electron charge, and m is the
renormalized electron mass. Then e), is defined by

ebs =e'd (—X'/res' e') (1 1)

Gell-Mann and Low set up a generalization of the usual
renormalization procedure in which eq is defined to be
the renormalized coupling constant, for some arbitrary
chosen value of X, in place of e. They also argue that e&,

considered as a function of X, interpolates between the
physical charge e and the bare charge, namely, e), for
X ~ 0 is e and e), for X —+ ~ is the bare charge. The
bare charge will be denoted e„ in this paper. The Gell-
Mann —Low formula is of the form

=P(~'/l ', e,').
d(in'~')

(1.2)

Gell-Mann and Low suggest that P(m'/X', ex') has a
nonzero limit as m —+ 0, i.e., f(0,ex') exists and is not
identically zero. If this is true, then for X))m, e), satisfies

group is M. Astaud and B.Jouvet, Nuovo Cimento 63A, 5 (1969);
66A, 11 (,1970).
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approximately

(1.3)

Gell-Mann and Low assume that this equation holds
for any value of e),', although it can be justihed, at best,
only for small e&', they then discuss qualitative features
of the large momentum behavior of e), based on quali-
tative features of f. In particular, they show that the
limit e„of e) must either be infinite or, if Gnite, must be
a root of the equation $(0,e„')=0. In either case, e„ is
independent of the value of the physical charge e.

The purpose of this paper is to propose that the
Gell-Mann —Low theory when applied to theories of
strong interactions can produce some startling con-
sequences. For example, it will be shown that if strong
interactions are described by one of the popular re-
normalizable models (e.g., the gluon models or the o.

model') then one can use the renormalization-group
equations )analogous to Eq. (1.2)] of the model to
determine one or more of the reeormalis'ed coupling
constants of the model. In order to derive this result,
a physical assumption is made, namely, that strong
interactions will cease to be isolated from weak or
electromagnetic interactions at some cutoff momentum
A much larger than 1 GeU/c, and that any model theory
of strong interactions is valid only below the cutoff.
There will be small cutoG-dependent errors in the pre-
diction of the renormalized coupling constants.

This is a consequence of the Gell-Mann —Low theory
of theoretical interest. An experimental consequence
which is a possible but far from certain prediction of
the Gell-Mann —Low theory is that the cross section
o.t,t(q') for e+-e annihilation into hadrons at large
momentum transfers g will oscillate as a function of q'.
To be precise the oscillations would have the form

where f(i) is a periodic function of 3 with period &o The
period to and the amplitude of the oscillations cannot be
predicted. This behavior is only one of the alternatives
made possible by the Gell-Mann —Low theory, and it is
possible only for theories with at least two renormalized
coupling constants. For the gluon model, which has
only one renormalized coupling constant, the prediction
for o~,~(q') at large g' is that q'ot, t(q') be a constant. If
q'o&,&(q') is constant at large q' it is likely (according to
the Gell-Mann —Low theory) that strong interactions
are scale invariant at short distances. The hypothesis
of broken scale invariance has been extensively dis-
cussed elsewhere. '

5 The gluon model is a quark model with quarks coupled to a
neutral vector meson.

6 M. Levy, Nuovo Cimento 52A, 23 (1967); M. Gell-Mann and
M. Levy, ibid. 16, 705 (1960).

7 G. Mack, Nucl. Phys. BS, 499 (1968); K. Wilson, Phys. Rev.
179, 1499 (1969); S. Cicciarello, R. Gatto, G. Sartori, and M.
Tonin, Phys. Letters 30B, 546, (1969};K. Wilson, SLAC Report
No. SLAC-PUB-737, 1970 (unpublished); G. Mack, Phys. Rev.

dx/dt =Pt(x,y),

dy/dt =Ps(x,y),

(1.6)

(1 7)

i.e., they are two coupled equations with time-inde-
pendent forces.

The crucial feature of the renormalization-group
equations is that they must be solved over a large or
infinite range of 3, namely, from X of order m to X=A
or oo, leading to the range 1nm'&/& (lnA' or oo) for t
Furthermore, the equations are nonlinear [in per-
turbation theory P(O,x), or fr(x,y) and P&(x,y), have
power-series expansions in x and y and are not linear
in x and y]. The essential question in solving the re-
normalization-group equations is to determine the
behavior of the solution in the limit of large t. This is
analogous to the central problem of nonlinear me-
chanics. Nonlinear mechanics is concerned with 6nding
equilibrium points or other asymptotic solutions of
equations like Eqs. (1.5) or (1.6) and (1.7) and studying
the stability of these solutions. The predictions for
strong interactions cited earlier arise from applying the
theory of asymptotic solutions and their stability to
the renormalization-group equations.

The most serious drawback of the Gell-Mann —Low
theory is that it is highly speculative; it requires extrap-
olation of functions like P(0,x) from perturbation
theory (small x) to strongly interactions (x~1) and
there is no way to check the validity, even qualitatively,
of this extrapolation. Furthermore, as one studies the
consequences of the theory for strong interactions it
becomes clear that there is a glaring omission in the
Gell-Mann —Low equations. The omission is the omis-
sion of coupling constants associated with nonrenor-
malizable interactions. In perturbation theory there
are well-known reasons for distinguishing renormal-
izable interactions from nonrenormalizable interactions,
but in strong coupling this distinction becomes blurred,
as will be shown.

It is beyond the scope of this paper to discuss how to

Letters 25, 400 (1970); M. Gell-Mann, Caltech Report, 1970
(unpublished); and references contained in all the above.

8 An example of a book on nonlinear mechanics is N. Minorsky,
Sonl&sear OscillaHons (Van Nostrand, Princeton, N. J., 1962).
For limit cycles, see Chap. 3. The theorem cited in Sec. lII H of
the present paper occurs on p. 84 of Minorsky's book.

The renormalization-group differential equations such
as Eq. (1.3) are best understood by setting up an
analogy with equations of motion in classical mechanics
or electric circuit theory. Let t=lnX' and x=e),", then
Eq. (1.3) becomes

dx/dh =g (O,x) .

This is a simple equation of motion with P being the
analog of a time-independent force (except the equation
involves dx/dt, not d'x/dP). If the field theory has two
renormalized coupling constants, say, x and y, the
corresponding renormalization-group equations have
the form )neglecting masses, as in Eq. (1.3)]
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incorporate nonrenormalizable interactions into the
renormalization group, but one can see that however
this is done the resulting differential equations will be
very complicated. This is because there are an infinite
number of nonrenormalizable interactions. Hence it is
important to understand the practical importance of
the renormalization group for strong intera, ctions, and
to understand the reasons why one must add nonrenor-
malizable interactions to the renormalization group.
For these reasons it is worth discussing the renormal-
ization group without nonrenormalizable interactions
even if nonrenormalizablc interactions are necessary for
a, correct treatment. The emphasis in this paper will be
on qualltatlvc fcRtul cs of solutions of thc rcnormal"
ization group equations resulting from the existence of
equilibrium or other asymptotic solutions; this analysis
is generalizable to any number of coupling constants.

Anyone who has studied the Gcll-Mann —Low theory,
either in the original paper of Gell-Mann and Low' or
in the review of Sogoliubov and Shirkov. ,

' has found it
extra, ordinarily difIicult to understand. Accordingly,
Scc. II Rnd thc Appcndlx of this papcI' glvc a tholoUgh
review of the Gell-Mann —Low theory for electro-
dynamics. However, there will be no attempt here to
show that the limit of P(m'/X', eq') for m —+ 0 exists
beyond fourth order in t,)„ there will only be a, brief
review of work done on this question.

In Scc. III solutions of the renorniaiizaiio-grrou
equations will be discussed in detail, including appli-
cations both to strong Rnd electromagnetic interactions.
It will be shown that if the asymptotic solution is a,

6xed point, then the corresponding 6eM theory exhibits
broken scale invariance. In Sec. IV the passible mecha-
nisms for breaking scale invariance will be discussed,
and the renormalization group will be extended to in-
clude a P -dependent mass m), . In Sec. V the renormaliza-
tion group for strong interactions will be discussed based
on the work of Secs. III and IV. It will be argued that
mass terms in strong, electromagnetic, and weak inter-
actions must break a symmetry common to all three
interactions. In Scc. VI it will be argued. that the
AI=-,'rule in weak interactions can be understood if
strong interactions have R renormalization group,
independently of the type of asymptotic solution of the
renormalization-group equations. Section VII contains
6nal remarks.

II. DERIVAnom OZ REmoRMAI, rZAnom-
GROUP EQUATIONS

However one dehnes R rcnormahzation program for
quantum electrodynamics to all orders in perturbation
theory, there is one stage in the program where one
makes ininite or cutoff-dependent subtractions in the
eth-order vacuum polarization, electron self-energy,
and vertex function. In addition to the cutoff-dependent
subtlactlons, onc IIlRkes finite sul3tlRctloIls which can
bc chosen arbitrarily. This arbitrariness is customarily

removed by specifying ad hoc normali. zations for the
renormalized fields Rnd by specifying that the renor-
malized mass and charge parameters are the physical
mass and charge of the electron. Gell-Ma, nn and Low
de6ne alternative conditions for removing the arbi-
trariness: Gell-Mann and Low specify unconventional
normalization conditions for the fields and dc6ne a
charge parameter e), which is not the physical electron
charge. However, they use the conventional definition
for the renorn1alized mass. The Gdl-Mann. —Low con-
ditions involve a "renormalization parameter" X which
onc can choose RI'bltrallly. Thc rcnormalized fields of
Gell-Mann and Low for any given value of X are related
to the conventional 6clds through a finite renormal-
ization. The reason for considering the unconventional
renormalization conditions of Gell-Mann and Low is
that they apparently dehnc fields which are unite OQ the
mass shell when the electron mass is zero.

The renormalization-group equation results from
comparing renormalized theories for two diRerent
values of the renormalization momentum 3; if these
theories both exist for zero electron mass, then Kq.
(1.2) derived from these theories also exists for zero
electron mass.

In this section a modified form of the Gell-Mann-
Low renormalization conditions will be defined; then
the Gell-Mann —Low renormalized theory will be ex-
pressed in ternis of the conventionally renormalized
theory, and finally the renormalization-group diRer-
ential equation, Eq. (1.2), will be derived. In the
Appendix the motivation for setting up the Gell-Mann-
Low renormalization conditions will be reviewed in
detail with illustrations from low orders of perturbation
theory.

The renormalization conditions of Gell-Mann and
Low can be applied to any method of renormalization.
This means that one does not have to use or understand
|A'Rrd's renormalization program' used in Gell-Mann
M1d Low s pRpcI'. Onc can hRvc thc Bogoliubov-
Parasiuk-Hepp" or any other method in mind in reading
this section.

The Gell-Mann —Low conditions consist of one re-
striction on vacuum polarization, two on the electron
self-energy, and one on the vertex function. There is
considerable arbitrariIlcss ln how these conditions RI'c

formulated but it seems to be inevita, ble that they look
awkward duc to spin complications. The conditions
proposed here will not be the ones given by Gell-Mann
and Low; Bogoliubov Rnd Shirkov evade the problem
of stating precise conditions for the electron self-energy.
For colIlpRllson pUI'poses thc l'cstrlctlons Used ln coIl-
ventional renormalization theory will be stated also.

It is convenient to use the following notation. Let

See Ref. 1 for this program.
"N. N. Sogoliubov and D. V. Shirkov, I'ortschr. Physik 4,

438 (1956); N. N. Bogoliubov and D. Parasiuk, Acta Math. W',
227 (1957); K. Hepp, Commun. Math. Phys. 2, 301 (1966).
See also Ref. 4.



rr, „„(k),Z, (p), and F,„(p,q, k) be the vacuum polar-
ization, electron self-energy, and vertex function for
conventionaHy renormalized electrodynamics. In the
vertex function p and q are electron momenta and
k=q —p is the photon momentum. Let Ili„„(k),Zi(p),
and Fi„(p,q,k) be the corresponding renormalized func-
tions satisfying the Gell-Mann —Low restrictions. It is
convenient to define invariant functions as follows:

II,„„(k)= (g„„k'—k„k„)II,(k'),

rr, „„(k)= (g„„k'-k„k„)rr,(k'),

&.(p) =P~.(p')+B (p')

&i(p) =P~~(p')+BI(p')

(2 1)

(2.3)

where P is y&p„. One looks at the vertex function for
k=o because it is connected to the electron self-energy

by Ward's identity:

F..(p,p,o) =V.—
».(p)

BA.(p') aB,(p')
2pp. ——2p. —, (2.7)

gp2 gp2

FI.(p p 0) =V. V.~ (pI')—

These identities give

~~~(p') ~BI(p')
»P. — —P. — —(2.g)

Bp Bp

F.i(p') =1—~.(p'),

BB,(p')
F. (p') =-2

- a2

(2.9)

(2.10)

and analogously

F.I(p') =o

BA,(p')
F.4(p') = —2

Qp

(2.11)

(2.12)

FII (p') = 1—A I (p'), etc. (2.13)

There are four subtraction constants to be 6xed,
namely, one constant independent of momentum in
each of the following functions: II, (k'), A, (p'), B,(p'),
and F,i(p'). These subtraction constants are con-

F"(p p,o) =vP'. I(p')+p.F 2(p')+v.PF.3(p')

+p,PF. (p'), (25)

F .(p,p,o) =~,F. (p')+p.F (p')+~.PF. (p')

+p.PF14(p') (2 6)

ventionally determined by the following conditions:

II,(0) =0,
Z, (p) ip „=mA,(m')+B, (m') =0,

»,(p)
— BA,(p')

=A, (m')+ 2m'
~p P-m -—Ilp

~B.(p')

and

(2.14}

(2.15)

=0, (2.16)

rr, (—z2) =o,

~&(p) ~& .=m~=, (m)+B, (m) =O,

A I (—X') =0,
FII (—X') =1.

(2.18)

(2.19)

(2.20)

(2.21}

The first restriction on Zi(p) ensures that the mass m
in the free-electron propagator is the physical electron
mass. This restriction determines the subtraction con-
staI1't 111 Bi(p ). Tile third eqllatloI1 t Eq. (2.20)j
(which was one of many possible choices) fixes the
subtraction constant in AI (P'). The last equation fixes
the subtraction constant in Fii(P') and is consistent
with the Ward identity LEq. (2.13)j for Fii(p ).

These conditions are chosen so as not to introduce
singularities in the renormalized functions when the
renormalized electron mass is zero. This is explained in
detail in the Appendix for low orders of perturbation
theory. The Gell-Mann —Low renormalized amplitudes
are also free of infrared divergences when the photon
mass is zero and the electron mass is nonzero. This is
also explained in the Appendix.

Will the Gell-Mann-Low subtraction conditions
combined with a renormalization program to all orders
give renormalized amplitudes which are finite for

F.i(m')+mF. 2(m')+m'F, 4(m') =1. (2.1'I)

The conditions on the electron propagator are chosen
so that neither the mass nor the residue of the pole of
the electron propagator at P=m is changed by inter-
action. The subtraction constant in A, (p') is deter-
mined by Eq. (2.16) Lnote that the derivatives BA, (p')/
Bp' and BB,(p')/Bp' do not involve the subtraction
constant); the subtraction constant in B.(m') is then
fixed by Eq. (2.15). The peculiar equation for F,i(m')
is dictated by the requirement that F,i(m') satisfy the
Ward identity. Due to Eqs. (2.9)—(2.12), the condition
for F,i(m') is a consequence of Eq. (2.16). (As part of
any renormallzatlon program one must prove that all
Ward identities are satisfied if the subtraction constant
in the vertex function is chosen so that the vertex
function satisfies one Ward identity at one value of the
momentum. )

The alternative conditions. of Gell-Mann and Low
(somewhat modified by the author) are as follows:
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m —& 0 in all orders? This is a hard question and cannot
be pursued here. Baker and Johnson" have an indirect
proof that the photon propagator as renormalized by
GeH-Mann and Low is finite for tn ~ 0; the author has
not checked their proof. Kinoshita" did an extensive
study of mass singulariti. es in 6eld theory but did not
study the effects of renormalizing according to the
Gell-Mann —Low specifications. A full proof of the
existence of the zero-mass limit does not exist to the
author's knowledge. If the zero-mass limit does not
exist in higher orders, the conclusions of this paper may
be incorrect.

Given that electrodynamics renormalized according
to the Gell-Mann —Low specifications differs only by a
renormalization from conventionally renormalized
electrodynamics, "it is possible to express all the amph-
tudes of the Gell-Mann —Low theory in terms of the
conventional theory. The formulas connecting the two
theories will now be obtained. Let the conventionally
renormalized electromagnetic potential be A,„(x) and
the conventionally renormalized electron 6eld be f,(x).
Let the corresponding fields of the Gell-Mann —Low
theory be A1„(x}and $1(x). Then one requires that

31„{x)= (ssg)'1'A, „(x), {2.22)

There is a second invariant function for the electron
propagator which will be defined later (Sec. IV). In the
zero-mass limit one has y~ invariance, which means
81(p') is zero. In this limit, one has

d (—1, m'/X', e),s) = 1, (2.30)

s(—1, m'/X', e1') = 1. (2.31)

There are corresponding functions d, (k'/m', e'} and
s, (p'/m', e') for the conventionally renormalized theory;
dg satisfies

d. (0,e') =1. (2.32)

The conditions on Z, (p) cannot be expressed in terms
of s, alone.

From relations (2.22) and. (2.23), one must have

D),p„(k) =zs1D,„„(k), (2.33)

S~(P) =Ss1S.(P) (2.34)

S1(p) = {p)
—'s(p'/X', O,e1') . (2.29)

The functions d and s are dimensionless, "which is why
they are functions only of ratios of the variables p', ms,
and X'. The Gell-Mann —Low restrictions (2.18) and
(2.20) become

d(k'/9 m'/X' e1,') = ss),d (ks/m' e') (2 35)

s {p'/X', ms/X', e)p) =Ss),s, (p'/m', e') . (2.36)
The Gell-Mann —Low theory is parametrized. differently
from the conventional theory; the coupling constant in
the Gell-Mann —Low theory is denoted t,},. The mass
paranietrization is in terms of the physical electron
mass m in both theories. The restrictions (2.18)—(2.21)
imposed on the Gell-Mann —Low theory are sufhcient to
determine z2}„z3}„andeq in terms of conventionally
renormalized amplitudes; when these are known all
amplitudes of the Gell-Mann —Low theory are deter-
mined through Eqs. (2.22) and (2.23).

It is convenient to rewrite two of the Gell-Mann-
Low restrictions in terms of the complete propagators.
Let S1,(p) be the electron propagator. One has (in the
Feynman gauge for the exact propagator'4)

Putting k' and p' equal to —X' and using the conditions
(2.30) and (2.31), one gets

(z ),)-'=d (—l1s/m' e') (2.3"l)

(sg,) '=s. (—2/m', e'). (2.38)

In order to determine e}, in terms of e, one must know
how I'&,„(P,q, k) and I',„(p,q, k) are related to vacuum
expectation values of the fields. The formulas are as
follows:

I'1,„(p,q, k)

(*)= (".)'" .(*).
which in turn means that

Dg
—'„„(k}= —g„„k'—g„„k'111,(ks), (2.24) =(&~) 'S~ '(P)» '. (k)~1"(P q k)S1 '(q) (2.39)

It is convenient to introduce invariant functions related
to Dq„„(k) and S1,(p), and indicate explicitly their
dependence on m, X, and e~ as well as momentum:

d(k'/X', ms/X', eg') =$1+111(k')j ',
(p'/x', '/x', ')=Ll —A (p')j '.

(2.26)

(2.27)

D1„„(k)= —g„„(k') 'd(k'/X' '/X' ') . (2.28)

I' M. Baker and K. Johnson, Phys. Rev. 183, 1292 (1969).
1s T. Kinoshita, J. Math. Phys. S, 650 (1962).
'8 This should be part of any proof of renormalizability of

electrodynamics; see, e.g., Ref. 4, Sec. 3t.2.
14 The choice of gauge in the Gell-Mann-i. ovv theory is explained

ln the Appendix.

Xd'xd'y. (2.40)

The factor e1 ' occurs in the definition of I'1„{p,q, k)
along with the inverse propagators to ensure that
I'1„(p,q, k) in lowest order is y„(not eely„); using the
lllvclsc of the exact plopagators 111 Eq. (2.39) 1s licccs"
sary to remove self-energy insertions from external
lines of vertex graphs.

~5 For a discussion of dimensional analysis in perturbation
theory, see Sec. III C.
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Comparing with Eq. (2.36), one must have

ei = (s,i,)-'&2e. (2 44)

Analogous formulas with e replacing eq and 5, ',
D, '„„,etc., replacing Sq ', Dq '„„,etc., give the vertex
I'.„(p,q,k). It follows from these formulas and Eqs.
(2.22), (2.23), (2.33), and (2.34), that

eel"),„(p,q, k) = (s2g) '(s2), ) "2ei',„(p,g,k) . (2.41)

A particular consequence of this equation is that

ei,l'gi(P') = (sg, ) '(22') ' 'ei'„(P') . (2.42)

Using the Ward identities (2.9) and (2.13) and the
definitions of s and s„ this becomes

eg[s (p2/X2, m2/X2, e&p)]—' = (22')
—'(22') —'~2

Xe[s,(p'/2222, e')] '. (2.43)

The advantage of these equations is that they remain
finite when m —+0. It should also be noted that the
function s(P2/P, 2,2222/X2, eg) does not have infrared diver-
gences for finite mass 222 while the function s, (p2/2222, e2)
does. This means s2), is infrared divergent but s~),q is not.

In the limit res ~ 0, Eq. (2.56) becomes (with X and
X' interchanged, for no good reason)

x'=md( —s, 0, 2:), (2.58)

&z '=ei'd( —X"/X' 0 ei2) (2.57)

This is an equation which is true for any X' and X pro-
vided both are nonzero. As a result it defines a rather
simple transformation group on a single variable x.
Think of x=e),' as a point on the positive real line; let
T, be the transformation which takes x into the point
x'=e), ', i.e.,

Using Eq. (2.37), this is

ei2=e2d, (—X2/2222 e2). (2.45)

[This is Eq. (1.1) of the Introduction. ]
One can now completely reconstruct the Gell-Mann-

Low form of renormalized quantum electrodynamics if
the conventional renormalized form is known. To con-
struct d(k2/X2, 2222/X2, ei2), for example, one uses Eqs.
(2.35) and (2.37) to give

d(k'/X' m'/X' ei') =d (k'/m' e')/d ( X'/m'—8') . (2 46)

with s=X"/X2. So T, is a transformation on a space of
coupling constants. The transformations T, have the
group property: If

To reparametrize the ratio d, (k2/2N2, e2)/d, (—X2/m2, e2)

in terms of eq2, one must first solve Eq. (2.45) to give e2

as a function e&'. In perturbation theory this is a tedious
but straightforward process and gives e' as a power
series in eq'.

To derive the renormalization-group equations, one
looks at the formulas connecting the Gell-Mann —Low
renormalized 6elds for two different values of X, say,
A. and X'. The two sets of fields are connected by renor-
malization constants:

&i,(~) =22ii ~i, (2), (2.47)

where
fX(&) S2XX'fX' (&) y (2.48)

SM X' S2X/&2K' y

22XX' 22K/S2V ~

(2.49)

(2.50)

In consequence, one has

d(k2/X' m'/X' ei2) =s ii.d(k'/X" 2N'/X" e),') (2 51)

s(p2/X2 2222/X2 ei,') =22gi s(p2/X" 2222/X" e),.2) (2 52)

Also, from Eq. (2.44) one has

(sN x') ~x' ~(2.53)

It follows from putting p'=k'= —X2 that

(s ii, )
—1 d ( g2/g~2 2222/g~2 e~,2) (2 54)

(s2xx')
—1 —s ( g2/y&2 2N2/g&2 g),2) (2 55)

eg ——eg. d( —V/X' 2N2/X'' ei ). (2.56)

$2=SOS) (2.59)

T8 T8 T8 ~

To prove this one first defines

(X")'=S2(X') i.e. s2 ——V"/V.
Then

Si ——S2/S = (X"/X') 2.

(2.60)

(2.61)

(2.62)

Consider any point x&0. Choose e&'=x. Since Eq.
(2.57) holds for any X', one has in addition

ei-2=ey2d( —X'"/X2 0 ey2).

Since X is arbitrary one also has

„2—e,2d( g&&2/l &2 0 ~,2)

(2.63)

(2.64)

Let x' be eq' and x" be e), '. Then T, takes x to x' and
T„ takes 2.

" to x"; but T„[by Eq. (2.63)] takes 2:
directly to x".This proves the group property. In other
words, if one is given the coupling constant e),' for
subtraction momentum A, , the corresponding coupling
constant e&

' for subtraction momentum X' is given by
Eq. (2.57); the coupling constant ei ' for subtraction
momentum X" is given by Eq. (2.63). By "corre-
sponding" is meant that e),', e~', and e), ' all lead to the
same physics but in different parametrizations. Now
since e), ' and e), ' lead to the same physics they too
must be related, namely, by Eq. (2.64); this is what
gives the group property. The group has an identity
transformation, namely, the transformation T&, this is
the identity due to the normalization condition (2.30).
The transformation inverse to T, is T,-1.

The group of transformations T, will be called here
the renormalization group. This is a less ambitious
definition than is given by Bogoliubov and Shirkov4 or
Petermann and Stueckelberg'; however, it is easier to
work with the transformations T, than to consider the
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more complex transformations which ma, ke up the
Petermann-Stueckelberg renormalization group.

The transformations T, are nonlinear, because
xd( —s, 0, x) is nonlinear in x. So the renormalization

group is diferent from the symmetry groups of quantum
mechanics, which are groups of linear transformations.
Instead the renormalization group is analogous to the
group of time translations in classical mechanics. In
classical mechanics with time-independent potentials
the equations of motion define in6nitesimal transfor-
mations on phase space; the corresponding 6nite trans-
formations are also nonlinear and also form a, one-

pRrRme tel gl oup. The Rnalogy to clRsslcal mechanics
will become important in Sec. III.

In practice one works mostly with the in6nitesimal
transforma, tion of the renormalization group. The
infinitesimal tra, nsformation determines the derivative
dei'/dX'. It is convenient to derive an equation for
dei'/A' which is valid for finite mass. This is obtained

by diRerentiating Eq. (2.56) with respect to X and then
setting X'=X. The result is of the form

d(ei') es'
'P —,e~'),

d(Z&)
(2.65)

-8d( —s, nz'/X', ei')
(2.66)

The function P has a limit for m —& 0 because d does,
and the function P(O,x) gives the infinitesimal trans-
formation of the renormalization group. In practice one
can replace P(m'/'A', e&P) by P(0,ei') when X'))m'; hence
solutions of the equation

d(ei')/d(112) =X Q(O, e)P) (2.67)

m2
=A 0

BX2 y =), A2

m' Bs(y, m'/x', e&,')
0' —,e)t

8y

(269)

(2.70)

Siiice ski = (sz&,1~) (s21~), Olle llas

(2 &1)

give the asymptotic behavior of e), for A&&m. The func-

tion P(0,x) is explicitly known to order x' when x is
small4:

f(0,x) = (12'')—'[x'+ (3/16s')x'+ ]. (2.68)

One can also derive differential equations for s2q and

sg, . However, sg, is related to ei' by Eq. (2.44), so we

only give the equation for s2q. First differentiate Kq.
(2.55) with respect to X' and then put X"=X' (and note
tllat spic =1):

Putting X'2=X2 gives

ds21 m~
=(X') 'S210. —,ei' ~.

dX'
(2.72)

III. SOLUTIONS OF RENORMALIZATION-
GROUP EQUATIONS

A. IQtfOd, Qct10Q

In Sec. II the basic equation of the Gell-Mann —Low
theory for electrodynamics was derived:

d (eis)/d (ink') = & (O,ei'), (3.1)

valid for X&&m.

Imagine now that equations similar to this hold for
other Geld theories besides electrodynamics, in par-
ticular, for possible 6eld theories of strong interactions
(e.g. , the gluon model or the a. model). " Imagine also
that the renormalization-group equation is valid for
large values of the coupling constant (e.g. , large values
of e&,

'- in the case of electrodynamics).
To do a general analysis of all possible renormal-

ization-group equations would be a hopeless task. One
has no information on the behavior of $(0,ei') when
e),2 is of order one or larger, and in some theories of
strong interactions the renormalization-group equations
involve coupled differential equations for several ~-
dependent coupling constants [e.g., Eqs. (1.6) and
(1.7)]. However, as pointed out in the Introduction,
the renormalization-group equations are analogous to
equations of motion in nonlinear mechanics; in this
analogy lnX2 is analogous to the time t and e),2 is analo-
gous to a coordinate x.

In classical nonlinear mechanics there are standard
types of'asymptotic behavior for large t which occur
in many diferent kinds of systems. The simplest
asyinptotic behavior is a fixed (equilibrium) point.
For Kq. (3.1), a fixed point is a point x for which
$(0,x) =0. For Kqs. (1.6) and (1.7) a fixed point is a
pail of vsllles x,y foi wllicll i/i(x, y) alld i/2(x, y) botll
vanish. It is quite common, especially in electric-circuit
problems, to have a system which starts o8 with a
transient (time-dependent) behavior but which settles
into a time-independent state (6xed point) as t +~;—
this can occur no matter how many dependent variables
(x, or x,y, or etc.) are needed to describe the system. A
limit cycle is another type of asymptotic behavior

je She renormalization group-equations for pseudoscalar meson
theory are formulated in Bogoliubov and Shirkov (Ref. 4).

The function 0. has a zero-mass limit because the func-
tion s does, so when A&&m one has approximately

ds, i/dl '= (X')-'s„~(o,ei'). (2.u)
Sogoliubov and Shirkov' also write down differential

equations for the whole vertex function; they will not
be needed here.
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which also occurs in many systems. A limit cycle is a
periodic solution' of a nonlinear set of equations of
motion; because of the nonlinearity, the amplitude of
the solution is fixed as well as the period. "Other types
of asymptotic behavior are also possible but are not so
easily characterized.

The purpose of this section is to discuss the possi-
bility that the asymptotic solution of the renormal-
ization-group equations is either a 6xed point or limit
cycle. These are not the only possibilities but other
possibilities are more difFicult to analyze. Studying the
consequences of a 6xed point or a limit cycle makes
clear the importance of the renormalization group for
field theory.

The asymptotic behavior of the solution of the
renormalization-group equations is important for
several reasons. For example, there are two experi-
mental quantities which should reQect directly the
qualitative behavior of the coupling constants for large
X. One is the total cross section for e+-e annihilation
into hadrons discussed in the Introduction; the other
is the Callan-Gross integral over deep-inelastic electron-
scattering cross sections. "The latter involves a more
complicated analysis and will not be discussed further
here. The consequence of a 6xed-point or limit-cycle
behavior for e+-e annihilation will be discussed later
in this section. Contrasting 6xed-point behavior with
limit-cycle behavior suggests experimental tests which
distinguish fixed points from limit cycles and probably
from other types of behavior as well. [For example, if
the cross section o&,&(q') for annihilation of e++e to
hadrons behaves as 1/q' for large q', then the asymptotic
solution of the renormalization group for strong inter-
actions is probably a fixed point. See Sec. III H.j
Hence one may learn from experiment whether one
must study asymptotic behaviors other than the fixed
point.

In order to discuss the possibility of a fixed point,
one must study functions $(0,x) which have fixed
points. It is convenient to discuss a function f(0,x)
which has at least three positive roots x; this allows
one to consider various types of behavior connected
with fixed points. Only the case of one coupling con-
stant, as in Eq. (3.1), will be discussed explicitly; the
discussion is easily generalized to the case of two or
more coupling constants.

To discuss a limit cycle, one must have at least two
coupling constants, so the limit cycle will be discussed
using Eqs. (1.6) and (1.7).

In applying the renormalization group to strong

'7 For a detailed discussion of limit cycles, see Ref. 8. The idea
that there might be limit-cycle behavior in field theory has been
suggested by H. Mitter, Nuovo Cimento 32, 1789 (1964). (Mitter
discusses an invariance to discrete scale transformations; this is
equivalent to limit-cycle behavior. )'8 C. Callan and D. Gross, Phys. Rev. Letters 21, 311 (1968);
J. D. Bjorken, Phys. Rev. 179, 1547 (1969); C. Callan and D.
Gross, Phys. Rev. Letters 22, 156 (1969); S. Cicciarello ef ut. ,
(Ref. 7); G, Mack, Phys. Rev. Letters 25, 400 (1970).

interactions, one must distinguish two situations. The
first alternative is that strong interactions remain
distinguishable from weak or electromagnetic or other
interactions for arbitrarily large momenta, and that
there is a theory of strong interactions valid for all
momenta which neglects these other interactions. Given
this alternative, the discussion of the renormalization
group for strong interactions, assuming fixed-point
asymptotic behavior, is similar to Gell-Mann and Low s
discussion of electrodynamics. ' In particular, one can
predict the values of the bare coupling constants of
strong interactions but the physical coupling constants
are undetermined theoretically and can only be found
experimentally. The second alternative is that at some
cutoff A large compared to 1 GeV the electromagnetic
or weak or other corrections to strong interactions
become too large to be treated as a perturbation. In
this case a theory of strong interactions in isolation is
only valid for momenta small compared to the cutoff
and one must allow for large corrections to the X-

dependent coupling constants when X is of order A. The
consequence of this (as will be shown below) is that the
physical coupling constants are predictable theoretically
if one knows the precise form of the renormalization
group equations (and if the solution of these equations
is a fixed point for X))1 GeV but X(&A). Both alterna-
tives will be explained in detail when the 6xed-point
hypothesis is applied to strong interactions.

The renormalization-group equations can be derived
in detail only after a field theory has been solved since
the function $(0,g) is defined in terms of a propagator
of the interacting theory (in theories other t.han electro-
dynamics, P depends on vertex functions as well), and
the propagator is not known unless the theory has been
salved. Any property of the 6eld theory which one
deduces by solving the renormalization-group equations
ought in principle to be discernible directly from the
solution of the theory, making a discussion of the re-
normalization-group equation unnecessary. However,
one does not have solutions to field theories except in
perturbation theory; the analysis of the renormaliza-
tion-group equations described here is one way of
groping towards the nature of strongly interacting 6eld
theories.

B. Integration of Differential Equation

Now consider solutions of the renormalization-group
equations with fixed-point asymptotic behavior. Equa-
tion (3.1) for electrodynamics will be discussed ex-
plicitly but the analysis applies to other field theories
as well. Suppose that the function P(0,x) has at least
three positive roots x~, x2, and x3 with 0&x~&x2&x3.
Let these roots all be simple roots. From the per-
turbation-theory formula (2.68) f(0,x) has a double
root at @=0 and is positive when x is positive and small.
Suppose that f(0,x) is bounded, continuous, and dif-
ferentiable for all x. One consequence of these assump-
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and X and X', are arbitrary, and

oO
x) xp

F(x) = LP(0 x')] 'dx' (3.5)

Fio. 1. Example of a function p(0,x) which has a double root at
x=0 and single roots at x=x1, x2, and x3.

tions is that lt (O,x) is positive for 0(x(x~, negative for

x~(x(x2, and positive again for x~(x(x3. The range
x) xs will not be discussed here. A function P(0,x) with

these properties is shown in Fig. 1. These assumptions
are made so that the solutions of the renormalization-

group equation will illustrate several forms of fixed-

point asymptotic behavior; there is no way of knowing
whether these assumptions are true for quantum
electrodynamics or any other given Geld theory.

For $(0,x) to be negative contradicts the Kallen-
Lehmann representation" for the photon propagator.
The Kallen-Lehmann representation gives

where p is a positive spectral function. This equation
holds provided no subtractions are needed to make the
integral converge. It follows from this formula and

Eq. (2.45) that
e&,
'= ffln(X') —1n(X")+F(e),')] (3.6)

which means a change in e),' is equivalent to translating
the solution for e),' by a 6xed distance in the "time"
variable ink'. A set of solution curves for ebs as a func-
tion of ink. is shown in Fig. 3. All the curves which lie

and c is an arbitrary constant which cancels out in the
difference F(eq') —F(e&, '). It is convenient to distin-
guish three ranges of the variable x: 0(x(x~,
x&(x(x2, and x2&x(x3. The region beyond x3 will
not be discussed here. First suppose that x is in the
range 0(x(xi. Let c also lie between 0 and xi, so the
integration region in Eq. (3.5) does not cross any zeros
of P. F(x) has the following properties in the range
0(x(xt. It is increasing [since P(0,x ) is positive for
0(x'(x&]; it goes to +Qo logarithmically as x~ xt
t due to the simple zero in $(0,x') for x'~ xt]; and it
goes to —~ proportional to x ' when x ~ 0 due to the
double zero in f(0,x') as x'~ 0. The function F(x) is
plotted in Fig. 2.

Now look at Eq. (3.4). I.et X' be ftxed, and let eq.'
be chosen arbitrarily but in the range 0(e), '(x~. As X

increases, 1nX' increases; therefore, F(eq') must increase
and this means eq' must increase. For X' —+ ~, F(eq')
must go to ~ also, which means ebs —+ x~. (This argu-
ment should be checked using Fig. 2.) In the other limit
X'~ 0, ink' goes to —~, and this forces e)' to go to 0.
This is true for any value of e),' in the range 0(e),.'(x~.
In fact, if one lets f(y) be the function inverse to F(x)
Li.e., x=f(y) if y =F(x)], then the solution to Eq. (3.4)
ls

which is positive but might go to zero when X ~ ~.
The function f(0,x) will be permitted to be negative

anyway. The reason is that Eq. (3.1) is regarded here

only as a prototype for the renormalization-group
equations for arbitrary field theories, in most of which
deq'/dX' involves vertex functions as well as propagators
and can be negative. Also, it is known from the example

of the Lee modePO that a renormalized theory does not
necessarily satisfy the requirement of a positive definite

metric which is assumed in the proof that p(k"/ms, e')
is positive. So it may be that f(0,x) does go negative
even in electrodynamics.

Now consider the renormalization-group differential
equation (3.1). This is the zero-mass equation; the
effects of a finite mass will be discussed later. The zero-

mass equation can be integrated to give

x
X

t
t
I

t

l

I

l

I

ln (X') —ln (X")=F (eq') —F (eq.'), (3.4)

~' G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann,
Nuovo Cimento 11, 342 (1954).

ss T. D. Lee, Phys. Rev. 95, 1329 (1954).

FIG. 2. Plot of the function P(x) assuming P(0,x) is the function
shown in Fig. 1. The constant of integration c is also shown;
c=fI if 0&x&xI, c= f2 if x1&x&x2,. c=f3 if x2&x&x3. The
constants f&, f&, and f& are chosen arbitrarily.
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Bx(t,x~)/Bx~&&l Since the function x{t,x~) satisfies

Bx—(t,xg) =$LO,x(t,xg)j,
8$

(3.8)

one gets by diGerentiation

8 Bx Bx BP
(t,xg) = (t,xg)—jO,x{t,x~)j. (3.9)

8) Bx~ — Oxg Dx

If one thinks of 8/[0, x(t,x~)j/Bx as being a known
function N(t), this equation can be integrated. One
needs a boundary condition: From the boundary con-
dition (3.7) one has

FIG. 3. Solutions of. the zero-mass renormalization-group
equations for eq' plotted vs ink'.

The result is

Bx
— (O,xg) =1.

Bxg
(3.10)

in the range 0(e),'&xg go to xj as X' —+ ; they all go
to 0 as P'-+ 0.

Similar analyses can be performed for solution curves
lying in the intervals x~&ey'&x2 and x2&e),'&x3. The
curves lying in the range x~& e),'& x2 go to xq for X' —+
and go to x2 for X' —+0; curves lying in the range
x2&e)'(x3 go to x3 for X' ~ Oo and go to x2 for ~' —+ 0.

There are also special solutions of the differential
equation, namely, the 6xed points: e),'=0, eq'=x~,
8y =x2, or 8y =x3.

What one sees from this analysis is that in the limits
P' —+ ~ or X' —+0 any solution of the zero-mass dif-
ferential equation (3.1) must approach one of the 6xed
points 0 xj x2 or x3. This ls despite the fact that
for a 6xed and 6nite X, e), is continuously variable.
Underlying this result is an ampli6cation and deampli-
6cation eRect in the solution of the differential equation.
Suppose one considers two initial conditions x~ and x~
for x at t=O and then integrates Eq. {1.5); one gets
two solutions x~(t) and xs{t). Suppose that xe~x~.
As t increases, the difference xe{t) x~ (t) may increase, —
in which case the diGerence can become large when g is
large: This is amplification. It occurs, for example, if
x~ and x~ are both near x2, it is dear from Pig. 3 that
the solutions xe(t) and xg (t) will separate as t increases.
LIf x~ {t) and xe(t) both approach the limit xi or both
approach xg when t —+ ~, the separation will eventuaHy
reach a maximum and then decrease again. $ It is also
possible for the curves xg (t) and xs(t) to approach each
other as 3 increases, becoming equal as t —+ Oo; this is
deamplification. Amplification and deampli6cation can
be discussed quantitatively by de6ning solutions
x(t,x~) of Eq. (1.5) which depend on the initial value,

(3.7)

and then looking at Bx{t,x~)/Bx~. If there is strong
amplification between 0 and t then Bx{t,x~)/Bx~ will be
much larger than 1. Strong deampli6cation means that

Bx
(tx~) =exp~ , wP )dt') .

'
l9xg

(3.11)

If BP/Bx is positive, Bx(t,x~)/Bx~ increases with t; if
8$/Bx is negative, Bx/Bx~ decreases. To make Bx/Bx~
be near zero or in6nity requires that the integral in the
exponent be large. With the form of f(O,x) being
postulated here, 8$/Bx is not itself large and a large
integral can come only from a large value of t (near
+co or —co).

Now the case of 6nite mass will be discussed briefly.
The main qualitative eGect of having 6nite mass is
that large ampli6cation and deampli6cation eGects are
con6ned to the region A»m. What happens for X&&m
is that 8$/Bx is proportional to X'/m' and is too small
to cause much ampli6cation and deamplification. The
appearance of the factor X' is best seen from Eq. (2.45):
DiGerentiating it, one gets

(m' ) d(e), ') X' Bd,(y,e-')

ltd —,e,' ~=X'
m Bp -g

(3.12)

The function d, is well behaved for A. ~ 0 when m is
finite; hence Bd.(—X'/m', e')/W, ' is finite for X —+ 0 (or
perhaps mildly singular due to the three-photon con-
tribution to the spectral function, which has a threshold
at k'=0). Expressing e' in terms of ei' causes no trouble,
at least in perturbation theory, nor does diGerentiation
with respect to ei'. So Big(mm/X', x)/8x has a factor
X'/m' when X&(m, which is m 'e" in terms of t, which
makes the region K&lnm negligible. Thus large ampli6-
cation and deamplification effects which require 8$/Bx
to be finite over a large range of 5 occur only for P»es.
For qualitative purposes one can avoid integrating the
finite-mass equation, instead integrating the zero-mass
equation but stopping at X =m instead of going to A. =0.
The value of e ' obtained this way should qualitatively
be similar to e' obtained from integrating the exact
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equation; in particular, B(e 2)/Bes should be neither
very small nor very large.

C. Fixed-Point Solutions and Scale Invariance

What is the significance of the solutions described
above of the renormalization-group diGerential equa-
tion? First the special fixed-point solutions will be
discussed. Consider, for example, the solution e),'=x~
for all X, with m being zero. It will now be shown that
this solution defines a scale-invariant field theory. "
Consider a dimensional analysis of the fields Ax„(z)
and Px(z), with ex2 being a constant independent of X

and m being zero. The only variables left are s and ).
In the free-field limit, the dimensions of Ax„(z) and
IIfx(z) are fixed by the canonical commutation rules,
giving Ax„(z) the dimensions of mass and Px(z) the
dimensions (mass)' ".

YVhen one does perturbation theory with a finite
cutoff, the dimensions of the unrenormalized fields are
still fixed by the canonical commutation rules. The
renormalized fields differ from the unrenormalized
fields by cutoff-dependent factors which in principle
could carry dimensions"; in practice the renormaliza-
tion conditions (2.30) and (2.31) imposed on the re-

normalized fields ensure that they also have canonical
dimensions" and that the renormalization constants
are dimensionless. To be specific, setting d( —1, 2132/X2,

ex2) and s(—1, 2132/X2, ei2) equal to 1 for all ex2 means
that d and s are dimensionless for all e&, not just ez ——0,
and this means the dimensions of Ax„and lid are also
independent of e&. One can apply dimensional analysis
to an arbitrary vacuum expectation value of the fields,
e.g. ,

T„.(zi,zs,zs, z4,X)

=(GITA& (SI)Ax (s2)lt'& (S3)gx(s4) IQ) (3.13)

"The argument that follows shows that scale invariance is
exact, i.e., the vacuum is invariant to scale transformations.
P. Carruthers /Phys. Rev. D 2, 2265 (1970)$has proposed models
of scale-invariant theories with a noninvariant vacuum. The
author does not know what kind of solution of the renormaliza-
tion-group equations corresponds to a theory with seal.e invariance
but a noninvariant vacuum.

"Consider, e.g., the constant Z~ relating the unrenormalized
electron Geld to the renormalized electron Geld. The only absolute
requirement on Z2 is that it contain all the cut-o8 dependence of the
unrenormalized Geld. In second order Z2 will have the form
1+rie2t lnA2+V'g, where V is a calculable constant and n' is arbi-
trary. It is not necessary for q' to be a logarithm of a mass so that
Dnh2+V'j=glnix2/M2)], making the argument of the logarithm
dimensionless. Any q' will ensure that Z2 includes all cut-oG de-
pendence of the unrenormalized Geld. One can put q'=0, for
example. In this case the renormalized Geld does not have a well-
deGned dimension. If Z2 to all orders has the special form
exp(qe' lnA, ') (when parameters like q' are set equal to zero) then
Z~= (h2)&" and the renormalized Geld does have dimensions, but
not the same as the unrenormalized Geld.

"One is talking here about "mass dimensions, " namely, the
dimensions that Gelds have in dimensional analysis. Later in this
section "scale dimensions" will be defined which give the dimen-
sions of Gelds under operator scale transformations. The two
dimensions can be distinct because in a scale transformation of
dimensional analysis, X is scaled, while an operator scale trans-
formation does not change X.

The product X 3T„„(SI,S2,zs,z4,X) is dimensionless and
can depend only on the products s&X, s2X, s3X, and s4X.
Similar results apply to arbitrary vacuum expectation
values. These results can be represented schematically
by the equation

X
—

IAx„(z) =AI„(XS), (3.14)

X
—3islfx(z) =lfi(XS) . (3.15)

LAI„(z) means Ai.„(z) with X'=1; X' is put equal to 1

whenever an arbitrary fixed value of X' is needed. ]
These equations are to mean that vacuum expectation
values such as T„„(SI,S2,S3,S4,X) satisfy the identities
that result from making the substitutions (3.14) and
(3.15) in the vacuum expectation value. The equations
cannot be understood as operator relations since one
might have instead

X 'Ax„(z) = UxtA I„(XS)Ux,

X '$1(z) = Uxtfi()iz) U1,

(3.16)

(3.17)

where U), is a unitary transformation; these equations
will also reproduce the result of dimensional analysis
oil T3„(SI)zs,z3)S4,X).

In addition to the dimensional relations, there are
the renormalization relations

Ax„(z) = (zsxi) 112A I„(z),

&1(z)= (zsu)"'lt i(z) .
(3.18)

(3.19)

ssx1 =e1 /ex ~ (3.21)

Since eq' is constant, e),' ——e~' and s3) ~ is 1. To obtain
ssxi one solves Eq. (2.72) for zsx, since zsxi is zsx/s21,
one obtains

with
&2) ~=~"

Ir =o (O,xi)

(3.22)

(3.23)

Thus one obtains the relation

X Tp p (Xsr)Ass)Ass)Xs4y 1) Tp p (si)ss~s3)S4)X)

=X"T„.(SI,S2)zs)z4)1). (3.24)

This equation gives a scaling law for T„„(zi,ss,z3 s4 1),
namely, it is equal to X' "T„,(XSI,XS2,XS3,XS4,1). The
scaling law for arbitrary vacuum expectation values is
represented schematically by the equations

AI„(z) =XAI„()IS),

lt I (z) =X"2 lf I (Xz) .

(3.25)

(3.26)

For T„„these relations give

Tpy(zl+2+3+4)~) —zsxlz2XITII v(zlyz2+3+4) 1) ~ (3.20)

Using both Eqs. (3.14) and (3.15) and (3.18) and (3.19)
one can eliminate the fields A&,„(z) and Px(z), leaving
formulas relating Ai„(z) and gi(z) to AI„()tz) and

pi(XS), i.e., scaling relations. First we need to determine

s3$1 and S211. The constant S311 has the form Drom Eq.
(2.53)j
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If Eqs. (3.16) and (3.17) hold, then the actual operator
relations are

UiA i„(s)Uit ——XA i„(Xs),

Uqki(s) Uit=XHi' 'fig s)

(3.27)

(3.28)

As a result of these equations the unitary transfor-
mations Uq generate scale transformations of the fields
Ai„and i/i, so the theory is scale invariant. I cannot
justify Eqs. (3.27) and (3.28), but in any case all
vacuum expectation values of Ai„(s) and Pi(s) scale
as if the theory were scale invariant, which presumably
means the theory is scale invariant.

The quantity -,'—r is the "scale dimension" of the
field fi(s). Unless 0. is 0, the scale dimension of fi(s) is
diferent from its dimension in mass units. The Geld
X 'Pz(s) is )from Eqs. (3.19) and (3.22)] equal to Pi(s)
and therefore independent of X; this held has both scale
and mass dimensions ~

—0-. The fact that interacting
fields can have different scale dimensions from free
fields has been noted in many circumstances. '4 "The
scale dimension of Ai„(s) is 1, from Eq. (3.27), and is
not changed by interaction. This is presumably because
of the field equation which makes Ai„(s) proportional
to the electromagnetic current ji„(s).The scale dimen-
sion of the current has to be 3 in order that the equal-
time commutator,

LJ o(z,s )4 (y,so)]=~'(z —y)4 (y,so), (3»)

equation; the solution ez of the 6nite-mass equation
satisfies the zero-mass equation approximately when A,

is much larger than m. One can now discuss asolution
e),

' of the zero-mass equation such that eq' —& eq as
X ~ 00, the difference being some power of nz.

The quantity e ' should depend in a reasonable way
on e; that is, one does not expect large amplification or
deamplification effects in the dependence of e ' on e.
So in the following, e ' will be taken to be the input
parameter instead of e, and we shall discuss only the
zero-mass renormalization-group equation. In the
following, we shall write eq for eq'. The function P will
be assumed to have the form discussed in Sec. III B.
Suppose for convenience that e ' lies between 0 and x2.
If this is so, e),' will approach x~ as X —+ ~. It is not
necessary for P, to be enormous before e),' is close to x&'.

Since f(0,x) is of order 1 when x is of order 1 (except
when x is near xi, x~, etc.), the solution curves change
reasonably rapidly with A. and soon approach x&. The
only exception is if e ' is close to x2 or 0; but if e ' is an
arbitrary parameter fixed by experiment, it would seem
unlikely that it would be close to any preassigned
number such as x2. (It is also assumed that e is not
small. )

One can determine the rate of approach of e),' to xy
as X —& ~. Let x(t) be near xi. Then one can expand
f(0,x) about x=xi.

P(0,x) f(0,x )+$x(t) —x ]Bf(0,x )/Bx. (3.30)
be scale invariant. Hence Ai„(s) must have scale
dimension 3, and Ai„(s) itself must have scale dimen-
sion 1.

D. Renormalization Grouy, Fixed Points, and
Strong Interactions in Isolation

It is convenient to introduce the constants

a =BP(0,x„)/Bx

for each fixed point. Then, approximately,

dx/dt aiLx(t) —xi].

(3.31)

(3.32)

Suppose now that Eq. (3.1) is the renormalization-
group equation for strong interactions. This would
mean that there is only one renormalized coupling
constant in strong interactions, as in the gluon model.
The coupling constant e is interpreted in this section
to be the renormalized coupling constant of strong
interactions, and m will be assumed to be a typical
strong-interaction mass (about 1 GeV). Assume that
strong interactions can be isolated from other inter-
actions approximately for all momenta (the opposite
assumption will be discussed later). In this case the
renormalized coupling constant e is an arbitrary param-
eter in the theory and the finite-mass renormalization-
group equation should be solved with the boundary
condition eq —+ e as A. —+ 0. In practice it is more con-
venient to discuss the zero-mass renormalization-group

2' K. Wilson, Phys. Rev. 1'79, 1499 (1969).
~~ K. Wilson, SLAC Report No. SLAC-PUB-737, 1970

(unpublished).
2'K. Wilson, Phys. Rev. D 2, 1473 (1970); 2, 1478 (1970);

C. Callan, ibid. 2, 1541 (1970); S. Coleman and R. Jackiw,
MIT report (unpublished); K. Symanzik, Commun. Math.
Phys. 18, 227 (1970); J. Lowenstein and B. Schroer, Pittsburgh
report (unpublished); H. Georgi, Phys. Rev. D 2, 2908 (1970).

ei2 xi+cia' '. (3.34)

The constant c~ will depend on the initial condition e
If e '—xi is small also, then ci will be linear in e '—x~,
but if e„'—xi is large, the linearized equation Eq. (3.32)
will be incorrect for t near inn' and the relation of c~ to
e '—x~ will be nonlinear. In any case, e) ' approaches its
limiting value x~ as an inverse power of X.

%hen eq was introduced in Sec. II it arose as an
alternative definition of the renormalized coupling
constant; in the Gell-Mann —Low renormalization
program all Feynman amplitudes are considered as
functions of eq not e. This raises a problem. 'If one has a
function such as d(k'/X', m'/X', ei') which depends on
e~', one would suppose that a small change in e~' implies
a small change in d. But if A, is very large, a small change

The solution of this equation is

x(t) =x,+c,e~~', (3.33)

where c& is an arbitrary constant. It is evident from
Fig. 1 that ai is negative, so x(t) —+ xi as t —+ ~ expo-
nentially. Translated in terms of ez', this gives
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in e&' away from x& is amplified to give a large and non-
linear change in e '; so e ' and any quantity which
depends directly on e ' will not change just a little when

e),' changes a little. This means it is not very appropriate
to use eq' for a large value of X as one's renormalized
coupling constant for amplitudes which are best
parametrized in terms of e 2. Another way to say this
is that physically the qualitative nature of a given
amplitude should be determined by a qualitative
knowledge of the physical couplings which determine
that amplitude. If one has to specify a coupling constant
to 1% accuracy in order to determine the amplitude to
50% accuracy, there is something wrong. The response
to this problem is, I think, to consider the coupling
constant e),' for different ranges of the momentum X to
be physically distinct coupling constants governing
distinct physical processes. The natural thing to expect
is that eq with 'A m governs amplitudes with momenta
of order m or less; e), with A. j.0m covers amplitudes
whose momenta are of order 10m, and so forth. Within
a particular order of magnitude range of momenta one
can specify arbitrarily the exact value of X for which e),

is the coupling constant.
If X is much larger than m, the amplitudes for which

e),' is the relevant coupling constant are off-mass-shell
amplitudes with virtual masses of order X, such as the
photon propagator with k'~A. '. A scattering amplitude
with large energies and momentum transfers, but for
particles on the mass shell, cannot be said to involve
only ez' for X large; the mass-shell condition suggests
that the amplitude will also be strongly affected by the
value of e '. The behavior of scattering amplitudes at
large energies and momentum transfers is outside the
scope of this paper.

The way this picture shows up in perturbation theory
is that a function such as d(k'/X', m'/PP, ei,') has a
perturbation expansion in eq' whose coefficients are of
order 1 (apart from factors of 2n. which are considered
to be of order 1 in this paper) when k' is of order X';
but if k'/X' or X'/k' is large, the coefficient of (ci,')"
contains the large factor" Dn(k'/X')]" which makes d

much more sensitive to changes in eq'. So perturbation
theory confirms the hypothesis that e&' is the appro-
priate coupling constant for momenta of order X and
not so appropriate for momenta much larger or smaller
than X.

In summary, one defines a sequence of coupling con-

stants, say, e, e&p, e]pp, etc. All of these have to be
speci6ed in order to determine qualitatively the physics
at arbitrary momenta, owing to the large ampli6cation
or deampli6cation effects that can occur in the relation
between different coupling constants in the sequence.

For large momentum X, ei,' is close to xi and I/X is

small; this means propagators and other amplitudes at
large momenta will be close to the scale-invariant
amplitudes for eq'=x~ and m=0. So scale invariance is

"If ks«nP the factor is Dn (m~/X~)g" (and similarly if iV&&nP).

a broken symmetry of the theory. Furthermore, as
seen earlier in the case of the field P, one must expect
scale dimensions of local fields to differ from free-6eld
dimensions as was assumed in Ref. 24. One consequence
of broken scale invariance is that rri, i(q'), the e+-e

annihilation cross section into hadrons, behaves as
(q') ' when q' is large. "

e ' xs+cs(rN/ft)'" (3.36)

This means e ' is very little affected by' the exact value
of eq',. the dependence of e„' on e~' is through the
constant c& and this constant is multiplied by the small
coefficient (m/A)'". This in turn means that the ordi-

nary renormalized coupling constant e' is also only

slightly dependent on the value of e~'. This assumes

that e~ is restricted to the range gj&e~ &g3, if e~' lies
outside this range, e ' will be very different.

"In this section, as in Sec. III 0, e), refers to a coupling con-
stant for strong interactions.

E. Strong Interactions with Cuto6

Suppose now that there is a cutoff momentum A

beyond which one cannot distinguish strong interactions
from other interactions. " It will be assumed that
A))m, i.e., i1 is much larger than 1 GeV/c. The effect of
the cutoff is to shift the boundary condition on the
renormalization-group equation from X=m to X=A..
The reason is this. Kith a cutoff, the strong-interaction
theory that one develops for laboratory energies is no
more than an infrared approximation to a more com-
plicated theory combining strong and other interactions.
The more complicated theory covers energies of order
A or less; strong-interaction theory is valid only for
momenta much less than A. The coupling constant e),

for A. of order A. will now be determined by properties
of the more complicated theory rather than by strong
interactions alone. Under these circumstances, the
chances are negligible that e), with X A. will be close to
the fixed point x&, since the location of x& is a property
of the isolated strong-interaction theory and not of
the combined theory. Another way of saying this is
that if weak interactions, say, become strong at
momenta of order A, then there will be large corrections
to e~ when X is of order A. due to weak interactions,
making it unlikely that e),' will be near x&. Suppose,
therefore, that e),' has a random value, but for con-
venience assume that it lies between xi and xs. (The
case that e),' is less than x~ will be discussed later: See
Sec. III G.) Now if one solves the renormalization-

group equation, one sees from Fig. 3 that e),' rapidly
approaches x2 as X decreases. In fact, one sees that for
X((A, e),' has the form

ei,' xs+cs (X/A.)"', (3.35)

where a, is given by Eq. (3.31) and cs is a constant of
order 1 since e&' differs from x2 by of order 1. In par-
ticul. ar, e ' has the form
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The consequence of introducing the cutoff A and
requiring ez' to be arbitrary is that e ' and therefore e'
is fixed precisely except for corrections which are small
when m/A is small. In other words, there is a bootstrap
condition for the renormalized coupling constant,
apart from small cutoB-dependent effects. The boot-
strap condition is cot a consistency condition: The 6eld
theory of strong interactions in isolation exists and is

(by assumption) well behaved for any value of e; !t is
the inhuence of other interactions at the cutoff A that
forces e to be the solution of the bootstrap.

F. Precise Formulation of Bootstrap Condition

The bootstrap condition will now be discussed in
more detail. "Consider the exact equation for e),', Eq.
(2.65), with finite mass. The equation is to be solved
with the value of ez' being the boundary condition. It
will be assumed that e~' lies somewhere between xi and
x3, what happens when e~' is outside this range is dis-
cussed later in this section. It is also assumed that all
cutoG-dependent sects are absorbed into the constant
e~' and do not, for example, change the function
P(m'/X~, ei2). This assumption is surely an oversimplifi-
cation, but the essential features of the bootstrap are
not changed by making this simpli6cation. It will also
be assumed that A/m is sufficiently large so that over a
sizable range of X, m/X and X/h. are both small. In the
range %&A. but li&)m, the exact function f(nz'/PP, ei')
is approximately P(0,ei,'); therefore, the solution ei'
behaves as shown in Fig. 3 and is close to x2 for A«A.
This suggests that one define a solution of the 6nite-
mass equation which is exactly x2 when P))m, and
compare this solution with the exact solution. So one
has two functions, say, e& and e», where

de!,'/d (in'') =g (m'/X', e!,'), (3.37)

dei '/d (ink') =if (m'/X', eii2), (3.38)

and e),&' satisfies the boundary condition

I

Pnm~

Fio. 4. Solutions eq' and e),P of the finite-mass renormaliza-
tion-group equation, &pith boundary conditions eq' for e),' and
egi2 —+ g2 for ) —+ ~.

up at infinity. Since e» can depend only on X and m
and is dimensionless, it must have the form

eii2 =
& PP/m') (3.40)

for some function P. In particular, the value of eii2 for
X =0 is $(0), which is a fixed number independent of the
mass m.

As long as e~' is near e~i' one can write a linearized
equation for the difference e),'—ez&'.

d(e), ' —e!,g') 8$ m'
1~ ex~ ex1~ ~

d(ink') Bx

When X))m but X«A, one has ei,P~g2 and m'/g'&&I,
giving 8$/Bx u2. Since a2 is positive, the difference
eq' —e),i' decreases as X decreases, except that for A, m)
Bg/Bx might change sign due to finite-mass effects.
However, large amplification cannot occur for P«m
(see Sec. III B) so even if 8$/Bx does change sign for
X~m, the difference e),'—equi' cannot become large.

More precisely, for m«A«A. one has

llm equi =. S2)
g-+o)

(3.39) e„'—e p c P./A)"' Pi))m, X«h) (3.42)

while the boundary condition for ez' is the value of ez'.
The functions eq' and e),i' are illustrated in Fig. 4.

The functions e~' and e~~',are both close to x~ in the
range P))m but A«A. . This"means that e),' is close to
ez&~ for X of order m also because the differential equa-
tion deamplifies the diGerence between e~' and e),~' as X

decreases (see below). The advantage of defining equi is
that it has no cutoG dependence. It is also uniquely
defined since e» must satisfy the zero-mass renormal-
ization-group equation for large A, , and only one solution
of the zero-mass equation goes to x2 when X ~ ~. This
is a situation reminiscent of the one-dimensional
Schrodinger equation in the bound-state region; the
Schrodinger equation has one solution which goes to
zero at in6nity, while it has many solutions which blow

for some constant c2. Using this as a boundary condition,
the solution of Eq. (3.41) is

ei'=e!,i2+cg exp

with

(3.44)

When X'))m' $(X'/m') is approximately x2, NP'/eP)
is approximately a2, and Eq. (3.43) reduces to Eq.
(3.42). When X' is 0, one has

e'=eoi'+c2 exp
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The large part of the integral in the exponent comes
from the region of integration m«X'«A. . The result is

e'—eoi2+c2 (m'/&') "w (3.46)

where m is a constant, namely,

m= exp

m~ y~2

(V') 'u —dX"
0 m'

m2

The function u(X"/m') —a2 goes to zero as X' —+ ca; it
is assumed here that it goes to zero fast enough so that
the region x 2&A2 is negligible. The quantity e0~2 is

$(0) and is the bootstrap value of the renormalized
coupling constant; the actual value for e' differs from
the bootstrap value by an amount of order (m'/A')".

Note that the bootstrap value of the renormalized
coupling constant is computed by a complex procedure.
First one must locate the fixed point x2 of the zero-mass
renormalization-group equation. This means solving
the equation P(O,x) =0, which is the bootstrap con-
dition. Having found the solution x2, one must then
solve the differential equation for e»2 with the boundary
condition e»2 —+x2 as X~ ~; the value of e»2 for
X=O is the bootstrap value of the renormalized cou-
pling constant. The bootstrap condition is a condition
on a zero-mass theory, a theory which very likely has
no S matrix because of infrared divergences. " The
bootstrap condition is determined by the function f,
which is in turn defined in terms of a propagator- well
off the mass shell; this is a very different bootstrap
from those that have been proposed in the context of
S-matrix theory.

For momenta between m and A the theory is approxi-
mately scale invariant, since e&2 is close to the fixed
point x2 and the mass can be neglected. However, the
scale-invariant theory differs from the scale-invariant
theory associated with the fixed point x&,' for example,
the scale dimension of the field P is different in the two
cases since 0(0,x2) need not be the same as 0 (O,xi).

Whether or not there is a cutoff A. , the short-distance
behavior of strong interactions is determined by a fixed

point of the renormalization group. However, a different
fixed point is involved if there is a cutoff. What is the
differenceP The fixed point x2 has the property that
solutions of the zero-mass renormalization-group equa-
tion in the vicinity of x2 approach x2 as x —+0. In
contrast, solutions in the vicinity of x& or x3 for finite X

go away from x& or x3 as x —+0. One can say that x2 is
"infrared-stable, " while x~ and x3 are "infrared un-
stable. "With a cutoff, one has to allow e~2 to be arbi-
trary which means it is unlikely to be equal to x& or x3,
or to any infrared-unstable fixed point. Hence the
solution of the renormalization-group equation will

approach one of the infrared-stable fixed points of

P(0,x). The infrared-stable fixed points are x =0, x =x2,
plus possibly roots beyond x3. If e&2 lies between x& and
x3, then x2 is the relevant fixed point; if e~2 is less than
x~, then x =0 is the relevant fixed point. The significance
of x=0 as a fixed point will be discussed in Sec. III G.
What happens if e~2)x3 will not be discussed here.
Without a cutoff it is the renormalized coupling con-
stant e' that is arbitrary; one then follows solutions of
the differential equation out to X = ~, and it is the fixed
points which are stable in this limit that become the
possible asymptotic solutions of e&2 for large A, . The
possible fixed points are x~ and x3, these might be called
"ultraviolet-stable" fixed points.

The bootstrap condition resulting from the presence
of a cutoff is, precisely, that P(0,x) be zero and that x
be an infrared-stable root. Any infrared-stable root is
acceptable, so if there is more than one, the correct one
has to be determined experimentally.

6. Electrodynamics with Cutoff

To conclude the discussion of fixed points, the case of
electrodynamics will be considered. Now e, ez, and P
refer to electrodynamics rather than to strong inter-
actions. The same form is assumed for P as in Sec. III B.
While the renormalized coupling constant e' of electro-
dynamics is small, one sees from Fig. 3 that e~' —+ xj
for X —& ~. The constant x~ is fixed independent of e'
and so cannot be arbitrarily small. This suggests that
all particles will couple strongly to photons at suffi-

ciently high momenta; but this would mean that
electrodynamics and strong interactions would mix

strongly, suggesting that pure electrodynamics is valid
only below a cutoff momentum A. Suppose this is the
case and that e&' is therefore arbitrary as discussed
earlier, but happens to be smaller than x~. Then for
X«A, e)2 is close to the fixed point zero. One can as
before define a bootstrap value for the renormalized
coupling constant by solving the renormalization-group
equation for a function e»2 which goes to zero as X ~ ~.
The solution is e»2=—0. The departure of e' from 0 is
therefore a cutoff-dependent effect, as discussed earlier-.

Because of the special nature of the fixed point x=0, e'

does not vary as a power of the cutoff. The function

P(0,x) has no term linear in x for x near zero, so one
cannot find the dependence of e' on A. from a linearized
equation. Instead one must keep the quadratic term in

P, giving the approximate equation for ei,' small:

dei, '/d (ink') = (12m') 'eg4. (3.48)

(This equation neglects all contributions to vacuum
polarization except for electrons; other particles will

increase the factor (12m') ' by a presently unknown
factor. g The boundary condition is that ez' be arbitrary
which presumably means of order 1. The solution is

(e&') '—(e~') '= (12~') ' in(iV/X') (3.49)
or

ei2= eg'$1+ (127r') 'eg' ln(A'/X')] '. (3.50)
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For X«A, for which eMn(A'/X') is large, one gets the
approximate form

e '= (12m') Dn(A. '/X') 1 '. (3.51)

So e~' decreases as an inverse logarithm of A.
' for X((A.

One has to have an astronomical value of A/m to make
the renormalized coupling constant e' be as small as
1/137.

In the case of electrodynamics, the small cutoG
dependence of the coupling constant is very noticeable
since it is only the cutoff-dependent term that makes
e' nonzero. For strong interactions, where the bootstrap
value of the renormalized coupling constant should be
of order 1, a small cutoG dependence would be much
harder to detect experimentally.

H. Limit Cycles

If there are at least two renormalized coupling con-
stants in strong interactions, as in pseudoscalar meson
theory, there is an intriguing alternative to a fixed
point, namely, a limit cycle. ' " To illustrate the
hypothesis of a limit cycle, suppose there are two re-
normalized coupling constants; then the zero-mass
renormalization-group equations have the form

trajectories only go into the annulus is easily checked
since this means that the velocity vector {gi(x,y),
$2(x,y)} must point into the annulus for all points
{x,y} on the inner and outer rings of the annulus. For
this theorem to hold, there must not be any 6xed points
inside the annulus.

A detailed discussion of limit cycles will not be given
here. There is one important observation to make. If the
coupling constants g), and hz approach a limit cycle as
X —& ~ instead of a 6xed point, there is a chance that
this will be experimentally observable. Consider the
total cross section «,i(q ) for e+-e annihilation into
hadrons: q is the momentum transfer. Assuming electro-
dynamics is treated to lowest order, «.i(q') is the
absorptive part of the propagator for the electromag-
netic current of hadrons, times known factors. By
dimensional analysis, «,i(q') has the form

o i,i(q') =n (q') 'f (q'/X', m/X, gg, hi, ), (3.56)

where m stands for all possible mass parameters in the
theory and o, is the 6ne-structure constant. The mass
dependence should be negligible for q' and P' large.
The formula is valid for any value of A.. In particular,
one can set X'=q'; if q' is large, m'/q' is negligible and

dx/dt =Pi(x,y), (3.52) «.i(q') =o(q') 'f(10,a.,&.) . (3.57)

dy/dt =&2(x,y), (3.53)

where the functions fi and P2 are analogous to the
function P(0,x), t is ink', and x and y are the momentum-
dependent coupling constants, say, x=gz, y=hz. The
functions Pi and f2 will be mass dependent when X is of
order the masses in the theory, but this dependence
will not be exhibited explicitly. It is assumed that the
mass dependence can be neglected for large enough X.

The solutions of Eqs. (3.52) and (3.53) will define
trajectories in a two-dimensional space with coordinates
x and y.

A limit cycle is a special trajectory which is a closed
orbit, namely, a solution {x(t),y(t)} which satisfies

It is unlikely that f is independent of gi, and hi, since
vacuum polarization in electrodynamics is also the
current-current propagator in electrodynamics and it is
coupling-constant dependent. So as g, and h, change
with q', so will q'0i, i(q') and one will see perpetual
oscillations in the e+-e total hadronic cross section in
the limit of large q'.

There are other forms of asymptotic behavior besides
fixed. points and limit cycles. There will be no discussion
of further alternatives here. The example of the limit
cycle suggests that any asymptotic behavior other than
a fixed point will mean that q'Oi. i(q') will not approach
a constant in the limit of large q'.

x(i+r) =x(t) (3.54) I. Conclusions and Remarks
and

X(t+r) =X(~), (3.55)

where g is a constant giving the period of the limit
'

cycle. Generally the trajectories in the neighborhood of
a limit cycle are not closed. Instead they either approach
the cycle as t —+ ~, or they move away from the cycle
as t increases, in neither case closing on themselves.
There are general conditions on the functions fi and $2
which ensure the existence of a limit cycle without
determining ~ or the exact form of the cycle. ' For
instance, if one can 6nd an annulus with the property
that trajectories can go into the annulus but not out of
it (that is, not cross out of the outer ring nor cross
inside the inner ring of the annulus) then there is a
limit cycle contained in the annulus. The condition that

There are three basic results of this section. First, if
the asymptotic solution of the renormalization-group
equations for strong interactions is a fixed point, then
strong interactions will have broken scale invariance as
a symmetry. Second, if in addition there is a large but
6nite cutoff A. above which strong interactions cannot
be isolated from other interactions, the fixed point must
be infrared stable and there is a bootstrap condition
which determines renormalized coupling constants of
strong interactions. Third, if the asymptotic solution
of the renormalization-group equations is not a fixed
point, then q'oi, i(q') for e+-e annihilation will not be
constant for large q'; if there is a limit cycle in par-
ticular, then q'ai. i(q') will oscillate perpetually for large
q', with a fixed period if plotted vs lnq'.
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All these results are crucially dependent on the
assumption that functions such as f(m'/Xs, x) have a
nontrivial limit for m ~ 0. If instead P (m'/X', x) were to
go to zero as m —+ 0 for all x, the analysis given above
would collapse and the asymptotic limit of e~2 for X —+ ~
would be a straightforward function of e'. If in per-
turbation theory P(m'/X', x) were to contain logarithms
of m'/Xs it would be easy for the sum of the perturbation
series to approach zero as m —& 0, for example, if the
sum of the series gave something like

f(»»s'/X', ebs) =e1' exp/ —e1' in(X'/m') j (3.58)

(a more comphcated example is needed if one is to 6t
the known term of order ebs). This does not mean that
proving the existence of the zero-ma, ss limit for
f (»ass/Xs, x) to all orders in x is the crucial problem. The
crucial problem is to determine whether the physics of
a strongly coupled field theory is such that the results
obtained above are reasonable.

IV. BREAKDt'6 OF SCALE INVARIANCE

In Sec. III it was found that the 6xed-point solutions
of thc renormallzation-group cquRtlons foI' zclo mass
de6ne scale-invariant 6eld theories. For the speci6c
type of function P(0,x) discussed in Sec. III, there are
at least three distinct scale-invariant theories de6ned
by the 6xed points x~, x~, and x3. The purpose of this
section is to study the nature of scale-invariancc
breaking. One can break scale invariance in two ways.
One way is to let the mass be 6nite instead of zero. The
other way is to choose a solution e),' of the zero-mass
renormalization-group equations which is not equal to
a 6xed point. Then the variation of eq' with X breaks
scale invariance, as will be seen below. Both these
forms of scale-invariance breaking will be investigated.
in this section. In particular, we shall study amplitudes
at high momenta for which the scale-invariance
breaking is small and develop a perturbation method
for computing the terms which break scale invariance.

A theory of scale-invariancc breaking has been pro-
posed. elsewhere. " In this theory the nature of scale-
invariance-breaking corrections at large momenta is
determined by the scale dimensions of the terms in the
Lagrangian density which break scale invariance. The
interaction Lagrangian density associated. with the
renormalized charge eq should be R renormalized form
of the local product it&, (x)y„tt1(x)A1&(x); the interaction
Lagrangian density associated with the renormalized
mass should be a renormalized form of the product
$1(x)tt1(x). The problem of renormalizing composite
fields such as $1(x)y„f1(x)A1&(x) and showing that
these 6elds are connected with the renormalized cou-

pling constant and mass will not be discussed here. It
will simply be assumed that the part of the Lagrangian
density which determines the charge e), and the mass nz

involves two local interactions denoted 2,1(x) and
2 1(x), respectively.

Explicit calculations (based on the renormalization-
group equations) of scale-invariance-breaking correc-
tions will be compared with the general theory of Ref.
24. One result will be that the scale dimension of
Z,&, (x) is 4+2a„ in the scale-invariant theory defined
by the 6xed point x„.The constant ui is negative and
the constant as is positive, so the dimension of 2,1(x)
can bc either less than 4 or greater than 4 depending on
which fixed point one uses. It was pointed out in Rcf.
24 that interactions with dimension &4 act like non-
renormalizable interactions while interactions with
dimension &4 act like super-renormalizable interactions
or mass terms. (Interactions with dimension (4 were
called generalized mass terms in Ref. 24.) So the inter-
action 2,1(x) changes its character considerably when
one switches from the 6xed point x~ to the fixed point x2.

To discuss the dimension of 2 1(x) will require an
extension of the renormalization-group equations to
include a X-dependent mass parameter. " The result
will be to conclude that Z 1(x) could be either a
generalized mass term or a nonrenormalizable inter-
action Rt either si oI' x2, thc choice being determined by
detailed dynamics which are unknown at present.

A. Scale-Invariance Breaking through Nonconstant e),

To start with, scale-invariance breaking due to non-
constant eq will be considered. The mass m is taken to
be zero. Suppose that over some range of ), e~' is close
to the fixed point g„. As shown in Sec. IIID, thc
approximate form for e~' as long as eq' is close to x„ is

(4.1)

where c„ is an arbitrary small constant and a is given
by Eq. (3.31).Equation (4.1) neglects terms quadratic
in the difference e), —x„, i.e., terms of order c„.
Expansions will now be sought for sa)q, s2q), and
vacuum expectation values, also valid to 6rst order in
c . Given these expansions, one can construct scaling
laws for 6rst-order scale-invariance-breaking terms in
the vacuum expectation values.

S111ce ss1&,& =81 /81 LEq. (2.53)]& 011e llas

z„=Lx.+c.(X')"-]Lx.+ .X'"j-'
=I+(x.)-'c.

t
(~')'~ —~'"j. (4.2)

The equation for as'&, is Lcf. Eqs. (2."/3) and (2.50)]

(4 3)

with the boundary condition

(44)

"This extension was suggested by K. E. Kriksson, Nuovo
Ci1nento 30, 1423 (1963); see also M. Astaud and B. Jouvet
(Ref. 4).



The solution of this equation is

S2ili =exp o'(0»8i» )(X ) 2(&
V

Bo(0,x )

then to 6rst order in c

Axed at eg'.

T»» p (Ssl»»ss4»0»81 )
=s24"—"L1+c.(ra ' —g„-')]T„,.(sl, . . . ,s4)

+8 s"" ' " 'U„„'(sl, . . .,s4).
(4.6)

Equation (4.18) shows that the 6rst-order change in
T„,(sl, . . . ,s4,0,81') when 81'Wx is to renormalize the

(4 7) scale-invariant term T„„„(si,. . . ,s4) by the factor
f1+8 (r 42„'—x„')]and to add the term

8»» U»»Y»» (Sl» ' ' ' »S4)

T»»p (siX»s2X»s2X»s4X»0»8$ )
s2xls2xlT»»p(sl»s2»s2»s4»0»81 ) ~

Write
(4.10)

T„„„(sl,s2,si, s4) = T„„(si,s2,s2,s4,0,x„),

BT„„(sl,s2,s2,s4,0,x)
U»»p»»(si»s2»s2»s4) =

(4.11)

(4.12)

Then to first order in c„

T»»(psl»s2»s2»s4»0»8) 1—T»»p(»»sl»s2»s2»s)4

+8.U„,.(si,s2,si,s4) (4 13)

and similarly fol T»»p(siX». . . »«li»0»8), ).Eqilatloll (4.10)»
to first order in c, is

T„„„(siX,. . . ,s4X)+c„X2 "U„„~(sill,. . . ,s4»1)

=&"" 'L1+ -( .='—. ')(~""—1)]
&& T„„„(sl,. . . ,s4)+X"" '8.U„..(si, ,s4) (4.14)

For c„=0this gives the scaling law found in Sec. III C:

T...P.si, . . . ,l~s4) = l~'"-'T„„(sl,. . . ,s4) . (4.15)

The terms proportional to 8„ in Eq. (4.14) give the
following result. Let

U»»p»»(si»»s4) =
U»»p»» (sl» ~ »s4)

+(2. a ' x„')T„, (sl, . . . ,-s4)—. (-4.16)
Then

U„„'(Xsi,. . . ,ks4) =X'" "" 'U„, '(sl, . . . ,s4). (4.17)

One can now derive to order c„ the scaling law for
T„.(sl, . . . ,s4, 0,8i )wit2h X held fixed at X=1, i.e., 812

S2ll. exp(»r„ ln(X2/X")+ (2,8 /»2 )p.'~ —(X')""]}
=(~/l')'"{1+( -8./o. )Ll'"-(l ')'"]}. (4.8)

Consider now a typical vacuum expectation value, e.g.,

r„,(Sill, s2X,S2l~,s4li, 20/X, 8i2)

=~ '(~llT~, ( )~ .( )6( )0 ( )If'} (49)

(T„.is dimensionless so it depends only on dimension-
less variables, as indicated. ) Putting 442=0 and using
the renormalization relations, one has"

which obeys a separate scaling law. It is easily seen
that when the above analysis is generalized to an
arbitrary vacuum expectation value, there is a renor-
malization which is equivalent to a renormalization of
the 6elds:

A l„(S)—+ (1——2'8„X„')Al„(S), (4 19)

+8„(n
~
Tw,„(sl)A i,(S2)

Xg (.,)y (.)~. (y)l~l)d'y, (4.21)

where Lfrom Eq. (4.1)]812—x„has been replaced by 8

and the vacuum expectation value multiplying c„ is
computed in the unpertured (scale-invariant) theory.
Ultraviolet divergences could arise in the integral
owing to slngulaI'1tlcs when p =sy, &, s3, or s4 ) an
infrared divergence could occur for y —+ ~. It will be
assumed here that these divergences are absent or
unimportant. If so, the scaling properties of the integral
are determined by scale invariance. Write

W„„(sl,. . . ,s4,y)

The scale dimension of A~„ is 1; the scale dimension of

pl is —,
' —o (cf. Sec. III C); let the scale dimension of

oC I bc d . Then from scale lllvaI'lallcc

W„„(ssi,. . . ,sy) =s"" ' "'W„„(sl,. . . ,y) . (4.23)

Pl(s) ~ (1+-,'c„r.a.-'g l(s), (4.20)

and there is an extra term which always scales by an
extra factor s ""relative to the scale-invariant term.

Now consider the Lagrangian description of scale-
invariance breaking. "For convenience the subtraction
momentum X will be set equal to 1. Assume that
changing the coupling constant from x„ to e~' is equiva-
lent to adding a term (81'—x„)Z,l(s) to the Lagrangian
density, where Z,l(s) is a 6nite local field. Then the
term of 6rst order in c in T„, can be obtained from
lowest-order perturbation theory:

T»» 1( 1»» 4» 1 )—»» ( i»»S4)

'0 For convenience it is assumed that X=1 is included in the
range of ) for which eq2 x„.

"What follows. is a nonrigorous argument deriving the scale-
invariance breaking theory of Ref. 24 to first order.
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Hence the scaling behavior of the integral in Eq. (4.21)
is

d'y W„„(szi,. . . ,ss4,y)

=s' d'yW„, (szi, . . . ,ss4, sy')

=s"~ 's' ~ d'y'W„. (zi, . . .,s4,y') . (4.24)

So the prediction of the Lagrangian theory is that the
term of order c„ in T„„scales with an extra factor s' "'
relative to the scale-invariant term. There is no term
of order c„ in Eq. (4.21) which renormalizes the scale-
invariant term. However, we are using the unsubtracted
form of perturbation theory which means one has no
freedom to specify a normalization for the perturbed
fields. In the renormalization-group calculation a nor-
malization is specified for the perturbed fields, and to
achieve this normalization one must expect to add a
renormalization term to Eq. (4.21). Hence it is fair to
interpret the explicit c„ term in Eq. (4.21) as corre-
sponding to c„U„„„'(si,. . . ,s4). Comparing the scaling
law for the c„ term of Eq. (4.21) with the scaling law
for U„„', one must have

0i.e.)

4—d, = —2a,

d, =4+2a„.

(4.25)

(4.26)

In Ref. 24, the theory of scale-invariance breaking
was stated in the form of a simple rule. Applied to this
first-order calculation, the rule is that if the coefficient
c„of Z.i is assigned the dimensions (mass)' ~', then
the term of first order in c„will have the same dimen-
sions as the scale-invariant term. The calculation per-
formed here confirms this rule. In Ref. 24 this rule was
hedged in that the terms of first order (or higher) in c„
might involve logarithms that would spoil a strict
scaling law. Logarithms might occur if the integral in

Eq. (4.21) required subtractions. The renormalization-

group calculation indicates that no logarithms occur
in this case.

For the fixed point x», u» is negative and e),' goes
away from x» as X decreases. In this case the scale-
invariance breaking should become important for low
momenta, i.e., large distances. It is clear from the
scaling law (4.18) that the scale-invariance breaking
term does increase relative to the scale-invariant term
as the scale length s increases. The dimension of Z, i(z)
in this case is less than 4, which means that it is a
generalized mass term in the language of Ref. 24. In
contrast, for the fixed point x2, a2 is positive and the
departure from scale invariance increases as one goes
to large momenta or short distances. This is what one
expects of a nonrenormalizable interaction. In this case
Z, i(s) has dimension greater than 4, which means that

it is a nonrenormalizable interaction in the notation of
Ref. 24.

If Z, i(z) is the interaction associated with the con-
stant e» in the Lagrangian, a term proportional to
Z, i(z) should be present in the Lagrangian even for
ei=x„. But if Z, i(z) is a scale-invariance-breaking
interaction, it obviously cannot be present in the
Lagrangian of a scale-invariant theory. Evidently, the
part of the Lagrangian which describes the scale-
invariant theory must be distinguished from the term
proportional to Z.i(z) which describes departures of
e» from x„.This distinction must somehow arise in the
process of defining the renormalized field Z, i(z). It is
dificult to study this problem in the context of this
paper; it will not be discussed further.

In all the discussion of this paper it is assumed that
none of the a are zero. For a„ to be zero means f(0,x)
has a double root (at least) at x=x„and the discussion
of scale-invariance breaking is more complicated. Since
the root of f(0,x) at @=0is a double root, one has some
experience with the scale-invariance breaking accom-
panying a double root, from ordinary perturbation
theory. For general field theories a double root for
x /0 seems unlikely and will not be discussed further.

Bi(—X') =0 (4.27)

L8&(p') was defined in Eq. (2.4)]. This condition
replaces Eq. (2.19).

Because of the new condition for Zq, the fields A),„
and fi discussed below are different from the fields

defined in Sec. II; also they and the functions d, s, etc. ,
are functions of m&P/X' instead of m'/X'. In addition to
the function s(p'/X', mi'/X', e&P), it is convenient to
define a second function

s~(p /g mi/g ex)=[1—gi(P')] '

XD+(~i) '& (p')] (4 2g)

B. Breaking of Scale Invariance throggh Finite Mass

The next problem to be discussed is scale-invariance
breaking due to nonzero mass. To analyze this problem
it seems to be necessary to extend the renormalization
group by defining a A.-dependent mass m), and obtaining
a differential equation for m&. A method for doing this
has been suggested by Ericksson. "The idea is to replace
the subtraction condition on the mass shell for Zi(p)
(Eq. (2.19)] by a second condition at momentum
equal to X. This will mean essentially that the propa-
gator Si(p) reduces to (P —m&)

' when p'=X' so the
mass parameter m), is defined in terms of the behavior of

Si(p) for p X. The parameter mi is then used instead
of m to parametrize the mass dependence of amplitudes
renormalized at momentum P. The precise form of the
new subtraction condition for Zi(p) has been chosen
arbitrarily from many possibilities. The new subtraction
condition is
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The relation of Sq(p) to Zi is

Sy '(p) p —mg —Z), (p). (4 29)

since s~ has the form

ssr( —s, m&,2/) ', eq') = 1+0(eq') . (43g)

From this and the definitions of s and s~, one gets

Si, (p) =s(p'/) ' mi'/X' ei')

XLP—m&sir(P'/X' m&, '/X' ez')] '. (4.30)

From the renormalization conditions (2.20) and (4.27)
one gets

(4.31)ssr( —1 m)P/)' ei') =1.

m=missr(m'/ )' mi'/X' ey'). (4.32)

This is in general an implicit equation for m; in per-
turbation theory it has a unique solution for m in the
fOD11

m =mi+ (power series in ei'), (4.33)

where the power series begins with a term of order e~~.

The renormalization-group differential equations can
now be derived as in Sec. II. The equations for eq', 2;3)„

and z2&, are unchanged in form. However, f and e will
be diBerent functions than the functions in Sec. II
because of the di6erent renormalization conditions;
also they depend. on mi'/X' instead of m2/X'. In addi-
tion to these equations there is an equation for m&.

Since Si '(p) must be (s2ii ) ' times Si '(p), one has
in particular

Ls (p'/X' mi'/X' eg')] 'missr (p'/X' mi2/X' ei2)

= (s2ii.) 't s (p'/X", mi. '/X", ei')]-'
Xmi, s~(p'/X", 'm/iX", ~'e) (4.34.)

Using Eq. (2.52) for z»,i, setting p'= —X', and using
Eq. (4.31), one gets

mg=m), st(—lI.'/) ",mi'/X", ei'). (4.35)

)The normalization conditions for s(—1, mi'/A', ei')
and d( —1, mi'/) ', ei,') are that both equal 1, as before. ]

Given the values of eq and mq and the functional form
of s~ one can compute the physical mass m from the
condition that Sz(P) have a pole for P =m, namely, one
must have

The function ssr( —s, mi'/X', ei') is finite for mi -+ 0.
The factor mq 'B&, (p') in the definition of st does not
cause trouble in this limit, at least in perturbation
theory, because every graph contributing to Bz(p')
contains a factor m), . The reason for this is that if mq

is zero, the theory is p5 invariant and in a 75-invariant
theory, Zi(p) can only contain terms proportional to p.
Since ssr is 6nite for m&, —+ 0, the function &sr is also.

The basic equations of the renormalization group
now consist of two coupled equations. If one writes x
for e&P, y for mi/), and t for in'', the coupled equations
are

dx/dt = ipse (y', x),

dy/dt = yysr (y', x)

(4.39)

(4.40)

dx/dt =a (x x.), —

dy/dt =b„y,

where a„ is given by Eq. (3.31) and

b„=year (O,x„).

(4.41)

(4.42)

(4.43)

The function /sr has the subscript to distinguish it from
the function f of Secs. II and III. It is a di8erent
function because of the new subtraction method used
in its definition. However, for zero mass the two sub-
traction methods should define the same theory, so it
will be assumed that P~(0,x) =f(0,x). The differential
equations 'for x and y have the same form as the renor-
malization-group equations for two coupling-constant
theories in the absence of mass. However, because of
the factor y multiplying &sr, any root x„of iP~(O, x) =0
automatically defines a fixed point x =x„, y =0 of the
coupled equations. The coupled equations will be
discussed here only in~ the neighborhood of these fixed
points: A general discussion is beyond the scope of this
paper. Near the fixed point x=x„, y=0, Eqs. (4.39)
and (4.40) can be linearized, giving

Differentiate with respect to X', then put X"=X, and The general solution of the linearized equations is
perform some further manipulation; one then has

d(mi/X) mi mg'

d(ln), )' X X' )
(4.36)

(x—x„)=c„e'"'

y
—d e&n&

(4.44)

(4.45)

where where c„and d are arbitrary constants. Translated
back in terms of e),', etc., these equations read

fM ) ex

Bs,~(—s, mi, '/) ', ei,')= —0.5+ (4.37)

ei =x~+c~)i

m), =d„X'+" .
(4 46)

(4.47)

The first term, —0.5, comes from differentiating the
the factor X ' in mi/li. The second term is of order ei,'

The scale-invariance-breaking corrections to vacuum
expectation values are easily determined by the method
used previously. To order c„and d„, the amplitude T„„
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is found to satisfy the scaling law

T„„(ssi,. . . ,ssi, mi, ei2) =s'" '[1+c„(ra ' —x. ')]

+d s'" "" 'V„.(si, . . . ,s4), (4.48)
where

By
(4 49)

There are corresponding formulas for any vacuum
expectation value. If there is a term miZ„i(s) in the
Lagrangian density corresponding to the mass param-
eter mi, then Z i(s) has scale dimension 4+2b„; this
follows from the same argument that gave the dimen-
sion 4+2a„ for Z, i(s).

The constant b„ is known only for the fixed point
x=y=0 (call this ii=0) for which bo

———0.5; in this
case the interaction Z„i(s) is a generalized mass term.
For the nonzero fixed points such as x~ and x2 the sign
of b„ is not known, so 2„i(s) could be either a general-
ized mass term or a nonrenormalizable interaction. "

A peculiar situation arises if 2 i(s) is a nonrenormal-
izable interaction, i.e., if b„&0. First one notes that if
X=m then m), is of order nz. The reason is this. The
normalization condition on sir LEq. (4.31)j puts
sir( —1, mi'/X', ei') =1. Therefore, barring exceptional
circumstances, s~(1,mi, '/X', ei') should be of order 1.
If X=m, the mass condition is

m=m„s~(1,m„'/m', e„') . (4.50)

3' There is one example known where a mass term in perturba-
tion theory becomes nonrenormalizable in strong coupling. The
example is the Thirring model: a spinor 6eld in one space and one
time dimension interacting via the Fermi interaction. The
dimension of the mass term in the Thirring model is (1—) /2~)
(1+3 /2'), where X is the coupling constant Lthis dimension is
calculated in K. Wilson, Phys. Rev. D 2, 1473 (1970)j. For
X/2x (—

3 the dimension is greater than 2, which makes the mass
term nonrenormalizable (in a two-dimensional world interactions
with dimension &2 are nonrenormalizable).

With s~ of order 1, this equation requires m„ to be of
order re, i.e., mi/X is of order 1 for X=m. For large X,

mi/X must be small if finite mass corrections are to be
small for large X. This requires that nz&, /X decrease as X

increases. But in the vicinity of the fixed point (ei'~x„,
mi, /X~O), mi, /X decreases only if fi„ is negative. More
generally, whether or not e),' is near a fixed point,
mi'/X' decreases as X increases only if g~(mi'/X', eP) is
negative. There is no guarantee that fir(mi, '/X', ei') is
negative except when ei' is small. If m&P/X' does not
decrease as X increases, then the asymptotic solution of
Eqs. (4.39) and (4.40) for large t (i.e., large in'') will
not be one of the fixed points with y=0; instead it
would be a fixed point with y/0 or a limit cycle or
some other type of behavior. However, if the physical
mass is zero, then there is a special solution of the
renormalization-group equations with ns), =0 for all X

and the analysis of previous sections applies to this
special solution.

A Axed point x„with b„(0 will be called "mass
stable" while a fixed point with b )0 will be called
"mass unstable. " What we have shown is that only
the mass-stable fixed points among the x„will be
relevant to finite-mass theories. This conclusion can be
restated. ; the conclusion is that for 6nite-mass theories
the interaction 8 i(s) must be a generalized mass term;
if 2 i(s) is a nonrenormalizable interaction then only
the zero-mass theory exists. This con6rms the assump-
tions of Ref. 24. More generally, if there is a variable
parameter in the low-energy behavior of the field theory
(either a mass or a renormalized coupling constant),
the corresponding interaction Lagrangian density must
be a generalized mass term, not a nonrenormalizable
interaction. The case of an ordinary renormalizable
interaction (one with dimension four exactly) hopefully
does not occur for nontrivial fixed points such as x~,
x2, or x3, since it would seem unlikely that the constants
a„or b„would be exactly zero.

The analysis of this section shows that the question
of mass independence for large momenta is more com-
plicated than the perturbation-theory calculations indi-
cate. As long as e),' is small, so that perturbation theory
is valid, P~(mi'/X, ez') is approximately —0.5, which
means mi/X decreases with X and is small when X»m.
But when ez' is of order 1, fir may be positive in which
case mi/X increases with X, and if so, no mass inde-
pendence is possible for large P, .

V. RENORMALIZATION GROUP AND
STRONG INTERACTIONS

The purpose of this section is to discuss what form
the renormalization group should take for strong
interactions. It is assumed here that a renormalization
group exists for strong interactions. The discussion is
based on the work of Secs. III and IV. However, no
particular model (such as the g]uon modeP or the 0.

model') is assumed here.
Analysis of the renormalization group for electro-

dynamics (see Sec. III G) shows that the X-dependent
charge eq increases with X, eventually becoming of
order 1.' ' By this is meant that no matter how small
the renormalized charge e is, e), becomes of order some
fixed number independent of e if P is large enough. This
suggests that there is a cuto6 A beyond which radiative
corrections to strong interactions are too large to be
treated as a perturbation. So it will be assumed here
that the theory of strong interactions in isolation is
valid only below the cutoff A. For purposes of discussion
it will be assumed that electrodynamics, rather than
weak interactions or some other interaction, is the
cause of the cuto6.

It is evident from Sec. IV that including the mass
parameter ns), in the renormalization-group equations
makes the renormalization-group method more power-
ful; so it will be assumed here that the renormalization
group of strong interactions includes mass parameters
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as well as coupling constants. Furthermore, the equa-
tions of the renormalization group have the same form
for mass parameters as for coupling constants provided
one replaces mass parameters such as m~ by dimension-
less parameters such as mq/X. The parameters which
are distinguished in the renormalization-group equa-
tions are those which break an internal symmetry.
For example, mq/X is a symmetry-breaking parameter
in electrodynamics (it breaks p& symmetry), and as a
result if mq/X is zero for one value of X, it is zero for all
values of X. More generally, the renormalization group
respects the possible internal symmetries of a 6eld
theory in the sense that if the parameters which break
the symmetry are zero for one value of X, then these
parameters will remain zero for all values of X.

A solution of the renormalization-group equations for
strong interactions should consist of a set of symmetry-
preserving coupling constants g~q, g2q, . . . , g„), and a
set of symmetry-violating constants h&}„h~}„.. . , hl, q.
For the purposes of this discussion mass parameters
are divided by X and included among these "coupling
constants. "All coupling constants are to be dimension-
less. (Coupllllg collstallts of ally super-renolmallzable
interactions, such as a tf' interaction of a scalar field,
are also divided by X to make them dimensionless, and
then. included in the list. ) For purposes of discussion,
the symmetries of strong interactions will be assumed
to be P, C, T, and U(3) X U(3).33 Experiment, indicates
that the symmetry-violating pRI't of strong intcI'RctloIls
break U(3) XU(3), leaving P, C, T, isospin, and
strangeness intact; the theoretical discussion given
here will allow for more arbitrary types of symmetry
breaking. The number e of symmetry conserving con-
stants arid the number k of symmetry-violating con-
stants will not be specified. To write the renormalization-
group equations it is convenient to introduce an abstract
notation. I,et I'q be the point in an I-dimensional space
(Si) with coordinates (giq, g~q, . . . ,g q), and. let Qq be
the point in a k-dimensional space (S2) with coordi-
nates (hn„. . . ,hqq). Then the general form of the re-
normalization group equations is

dPi/d(ink') = Ti(P)„gg), (5.1)

dg~/d(»&') =T2(»,g),), (5 2)

where Ti(Pq, gq) is itself a point in Si and T~(P&„gq) is
a point in S2, i.e., T~ has e components and T2 has k
components. The point T~(Pq, gq) is zero when Q&, =0;
TI is completely unknown.

The renorrnalization group will be discussed as-
suming that the points Pq, Qq go to a fixed point of the
group when X becomes large compared to a typical
strong-interaction mass (i.e., for X))1 GeV). As ex-
plained in Sec. III H, experiments on e+-e annihilation

"The group U(3) g U(3) consists of SU(3) &SU(3) plus baryon
number and an axial baryon number. It is assumed here that axial
baryon number exists, although there is no experimental evidence
for it.

at large momentum transfers can probably distinguish
between 6xed-point asymptotic behavior and other
types of asymptotic behavior (such as a limit cycle).
Until further experimental or theoretical information is
available, it seems more sensible to discuss the 6xed
point than to try to discuss more general asymptotic
behavior; for example, one does not even have a classi-
6cation of the possible asymptotic forms for solutions
of more than two simultaneous nonlinear equations.
(See, however, Sec. VI.) It is commonly assumed that
U(3)XU(3) becomes an exact symmetry at small
distances, i.e., large X. Hence it will be assumed that
the fixed point is of the form

I'=I'f,
=0

FoI' Iy to bc R 6xcd point, one Inust hRvc

Ti(Pf,0) =0.

(5.3)

(5 4)

(5.5)

According to the discussion of Sec. III E, the 6xed
point should be infrared stable due to the presence of
the cutoff A.. The argument was that P~ Pf and Q—q

are likely to be of order 1 when X A. due to large
radiative corrections. Therefore Pi Pf and Q—i must
decrease as X decreases in order that I'q~I'f and
Qg 0 for 1 GeV/c«X&&A. But this is unlikely if the
linearized equations for Pq Pr and Q&,

—have solutions
which increase as X decreases. Unfortunately, this
analysis leads to a nonsensical result. If Q&, decreases
as X decreases, and. is small for 1 GeV/c«X, then Q&, will
be extremely small for X 1 GCV or less. But this
would mean that U(3) X U(3)-symmetry breaking
would be small at laboratory energies, whereas in fact
U(3) X U(3)-symmetry breaking is large at these
energies. It is therefore necessary to presume that there
are some U(3) XU(3)-symmetry-breaking parameters
which increase as X decreases. In particular one expects
there to be two parameters, say, h~y and h2y, which
break SU(3) XSU(3) symmetry according to the
Glashow-Weinberg (Gell-Mann, Dakes, and Renner)
theory. '4 We shall also assume there is a third param-
eter, hag, which preserves SU(3)XSU(3) but breaks
U(3) XU(3)."These three parameters should increase
as X decreases, becoming of order 1 between 100 MCV
and 1 GeV, where SU(3)XSU(3) and U(3)XU(3) are
strongly broken.

Since h~~, h2), and h3q are small for X))i GCV and
decreasing as X increases, they will be very small indeed
when X is of order A.. This is possible only if there are
no large radiative corrections to h~q, h2q, or h3), when

A.. It is hard to see how this can come about unless
these coupling constants also break an electrodynamic

3'S. Glashow and S, Keinberg, Phys. Rev. Letters 20, 224
(1968); M. Gell-Mann, R. J. Oak, es, and 3. Renner, Phys. Rev.
j'H, 2195 (1968)."S. Glashow, in Hadrons and Their Interactions, edited by
A. Zichichi (Academic, New Vork, 1968), pp. 102-103;K. Wilson
(Ref. 24); M. Gell-Mann (Ref. 7).
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symmetry. If they do break. a symmetry of electro-
dynamics, then electrodynamic corrections to h~~, etc. ,
will be of order h~),eq', etc. , instead of eq' and will not be
a problem. This means there must be a symmetry
common to electrodynamics and strong interactions
which is broken by the couplings h~~, h2~, and hay,' a
logical choice is axial baryon number since the usual
electrodynamic Lagrangian for strong interactions pre-
serves axial baryon number. This probably must be a
symmetry of weak interactions also in order that weak '

corrections to h~q, etc. , at large momenta not be large,
While the fixed point has to be infrared unstable with

respect to the couplings h~~, h2~, and h3q, it must be
infrared stable to symmetry-breaking parameters which
do get large radiative corrections for X h.. For example,
h4&, might break SU(3) XSU(3) without breaking axial
baryon number or other (electrodynamic+strong)
symmetries; then h4), will be la,rge for 'A A. and must
decrease as X decreases. Also, it seems likely that all
coupling constants that preserve the symmetries of
strong interactions, namely, the constants Pz, will have
large radiative corrections and therefore P~ must be
infrared stable to perturbations of Py about Pf. Since
the theory defined by the coupling constants (Pr,O) is
scale invariant (by the analysis of Sec. III C), this
means that the breaking of scale invariance at low
momenta is due entirely to couplings which also break
internal symmetries; in particular, all generalized mass
terms must break an internal symmetry. A generalized
mass term is any coupling which causes particles to
have 6nite mass rather than zero mass. It is interesting
to note that there are no weakly coupled scalar particles
in nature; scalar particles are the only kind of free
particles whose mass term does not break either an
internal or a gauge symmetry.

This discussion can be summarized by saying that
mass or symmetry-breaking terms must be "protected"
from large corrections at large momenta due to various
interactions (electromagnetic, weak, or strong). A
symmetry-breaking term, such as h&z, h2&, or ha&, is
protected if, in the renormalization-group equation for
hi&, h2y, or h3q, the right-hand side is proportional to
hjq, h2q, h3q or other small coupling constants even when
high-order strong, electromagnetic, or weak corrections
are taken into account. The mass terms for the electron
and muon and the weak boson, if any, must also be
protected. This requirement means that weak inter-
actions cannot be mediated by scalar particles. "

One basic mystery remains from this analysis,
namely, why the breaking of the a,xial baryon number is
small when P A; even if the mixing of electrodynamics
with strong interactions does not force the breaking to
be large, it is strange that it is small without being zero.

According to the analysis of Sec. III E, all the re-
normalized coupling constants of strong interactions

'6 This rules out the models of W. Kummer and G. Segrb, Nucl.
Phys. 64, 585 (1965) and N. Christ, Phys. Rev. 17'6, 2086 (1968).

could be computed by solving the renormalization-
group equations. This is no longer true. There is no
argument that can determine h~g, h2~, or h32 for X

GeV and the values of these constants for one value of
X must be determined from experiment. The renormal-
ization group can then be used to fix the values of h~~,

h~y, and hag for other values of X. If there are other
coupling constants which increase as X decreases, these
coupling constants must also be determined from experi-
ment. Such coupling constants will be small for X h.
and therefore must also be protected. This presumably
means these constants are also symmetry-breaking
terms. Hopefully, the dominant symmetry-breaking
terms are hj), h2&, and h», then other syminetry-
breaking terms, while surely present, are small for

1 GeV, and cannot increase further for X&(i GeV
because amplification ceases for X less than the hadron
masses (see Sec. III 3).

The renormalization group for strong interactions
contains mass terms and coupling constants for any
super-renormalizable interactions. Should it include
nonrenormalizable interactions) The answer is yes, for
several reasons. It was shown in Sec. IV that the inter-
action Lagrangian density Z.i(x) is a nonrenormalizable
interaction in the neighborhood of an infrared-stable
6xed point. This will also be true of the interactions
associated with the non-symmetry-breaking couplings

g~q
.g„y of strong interactions, since the fixed point

Pf must be infrared stable except for symmetry
breaking. So in eGect some nonrenormalizable inter-
actions are already present in the renormalization
group. Conversely, there is no reason to suppose that a
symmetry-breaking interaction which is nonrenormal-
izable in perturbation theory will stay nonrenormal-
izable near a fixed point with large coupling constants:
for example, the U(3)XU(3) breaking constant hay

might correspond to a nonrenormalizable interaction in
perturbation theory [especially in the gluon model,
where in perturbation theory there are no renormal-
izable interactions or mass terms which break U(3)
XU(3) without breaking SU(3)XSU(3) also]. So it
may be essential to include interactions which are non-
renormalizable in perturbation theory to find all the
generalized mass terms near a strongly intera, cting fixed

point. Furthermore, there has never been any funda-
mental physical distinction between nonrenormalizable
interactions and renormalizable ones, so one would like
to treat them on an equal footing. Finally, there is a
model with a renormalization group which can be
solved rigorously in strong coupling which necessarily
includes nonrenormalizable interactions. '~

If the renormalization group for strong interactions
includes nonrenormalizable couplings, it will be dificult
to construct it as a simple extension of the Gell-Mann-
Low group, requiring that one start from scratch. It
will also be considerably more complicated than the

'7 K. Wilson, Phys. Rev. D 2, 1438 (1970).
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Gell-Mann —Low group, since there are an infinite
number of nonrenormalizable interactions. Whether the
conclusions of this paper actually apply to such a group
remains to be seen; but surely these conclusions are an
indication of the kind of physics that can come out of
such a group. The inclusion of nonrenormalizable
interactions in the renormalization-group equations
does rot change the conclusion that scale-invariance
breaking in strong interactions is due only to generalized
mass terms, provided that the asymptotic solution of
the renormalization group is a fixed point.

VI. XI=2 RULE

It has been shown elsewhere'4 that one can under-
stand the lU = ~~ rule in nonleptonic weak interactions
given that strong interactions are scale invariant at
short distances and. that dimensions of local fields in
strong interactions are not as predicted from canonical
Geld theory. The purpose of this section is to show that
if the strong interactions have a renormalization group,
then the M= —,'rule can be understood without as-
suming broken scale invariance. In other words, the
AJ=2' rule can be understood regardless of what kind
of asymptotic solution the renormalization-group
equations have (iixed point, limit cycle, or otherwise).

The Grst part of the analysis of Ref. 24 will be
assumed here. According- to this analysis, the current-
current Lagrangian for nonleptonic weak interactions
can be approximated by the form

(6.1)

where the fields 0„(x) are a set of local 6elds, and the
G are constants. This form assumes that the weak
boson mass or weak interaction cutoff is of order M,
where M)&(1 GeV). The fields 0„(x) are assumed to
belong to irreducible representations of SU(3) XSU(3).

Before discussing the consequences of the renormal-
ization group for 2 (x), we shall try to explain what is
meant by "understanding" the AI=~ rule. What will
be argued in the following is that Z„(x) is dominated
by a single field out of the set {0„(x)),say, 0 (x). The
argument below gives no clue as to which Geld domi-
nates. This means that Z„(x), to a good approximation,
belongs to a single irreducible representation of SU(3)
XSU(3), despite the fact that the current-current
product contains several representations of SU(3)
XSU(3). However, one cannot determine theoretically
which representation of SU(3) XSU(3) will dominate.
The current-current product contains the following
representations of SU(3) XSU(3): (1,1); (8,1)Q+(1,8);
(27,1)Q+(1,27); (10,1)Q+(1&10); (10,1)Q+(1,10); and
(8,8). In addition, since SU(3) XSU(3) is not an exact
symmetry, there is some leakage into other represen-
tations as well.

The theoretical analysis given below predicts that
one SU(3)XSU(3) representation will dominate in

dG ),/d(ink') =G„iU (I'),), (6.2)

where Eq is the set of symmetry-conserving coupling

Z„(x), and the dominance is by a power of M over all
other representations. One has to look to experiment to
find out which SU(3)XSU(3) representation domi-
nates. It is obvious from the E-decay amplitudes that
the dominant SU(3)XSU(3) representation contains
no LU = ~3 term. The factor 20 that separates the 5I=—,

'
amplitude in E decay from the M =—,

' amplitude is too
large to be accounted for credibly without having
M=-,' dominance in the effective Lagrangian Z„(x).
This limits the possible dominant SU(3) XSU(3) rep-
resentations to 2: (8,1)Q+(1,8) and (3,3)Q+(3,3). LThe
representation (8,1)Q+(1,8) seems more likely since it
does not require leakage in order to occur.]

One uses E decay to choose the dominant SU(3)
XSU(3) representation. The theoretical argument then
predicts the following otherwise mysterious facts: (1)
the large dominance of M =~ over M=2 in E decay;
this is possible because the dominance is by a power of
3f, and this factor should be large provided that M is
large compared to strong interaction masses (i.e.,
M)&1 GeV); (2) large AI=2i dominance in baryon
nonleptonic decays, i.e., universal lU=-,' dominance.

The theoretical analysis is the following. In a renor-
malization-group analysis of 2„, it is characterized by
a set of P-dependent coupling constants G q. When A.

is of order M these coupling constants are the same size
for different n. In particular the coupling constants
corresponding to different SU(3) XSU(3) represen-
tations have the same order of magnitude. This is
because there is nothing peculiar about two currents
separated by a distance M ' if it is in a matrix element
where a/l fields are separated by of order M '. But the
constants G„i for X M measure the size of 2 (x) when
sandwiched between fields separated by 3f '. Thus
the various SU(3) XSU(3) representations should have
roughly the same strength in Z„(x) when X M. The
coupling constants which determine decay rates are the
G z with X&1 GeU. These must be determined by
solving the renormalization-group equations between
X=1 GeU and X=M. But as shown in Sec. III B, there
can be large amplification or deamplification effects in
this interval (assuming 3II&)1 GeV), and these effects
can be different for different SU(3) XSU(3) represen-
tations.

To be more precise, consider the form of the renor-
malization-group equations for G„q. Assume for con-
venience that each e refers to a different SU (3)XSU(3)
representation. The equations can be linearized with
respect to the G ~,' the symmetry-violating constants
h i will be neglected (in the region above 1 GeV which
is important for producing amplification or deampliG-
cation the h„), are small and will not change the analysis
appreciably). Then the renormalization-group equations
have the form
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constants for momentum ). The U„arc unknown
functions of I'q. There are no cross terms relating
dG x/d(ink') to Gn, with l/e because of symmetry
requirements. The solution of these equations is

Equivalently, one can write

G„g=(X'/M') ~&"G ~,
where e (X) is

{6A)

n„(X)=(ink' —ln3f') ' 2U„(P), )(X') 'dV. (6.5)

VII. FINAL REMARKS

The application of the renormalization group to
strong interactions leads to profound. results; for
example, the possibility that the short-distance behavior
of strong interactions is described by a limit cycle. It is
disturbing, therefore, that the renormalization-group
results derive from a not-very-profound. property of
perturbation theory, namely, that renormalized amph-
tudes renormalized by the Gell-Mann —Low method.
have a zero-mass limit. Furthermore, the renormal-
ization group is not involved in the standard procedures
for solving 6eld theory, yet the renormalization-group
analysis makes important predictions about the nature
of the solutions of field theory. One would be happier
about these predictions if the renormalization group

If U were a constant independent of X', then n„(X)
wouM be equal to U„.The constant n P.) is presumably
of order I, in the absence of more precise information,
but should be di6erent for diferent N. If the asymptotic
solution of the renormalization-group equations is a
fixed point, then U would be constant for P')&i GcV
where Pg ls near thc Axed point. In this case n„would
be related to the dimension of the 6eld 0„;as long as
the fields O„have different dimensions, o. would also
be diRerent for different m. Even if the renormalization
group does not have 6xed-point asymptotic behavior,
there is an exponent n (1 GeV) which defines an
"effective dimension" for the 6elds O„over the interval
1 GeV(X'(M. The exponents n„(1 GeV) determine
the amount of amplification or deamplification that
results from going from G„~ to G„&, with A, 1 GCV. As
long as the a„are different for diferent e, the low-

energy coupling constants G„q with X 1 GeV will

di6er by powers of M for diRerent e. This ensures the
dominance of one SU(3) &(SU(3) representation in the
phenomenological Lagrangian for nonleptonic decays.

The existence of the rU=-,' rule experimentally is
encouragement to believe that a renormalization group
does exist for strong interactions, since all other ex-
planations of the hI= ~~ rule are unsatisfactory for one
reason or another. ""

itself were a more essential part of the structure of field
theory than it appears to be from perturbation theory.

There is a model 6eld theory described elsewhere'~
which suggests that the renormalization group is an
essential part of understanding a strongly coupled. field
theory. The model is a truncated version of the charged
scalar theory of pions coupled to a fixed source. In the
truncated, version of this theory the x mesons are
1cstllctcd to dlscrctc wave packet states ccntclcd on thc
source; the eth state has mean momentum mA", where
m is the pion mass and A. is a large number. The renor-
malization group for the model is defined as part of
solving the model as an expansion in A. '. The renormal-
ization group of the model has the following properties:

(1) The renormalization group is defined before t.he
solution of the theory is known.

(2) The renormalization-group equations of the
model involve coupling constants of all possible non-
renormalizable interactions in the model.

(3) There is no way (known to the author, at least)
of obtaining a complete solution of the model, except
by solving the renormalization-group equations.

The author suspects these three properties will also
be true of strongly interacting relativistic 6elds. This
is because the reason for the importance of the renor-
malization group in the model is that it has an infinite
number of disparate scales of energy, namely, the energy
scales m, rnA, , mA.', etc. The function of the renormal-
ization-group transformation is to solve the part of the
Hamiltonian involving energies of one scale, say, mA,
assuming that parts of the Hamiltonian with energies
&&mA." have already been solved. In order to solve the
indnitc number of energy scales which exceed energies
of practical interest, one must iterate the renormal-
ization-group transformation an infinite number of times,
thus making asymptotic behavior of this transforma-
tion of crucial importance in solving the model. (I'or
details, see Ref. 37.) All relativistic field. theories also
have this inhnite sequence of energy scales; they arise
due to the possibility of creating particles of any
energy from nz to ~. The problem in relativistic theory
is that one does not have only the discrete energy
scales m, mA. , etc. ; one ha, s all energies in between these
values, so a perturbation expansion in A, ' is impossible
for relativistic theories. This does not mean one does
not have disparate energy scales present. In the model,
one can only solve one order of magnitude of energy at
a time; it is hard to see how one can do more than this
in a relativistic theory. So in a relativistic theory one
should also look for a renormahzation-group trans-
formation which solves one order of magnitude of
energies in the Hamiltonian. """

"A rather similar approach was suggested many years ago by
I". J. Dyson, Proc. Roy. Soc. (London) A20V, 395 (1951).'"Note added farl, proof. Such a transformation has recently been
obtained from qualitative arguments; see K. VVilson, Cornell
University I aboratory of Nuclear Studies Report No. CLNS-142
(unpublished).
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This discussion will not be pursued here; its purpose
is only to emphasize that the next step after reading
this paper is to study the model of Ref. 37.
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APPENDIX: REVIEW OF GELL-MANN-LOW
THEORY

There are many reasons why the Gell-Mann-, Low
theory' is hard to understand. But perhaps the most
puzzling feature of it is that the reasoning and assump-
tions which led Gell-Mann and Low to formulate the
diGerential equations of the renormalization group seem
totally irrelevant to the conclusions one derives from
the diGerential equations. In Gell-Mann and Low's

paper, the motivation for setting up the renormalization
group was the observation that while the renormalized
photon propagator d, (k'/m', e') is logarithmically divre-
gent when eP —+ 0, the cut-o6 but unrenormalized
Feynman graphs for the propagator are not divergent
in this limit (at least in low orders). Gell-Mann and
Low therefore propose a generalization of the usual
renormalization procedure which is not divergent in
low orders when m'~ 0; they then discuss properties
of their renormalized theory which leads them to derive
the differential equation (1.2). One s reaction to going
through this analysis is that one is looking at rather
trivial and technical aspects of renormalized per-
turbation theory which cannot be the basis for any
very basic results. In the author's opinion the analysis
of Gell-Mann and Low is in fact dealing with technical
aspects of field theory, but by doing so they have found
an equation which embodies very fundamental proper-
ties of quantum field theory. New ideas are often dis-
covered for irrelevant reasons, so this opinion is not
unreasonable. Also, perturbation theory is the one
approximation method which can be computed without
any understanding whatsoever of the equations one is
solving by perturbation theory. What this means is
that while qualitative features of the original equations
will be rejected in qualitative features of its per-
.turbation expansion, to understand these qualitative
features one has to study the original equations and
not just their perturbation expansion. So perhaps one
should expect that a derivation of the renormalization-
group equations from perturbation theory will not be
very illuminating.

The Gell-Mann —Low theory will now be reviewed,
much in the manner that Gell-Mann and Low pre-

I(k')~-', . ln
~

k'/m'
~

. (A2)

In the limit m ~ 0, I(k ) is logarithmically divergent.
Gell-Mann and Low point out that if one looks instead
at the unrenormalized but cut-off vacuum polarization
diagram, it does not diverge as m —+ Q. It is worth
showing this in a way that is generalized easily to
higher-order diagrams. A cut-off version of the graph
gives a function 1Iq„.(k):

M„,(k)
(p+m) y„(p —0+m)= —28 Tl

(p' —m'+ie) [(p—k)' —m '+ie)

A
(A3)

(p' —A'+ie) L(p —k)' —A'+ie]

where J~ is shorthand for (2s) 'J'd'p and A is the
cuto8.4'

It is convenient to consider spacelike k and choose a
Lorentz frame in which the time component k0 is zero.
In this frame, one can rotate the contour of integration
in p& from the real axis to the imaginary axis (no singu-
larities of the integrand are crossed if the rotation is
counterclockwise). This means one replaces pe by ip4,
where p4 is real. The denominator of the integrand now
has the form

(pe+@@)t (p k)~+yg2](p2+A&)$(p k)2/Aq

where P' now means P'+P42, and likewise for (P—k)'
(i.e., one has a Euclidean metric instead of a Lorentz
metric).

With cutouts present the integral has no ultraviolet
divergences, so the only way it can diverge is through
vanishing denominators. If eP is zero the denominators
p' and (p —k)' can vanish. Since the metric is Euclidean,
p' can vanish only if all four components of p vanish.
Hence the integral is divergent only if the integrand is

"See Ref. 1.
40 See Ref. 4, p. 399.
4 Por simplicity a non-gauge-invariant cutoff is used in

Eq. (A3).

sented it. The only major change is not to use Ward's
method of renormalization' as a basis for modifying
the usual renormalization program. The author has also
benefited from the review of the theory in Bogoliubov
and Shirkov'; however, they provide very little moti-
vation for the calculations they describe.

Consider lowest-order vacuum polarization. If one
computes this graph and renormalizes it in the con-
ventional fashion it gives a contribution to vacuum
polarization, denoted II,„„(k) (k is the photon momen-
tum), which is

II.„.(k) = (e'/4s') (g„„k' k„k—„)I(k') . (A1)

The exact form of I(k') is given in Bogoliubov and
Shirkov. 4e If m'«k', I(k') is approximately
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as singular as p
4 for p —&0 or as (p —k) 4 when

(p —k) —+ 0, which is not the case.
Even if- k is zero, so the denominator behaves as

(p')' for p —+ 0, the integral does not diverge because
there are two powers of p from the numerator when k
and m are both zero.

Thy then does the renormalized graph diverge for
ns —+0? The reason lies in the way one defines the
renormalized function II,„,(k). The function Iig„„(k)
contains terms proportional to g„„, g„„k', and k„k„,
which are cutoff dependent and must be subtracted in
order to give a finite result. The customary procedure
is to subtract the expansion in k of Ila„„(k) to order k',
namely, to de6ne

II,„„(k)=Ilg„„(k)—Iig„„(0)—k k'Ilg„„,.,(0), (A4)

where

II~„„„.(k) =
O'Ila„„(k)

Bk Bk
(A5)

With this form of subtraction, II,„„(k) is of order k4

when k ~ 0; this means that the radiative correction
to the photon propagator, which is proportional to
(k') 'II,„„(k), is finite as k —+ 0. Hence the pole of the
exact photon propagator is the same as the pole term
in the free propagator.

The divergence for m —+ 0 in the renormalized
vacuum polarization comes from the subtraction
Ilq„„,s, (k). One can see that differentiating Iis„„(k)
twice with respect to k and then setting k =0 makes the
integral in Eq. (A3) diverge: Each differentiation
makes the integrand more singular by one power of p
at p=0, and hence the integrand for Ilq„.,s, (0) behaves
as p

4 when m=0, causing a divergence.
Low-order diagrams for the electron propagator and

the vertex function show a similar feature, namely, that
the unrenormalized but cut-off Feynman integrals are
6nite for zero mass. One shows these results using the
same method d.escribed above for the vacuum polar-
ization graph. To get a divergence requires that several
denominators vanish simultalieously and for low-order

graphs it is trivial to check that this cannot happen.
In the case of the vertex function, one needs some
nonzero external momenta to prevent too many
denominators from vanishing simultaneously (and
likewise for four-point functions, five-point functions,
etc.). In other words the external momenta provide an
infrared cutoff for vertex-function diagrams. This was
noted. by Gell-Mann and Low. Also one must treat
specially graphs with self-energy corrections on internal
lines. Otherwise one can get a string of propagators
depending on a single momentum p, say, and all
diverging when p —+ 0. One can sum up the self-energy
corrections to internal lines to give exact propagators;
an exact propagator has at worst a simple pole when
p' ~ 0. However, the condition for an exact propagator
to be singular at momentum zero is that the physical

I(k') = I (k' A.') —I(0,h.') . (A7)

The singularity can also be removed by subtracting
I( V, h)) from I(k',h.'), whe—re li is arbitrary. (The
subtraction. is made at a spacelike momentum because

I W. Pauli aud F. Villars, Rev. Mod. Phys. 21, 434 (1949).

mass of the electron be zero, not that the bare mass of
the electron be zero. This is why the problem of infrared
divergences arises when the physical electron mass is
zero and not necessarily when the bare mass of the
electron is zero.

It is not trivial to test all higher-order graphs for
divergences at zero mass, because there are so many
d.iagrams to be checked.

A similar analysis can be made for the electron
propagator with 6nite mass. There are infrared diver-
gences due to the photon mass being zero in the renor-
malized electron propagator. However, unrenormalized
but cut-off diagrams of low order do not show this
divergence either. One shows this by considering the
electron propagator with timelike momentum p in the
rest frame of p. If

~ ps~ &m, one can again rotate con-
tours of integration so that internal momenta are in a
Euclidean metric. Consider an internal electron line in
an electron self-energy graph carrying momentum

p —k, where k is an internal momentum. After the
rotation, the propagator for the line has the form

[yp(p0 ik4)—+y @+md

X( 2ips—k4 k4' —Ir' —(m ——ps) (m+ps) j '.
The propagator diverges if and only if ps

——m and all
four components of k vanish. To produce a divergent
integral requires several denominators to vanish simul-

taneously; to produce such a divergence in an electron
self-energy graph, one must differentiate at least once
with respect to ps and then put ps ——m. This is in fact
done as part of the conventional renormalization pro-
cedure for the electron propagator (see below), but if
one does not renormalize the low-order graphs for the
electron self-energy, they are hnite for zero photon
mass.

Since the zero-mass singularities of amplitudes seem
to come in from the subtractions of the conventional
renormalization program, Gell-Mann and Low propose
that one set up an alternative method of renormaliza-
tion which will not introduce such singularities. The
basic idea can be illustrated with lowest-order vacuum
polarization. Suppose the unrenormalized but cut-off
vacuum polarization Ila„„(k) is defined using Pauli-
Villars regularization"; then Iia„„(k) has the form

IIg„,(k) = (e'/4a') (g„„ks—k„k„)I(k',As), (A6)

where I(k',h.') will not be written down explicitly here.
The cutoff dependence in I(k', A.') is in a constant
independent of k', and by custom it is removed by
defining the renormalized function I(k') as



one wants the subtraction to be real; see below. ) So
one can de6ne a whole set of possible renormalized
functions Ii (k') by

I), (k') =I(k',A') —I(—X', h.') . (AS)

Ig (k') =I(k') —I(—X') . (A 10)

'3 This formula assumes the kee propagator is in the I eynman
gauge, i.e., has no k„k„ term.

The function I(k' A') is finite for m ~ 0 provided k' is
nonzero. If k'=0 then I is proportional to a second
derivative of IIq„„(k) with respect to k, which diverges
logarithmically for te-+ 0. This means that Iq{k') is
finite for ns —+ 0 if P and k' are held fixed and neither is
zero. So in summary I(k') diverges for m~ 0 for any
value of k' (except k'=0), whereas Iq(k')

~ 0 is 6nite
for k'&0 but diverges for the special value k'=0.

In general the proposal of Gell-Mann and Low is that
when making subtractions to remove divergences from
the unrenormalized theory, these subtractions should
be made at a subtraction momentum X, rather than at
momentum 0 or at the electron mass ns. As a result one
gets, in low orders at least, amplitudes which are 6nite
at zero electron mass except for special values of the
external momenta. The photon propagator of the zero-
mass theory will not have just a simple pole singularity
for k=0: It will have logarithmic singularities multi-
plying the pole. The same is true of the electron
propagator on the mass shell. These results are no
surprise because the same is true of the electron
propagator of the finite-mass theory, due to photon
infrared divergences.

The renormalization procedure with subtractions
made at a momentum X must obey the same restrictions
as conventional renormalization. That is, the renor-
malized theory is allowed to differ only in the following
respects from the unrenormalized cut-OG theory:

(a) The renormalized electron and photon fields can
diGer from the unrenormalized fields by renormalization
constants.

(b) The renormalized theory can be repararnetrized
in terms of a phenomenologically defined coupling
constant and mass in place of the bare coupling constant
and bare mass.

(c) One can make gauge transformations at will; a
gauge transformation is accomplished by adding a term
proportional to k„k, to the free-photon propagator.

The substitution of Ii(k') for I(k') is equivalent to a
rcnormalization Rnd R chRngc of gauge. To scc this one
must compare the photon propagators for the two cases.
The standard renormalized propagator to order e' is"

(k) =(k') 'L —g +(~'/«)(k') '

X (k„k„—g„,k')I(k')). (A9)

The function Iq(k') may be written

One can replace e'g„„(k~) ' by —e'D,„„(k), since the
di8erence of these two expressions is of order e', which
is being neglected anyway. So one has, neglecting terms
of order e',

Dy„,(k) =zg,D,„„(k)—(e'/4n. ) (k') 'k„k„I(—X'), (A12)

where

zg, = 1—(e'/«) I(—X') . (A13)

The remaining k„k„ term can be absorbed into a change
of gauge of the conventionally renormalized propagator.
If one adds —(e'/«)(k') 'k„k„I(.—X') to the free

propagator of the conventional theory, then the com-

plete propagator of the conventional theory is D,„„'(k)
with

D".'(k) = (k') '{—g"—(~'/4~)g"I(k')
+(e'/4z)k„k„(k') —'I I(k') —I(—)8))) {A14)

Rnd

D),„„(k)=zagD.„,'(k), (A15)

ncglcctlng terms of order e .
Having to make a change of gauge when comparing

the Gell-Mann —Low propagator with the conventional
propagator is a nuisance. To simplify this problem,
Gell-Mann and Low choose the gauge of the free
propagator such that the exact propagator is in the
Feynman gauge no matter which renormalization pro-
cedure is used. The Gell-Mann —Low prescription means
that the exact propagator D,„„(k) to order e~ is

D" (k) = (k') 'C —g"—(&'/«')g .I(k')) (A16)

and the corresponding free propagator is

(k')-'L —g„,—(e'/4n') (k')-'k k I(k')).

The propagator Dq„„(k) is zg,D.„„(k) and the corre-
spondlllg fI'cc propRgRtol ls

(k') 'L —
g

—(e'/4z') (k') 'k k I),(k'))

Gell-Mann and Low calculate all Feynman graphs
using the exact propagator for internal lines instead of
the free propagator. As a result it is of no importance
in practice that the free propagator undergoes a gauge
change when the renormalization method is changed.
Furthermore, to compute the exact propagator one
computes only the g„„term in vacuum polarization. In
contrast, Bogoliubov and Shirkov do not allow the free
propagator to depend on e'; instead they work mainly
in the Landau gauge, or else make a change of gauge as
the renormalization method is changed. Bogoliubov

Hence the renormalized propagator Bq„„(k) of Gell-
Mann and Low is

D,„„(k)=D.„„(k)—(a/4~) (k')-'

y (k„k„—g„„k')I(—V). (A11)
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and Shirkov claim that the Gell-Mann —Low treatment
is wrong; I see nothing wrong with it and will use the
Gell-Mann —Low approach in the following.

The subtraction momentum P can be chosen arbi-
trarily. However, the renormalized theory will have an
apparently nontrivial dependence on A.. Nevertheless,
the physical consequences of the theory must be inde-
pendent of X. The transformations which connect the

renormalized theories with different values of A are the
renormalization-group transformations. They are dis-
cussed in Sec. II.

The above discussion should make clear the ideas
involved in generalizing the usual renormalization
procedure such that subtractions are made at a mo-
mentum A rather than on the photon or electron mass
shell.
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We discuss the renormalization problem for chirally invariant Lagrangians constructed from the pion
isovector helds alone. We hnd that S-matrix elements have ultraviolet divergences even after the damping
from resummation has been effected. The counterterms necessary to remove such divergences are shown to
modify the original current commutation relations; it is not possible that these divergences cancel amongst
themselves. We conclude that the current commutation relations are inconsistent with the Lagrangian
formulation, unless they are changed or further particles are introduced.

I. INTRODUCTION
'N this paper, we are interested in calculating higher-

- - order corrections for scattering amplitudes arising
from chirally invariant interactions. Physical results for
such interactions have so far been calculated in the tree-
graph approximation. Attempts have been made re-
cently to extend this to include closed loops for non-
polynomial Lagrangians without derivative interac-
tions. There are two main difhculties in such problems,
which are that the perturbation series in the minor
coupling constants have in general zero radius of con-
vergence, and that there are ultraviolet divergences of
arbitrarily high order due to the highly unrenormalizable
character of the interaction. The first of these has been
tackled by various resummation techniques. " The
second has been satisfactorily solved by addition of a
suitable number (sometimes infinite) of counterterms in

the Lagrangian. ' 4 There has been a start on extending
this discussion to the more interesting case of chirally
invariant Lagrangians. ' This discussion has only been
given up to second order in the major coupling constant.
We wish here to extend it to all orders.

In Sec. II we set up the formalism for calculating S-
matrix elements to each order in the major coupling

' G. V. Ehmov, CERN Report No. Th. 1087, 1969
(unpublished}.' R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. l87',
1999 (1969).' B. W. Keck and J. G. Taylor, Proc. Phys. Soc. (London) (to
be published).

4R. Delbourgo, K. Koller, and A. Salam, Imperial College
Report No. ICTP/69/10, 1970 (unpublished).' A. P. Hunt, K. Koller, and Q. Shah, Phys. Rev. D 3, 1327
(1971).

constant, by means of an extension of the concept of
skeleton diagrams. ' We then proceed, in Sec. III, to de-
termine the over-all degree of ultraviolet divergence of
the resulting amplitudes; we do this in coordinate
space, though our results are the same as those obtained
by using momentum-space methods. ' In order to remove
the divergences, we find it essential to add counter-
terms; it is not possible that the divergences are damped
out by our resumrnation techniques. In Sec. IV we show
that addition of chirally invariant counterterms de-
stroys the current algebras. Since these were the original
reason for setting up the Lagrangians, it would seem
that an alternative to subtraction techniques is re-
quired. In Sec. V we investigate if it is possible that the
ultraviolet divergences cancel among themselves. We
find that this is not possible with mesons alone. We
conclude with a discussion in Sec. VI of the implications
of this for the general program of obtaining a Lagrangian
realization of current algebras.

II. CALCULATION OF S-MATRIX ELEMENTS

We consider the pions alone. ee= (w', e',s') are the
6elds and the interaction Lagrangian is

@int=sfay(es)t)p7r cjpir )

where f s belongs to a certain class of (nonpolynomial)
functions such that I agrangians corresponding to differ-
ent functions are related by point transformations of
the fields. '

' See, e.g., K. J. Barnes and C. J. Isham, Nucl. Phys. 815, 333
(1970).


