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In6nity Suppression in Gravity-Modi6ed Quantum Electrodynamics
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Computations of gravity-modified quantum electrodynamics are performed using nonpolynominal
Lagrangian Geld-theory techniques. The inverse of the gravitational constant appears as an effective cutoff
mass, and, in particular, it is shown that to order e the electron and photon self-energies are finite. The
cutoB can be interpreted as if the electron had an intrinsic radius equal to its Schwarzschild radius. A cen-
tral feature is the construction of the tensor gravity superpropagator.

I. INTRODUCTION
' 'T has been conjectured in the past that the universal
i - and nonlinear coupling of gravitation to matter may
provide a natural mechanism for the damping of ultra-
violet ininities in field theory. ' In a recent Letter we
revived this conjecture and pointed out that the newly
developed techniques for computing with nonpoly-
nomial Lagrangians would lend themselves to testing it.
It is the purpose of this paper to show by actual com-
putations to second order in the electromagnetic cou-
pling that the conjectured damping indeed happens in
gravity-modified electrodynamics. Our results are
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where ~ (the square root of 16m times the Newtonian
constant G) equals 0.5&&10 '8 GeV '. These results are
of interest because in spite of the extreme smallness of
the gravitational constant ~, the values obtained for
8m/m and 8e/e are a reasonable order of magnitude. '4
It is amusing that the effective cutoR appears to come
at a length which equals the Schwarzschild radius of
the electron E,=2m, 'G (measured in units of m, ').
As pointed out recently, 4 it seems not unreasonable to
hope that when higher-order terms in the effective
perturbation parameter min(~m)' are included, one
will 6nd, for example, that nearly all of the electron's
mass can be explained as electromagnetic (8m/m=1).

This paper is in the nature of a report on how these
* International Centre for Theoretical Physics, Trieste, Italy,

and Imperial College, London, England.' See, for example, S. Deser, in Proceedings of the Symposium
on the Last Decade in Particle Theory, Center for Particle Theory,
University of Texas, Austin, 1970 (unpublished).' R. Delbourgo, Abdus Salam, and J. Strathdee, Nuovo
Cimento Letters 2, 354 (1969).' Similar results have been obtained by F. Hoyle and V. Narlikar
I Ann. Phys. (¹V.) (to be published) j using different techniques,
and by I. B. Khriplovich (Yadern. Fix. 3, 575 (1966) I Soviet J.
Nucl. Phys. 3, 415 (1966)j) using an integral equation for the
mass operator. We are indebted to H. Pegis for bringing this work
to our attention. See also B. S. DeWitt, Phys. Rev. Letters 13,
114 (1964).

'Abdus Salam and J. Strathdee, Nuovo Cimento Letters 4,
101 (1970).

results were arrived at and is planned as follows. In
Sec. II we review Einstein's gravity theory —particu-
larly as applied to electrons —and state the Feynman
rules for graviton Lagrangians. The ininity-suppression
mechanism is presented in Sec. III, which is devoted to
the construction of the graviton superpropagator, and
in Sec. IV, where the superpropagator is used in the
explicit computation of the leading parts of the above-
mentioned quantities bm/m and 8e/e. In Sec. V we
brieAy discuss the question of gauge invariance and
equivalence theorems. The details of the computations
needed for Sec. IV are contained in the Appendix. Apart
from the numerical results, the item of greatest interest
in the paper may be the graviton superpropagator
exhibited in Sec. III.
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g"(x) ~g"(*)= — a-~(x) .
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where Bxl"/Bx denotes the Iacobian matrix of the
transformation x& ~$&. The vierbein components, on
the other hand, transform according to a hybrid
prescription

Bx
1.„.(x) —+ L„.(x) = A. 'I „g(x),

BS'I"
(2.2)

II. GRAVITATIONAL LAGRANGIAN AND
FREE PROPAGATOR

Einstein's theory of gravity is based upon the re-
quirement that the equations of physics should be
expressible in a form which is independent of the
system of space-time coordinates to which they are
referred. That is, these equations should be covariant
under the group of general coordinate transformations;
they should be derived by varying an action integral
which is itself invariant under this group. To formulate
the requirement one must first assign the variables of
the problem to realizations of the transformation group.
The following remarks are intended to sketch the main
features of this program together with the steps neces-
sary for treating quantum gravity.

The basic field upon which the group of general
coordinate transformations are realized is the metric
tensor g„„or, equivalently, the vierbein system I„,. On
the one hand, the metric tensor transforms according
to the usual prescription
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where A.,' denotes a Lorentz matrix,

A,~A, "gag =g„) (2 3)

with rt, b
d——iag (+1, —1, —1, —1). The metric tensor

field can be expressed in terms of the vierbein field by
means of the formula

ing to
Bs

4p~dp=--
8$"

g„„=L„L„gg". (2 4)

Conversely, the vierbein field can be expressed in a
(locally) unique fashion in terms of the metric if the 16
components L„are reduced to 10 independent ones by
imposing the symmetry condition

L„,=L,„. (2 5)

Qg 'w

iP(x) ~ iP(x) = det—D(A)$(x),
Bx

(2.6)

where A denotes the Lorentz transformation determined
above and zv denotes a new parameter, the @eight, which

must be assigned. (For the subgroup of Lorentz trans-
formations on space-time we have h. =Bx/Bx and

~detBx/Bx~ =1, so that w becomes irrelevant. ) Non-

linear realizations based on Lorentz four-vectors and
their products can be made over into linear representa-
tions of the conventional sort with the help of the vier-
bein. Thus, for example, if

4.~4.=A.'4 b,

then the combination p„=L„,g 'p~ transforms accord-

A fuller discussion of this point of view is contained in C. J.
Isham, Abdus Salam, and J. Strathdee, Ann. Phys. (N. Y.)
(to be published). See also B. S. and C. DeWitt, Phys. Rev. 87,
116 (1952);V. I.Ogievetskii and I.V. Polubarinov, Zh. Eksperim.
i Teor. Fiz 48, 1625 (1965) /Soviet Phys. JETP 21, 1093 (1965)j.

(In a pseudo-Euclidean notation where rt, b is effectively
replaced by the Kronecker symbol 8 &, the symmetric
matrix L is given by a square root of the symmetric
matrix g.)

It is particularly important to realize that the sym-
metry condition (2.5) not only fixes L in. terms of g, but
in addition serves to determine the Lorentz matrix A of
(2.2) as a function of Bx/Bx and L itself. This results
from the (local) uniqueness of the polar decomposition
of the matrix F„,=Ax"/Bx"L„, into the product of a
symmetric matrix L» and a (pseudo) orthogonal
matrix (A-'),b. Thus, corresponding to each coordinate
transformation x& ~ S&, one has an associated Lorentz
transformation A of the vierbein system,

h..b =A.b (Bx/Bx,g) .
The function indicated here is generally nonlinear. One

has constructed in this way a nonlinear realization of
the group of general coordinate transformations. '

Any local field which belongs to a representation of
the Lorentz group can be made to carry a nonlinear
realization of the general group. Thus

The spinorial nonlinear realizations cannot be linearized
in this way. In order to treat the gravitational inter-
actions of fermions it is essential to construct the
vierbein components.

The scheme adopted here for introducing gravity by
means of a nonlinear realization technique, which is
well known to differential geometers, is not the usual
one adopted in the physics literature. In the latter it is
assumed that the vierbein field has 16 independent
components L„,which transform under the coordinate
group according to

Bx
L„,~—L„,

8$'"

and under an independent "gauge group" according to

Lpa ~ ~a Lpb )

where A,b is not related to M'/Bx. In this view the field

of, say, a Dirac particle would comprise a true Dirac
spinor under the gauge group and a set of scalars under
the coordinate group. This view is of course equivalent
to the one we adopt.

In order to obtain an invariant action integral, one
must construct the Lagrangian function so that it
transforms as a scalar density,

d4x Z(ip) =d4'x Z(it),
that is,

(2.7)

When expressed in terms of fields which belong to non-
linear realizations, Z(P) clearly must take the form of a
Lorentz scalar with m= —1. Such a Lagrangian can be
generated from any Lorentz invariant one by introduc-
ing L„,(or g„„)and its derivative in accordance with two

simple rules.

(i) Adjust the total weight of each term in 2 to —1

by adjoining a factor ~detL„,
~

"=tdetg„,
~

"t' which

transforms as a Lorentz scalar with weight z.
(ii) Replace the ordinary derivative B„iP=iP,„wher-

ever it occurs by the covariant form

k-=L".(~A' 'i&.(b.i~'%+i'"—'L-.b, A) (2 8)

where S~' denotes the Lorentz spin matrix appropriate
to iP and B„i,b~, the nonlinear Riemannian connection,
denotes the combination

+iv[ab] s(L ar)ivLvb L br)pLva) z(L vr)vLivb L br)vLpa)

zL„.(BbL ' B„Lb')—L —„L"b. (2.9)—

The matrix reciprocal to L„, is here denoted by LI" .
This notation is consistent with the convention that
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LpeL ~ /~a

L" L.a=&v")

LI" g„„=J„=L„~g',etc.

(2.10)

The connection B„~,~~ is related to the Riemannian
connection

L» 2g (g»v+g , pvpgl, uv, p)

by the formula

(2.11)

B [ 5] —F„iL",Lip L",L„„—. (2.12)

To the Lagrangian generated by means of the rules
(i) and (ii) it is of course necessary to add a purely
gravitational term, viz. ,

= (1/]~') (—detg„.) ']'R = (1/i~') (—detL„,)R, (2.13)

wbere R denotes the scalar curvature which can be
expressed in terms of either the metric tensor g„„or
the vierbein components L„,.

It is well known that the ten equations of motion
which are obtained by varying g„„or the (symmetric)
L„,are not all independent. They satisfy four identities
as a consequence of general covariance. In other words,
only six of the ten components of g„, can be determined
by these equations. In order to pick out a unique solu-
tion it is necessary to supplement the equations of
motion with a set of four "coordinate conditions"
(which a,re analogs of the gauge condition of electro-
dynamics). For example, one could impose the Fock—de
Dorider conditions

Greek indices are to be raised with g&" and lowered with
g„„while Latin indices are raised and lowered with the
Minkowskian tensor g, p =g ~. Thus we have

g""gvz =&x" )

S-matrix elements may converge more rapidly for some
choices than for others.

To construct the perturbation series one must sepa-
rate from L„, the terms which are quadratic in h.
These constitute the free Lagrangian Lo. Corresponding
to the parametrization (2.16), one finds for Lo the
expression

,'(a„-h"~B„h"~ 28—,h"~B&h»

—Bib»c]),h»+28„h&"8),h"), (2.17)

where contractions relative to the Minkowski metric
are tacitly implied, e.g., h»=h '—h"—h"—h". The
remainder L„, —Lo is to be treated as an interaction
Lagrangian.

The free Lagrangian (2.17) is degenerate (in the sense
that it yields an underdetermined set of field equations)
owing to the general covariance of the system. In order
to define a bare-graviton propagator it is necessary to
take account of this general covariance by imposing a
set of coordinate conditions. One way to achieve this is
by means of a Lagrange multiplier method originated
by Fradkin. To Lg„one adds the noncovariant term

1
', B„B„+—B—„B„[(g)-"'g "]=—,'B B--

K

1 — q~"+~h~"
+ B„B, ——

, (2.18)
g L

—det(i]+]i/g) j']'

where B„denotes the nonlocal expression

B„(x)= d4y X)„„(x,y ~ h)B„(y),

a„D detg) '—"g&"]=0

on the metric tensor or, alternatively,

(2.14) with a local field B„(x) to be varied independently of
h&". The kernel X)„„is determined by requiring that the
equation

8„[(—detL) "'L&'j =0 (2.15) O'B„(x)=0 (2.19)
on the vierbein components. These classical coordinate
conditions have a counterpart in the quantized theory
which we shall now discuss.

In setting up the quantized theory one can allow for
the fact that the vacuum expectation value of the
metric tensor coincides with the Rat space form by
writing

g""= ]]I'"+]ih"" (2.16)

and treating h&" as the graviton held. This represents
only one of various equivalent schemes. One could take
instead of g&" any second-rank object made out of the
metric tensor, its square root L„„or its inverse g„„
multiplied into some power of

~

detgI'"
~
. These diA'erent

choices for the basic graviton held would yield different
expressions for the Green's functions bt&t presumably
identical results for the on-mass-shell S-matrix elements.
On the other hand, the perturbation developments of

emerge as one of the equations of motion. Since this
artificial field 8„ is free, one can pick out the space of
physical states by means of the condition

(2;20)

and be assured that the Smatrix is unitary in this space.
Having determined X), one can proceed to de-

couple the artificial field B(x) by means of a field
transformation

B„-+B„'=n„„B„(1/a)i]„&pe( g)'"g—~j. (2.21)—
Since this transformation is a nonlocal one, it yields a
Jacobian factor with a nonlocal structure which must
be taken into account in computing S-matrix elements.

6 E. S. Fradkin and I. V. Tyutin, Phys; Rev. D 2, 2841 (19/0);
Abdus Salam and J. Strathdee, ibid. 2, 2869 (1970).
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—

I
=exp[—»»&a.(*»'Ih)l (2 22}

~B„'(x')i

which can be evaluated by perturbation methods. The
perturbation development of this functional can be
represented graphically by a set of diagrams in which
external graviton lines are coupled to closed disjoint
loops of a massless vector partide. We shall not go into
the rather complicated details~ here since in fact we
shall have no occasion to include the fictitious particle
loops in the processes to be considered in Sec. IV. This
discussion was intended only to make plausible the
effective gravitational action

dg 2 + [8 ((—g}'I'g"")]'—i Tr inS, (2.23)
2g

from which one can separate the bilinear terms which
define a nondegenerate free-graviton Lagrangian,

Z, =-,'(a„huaca„h» —-', a„h""a„her) . (2.24)

The bare-graviton propagator which corresponds to
this Lagrangian is simply

(T(h"c(x)h"c(0)))
=k(n""n"'+v"'n""—n""v"')D(~), (2 25)

where D denotes the zero-mass causal propagator
(—4tr'x') '.

Similar arguments can be applied when the graviton
is interpolated by the vierbein 6eld I.I" rather than g&".

One must substitute

and collect the terms bilinear in h in order to define the
bare-graviton propagator. Clearly these bihnear terms
are the same as those obtained above, so that (2.25)
remains the bare-graviton propagator. The interaction
Lagrangian, which involves terms of the third and
higher orders, will be different.

The Lagrangian of gravity-modifmd electrodynamics
is given by

&=&grav+ &matter r (3.1)

where the scalar curvature E. has been expressed as a
function of the vierbein components. The vierbein
connection B„,~ is given by (2.9) as a function of I and
its 6rst derivatives. The matter part of (3.1) is given by

~ .«-=(1/detL)[-'tQ'v. k; —k: 74')L""—~oh'
+e~g y,A„pL" 'L"'L—"'—L"'L"'F„„F„&g

+3th'(0) in
I
detL I, (3 3)

;tr ='tlA' at~ca~rra4' r

Ppp = l9pA p BpA p ~

(3 4)

The general covariance of (3.3) and (3.4) is assured if
both the electron and photon fields are assigned the
weight w=0 [see Eq. (2.6)j. In the above expressions
we are using the notational convention that repeated
Latin indices are summed in the Minkowskian sense:
A,B =q'~A, A~=A B„etc.The term proportional to
ttc(0) is due to the presence of a derivative of the electron
held in the interaction. It can be justified by a canonical
quantization procedure (Salam and Strathdee'). There
could weH be an analogous term in the purely gravita-
tional Lagrangian but we have not been able to derive
its form yet.

In order to comp1ete the system of equations it is
necessary, as outlined in Sec. II, to add to (3.1) a term
which breaks the electromagnetic and gravitational
gauge symmetries. Such a term ls glvcn by

(0 I T(A„(x)A„(0)) I 0) = vy„„D(x), —
(oI T(0"'(*)4"'(0))I o)

;(qa"q" q"q"'+-qa"q") D—(x),
(3.6)

where D(x) denotes the zero-mass causal propagator

[—4r'(x' —t'0)] ' The graviton field g&c is defined in
terms of the vierbein components by

Z „. „,= —— — (L&aLraA„, „—)'.
2 detL

2
— I"

(3.5)
(—detL)'"

This choice of symmetry-breaking term leads to the
following expressions for the bare propagators of the
photon and graviton, respectively:

where the purely gravitational part Z~, is the usual
Einstein one,

With these definitions it is possible to proceed in the
usual way to separate from 2+2, „„the interaction
part and to construct a perturbation series. For our
purposes, only one part of the interaction need be
considered, viz. ,

R(L)
f(.
' detI.

IIjtel v5

(&tree&rcb &ace&act)
x2 detL

(3 g)=r,'c Py tlrA„, ——
detL

+(four-divergence), (3.2)
VR. P. I'eynman, Acta Phys. Polon. 24, 697 (1963); 8. S.

DHVitt, Phys. Rev. 162, 1195 (1967); L. D. Faddeev and V. N. ~ ~ ~ ~

p ph s Letters 25' 29 (1967). s Mande)sta phys Iev hlch will be Used ln Sec IV to obtain a conti lbutlon
1'75, 1604 (1968);E. S. Fradkin and I. V. Tyutin, Ref. 6. of order eo'- to the electron and photon propagators.



There wilI of course be other contributions of this
order due to gravitational couphngs of the electron and
photon fields. These, which are presumably of higher
order in the gravitational constant v2, we shall disregard.
From (3.8) one obtains for the electron self-energy part

(1/s)Z(x) =es'np'"b(x)7, S(x)ybD„,(x) (3.9)

and, for the photon self-energy part,

(1/s) 11„,(x) = —e,sX)" "'(x)
y Trh.S(x)pbS( —x)3, (3.1O)

where S(x) and D„„(x)denote the electron and photon
bare pI'opagRtors, rcspectiveIy. Thc gI'Rvlton supcr-
propagator Sp "'(x) which appears in these expressions
is defined by

L"(x) L"'(0)
~""(*)=(0lr — Io&, (3.»)

detL{x) detL(0)

where Lp'(x) is given in terms of the bare-graviton field

/b p (x) by (3.7). The propagator of ps' is given by (3.6).
The construction of the superpropagator from the bare
one ls R complicated algebraic opcI'Rtlon, thc niain steps
of which arc sketched in the remainder of this section.

It is convenient to refer the graviton fICM to a
Euclidean basis where the Minkowskian tensor g ~ is
replaced by the Kronecker symbol 5 ~. At the end of the
calculation one can transform back to the Minkowskian
bRsls.

The basic step (see Delbourgo and. Hunt') in the
slmphf1catlon of (3.11) ls 'to introduce for (detL) the
integral representation,

d'md4n expt' —(ns me+n ne)L el, (3.12)
detI.

where m Rnd n are integrated over Euclidean four-
space. This representation is useful because the chrono-
logical pairing of cxponentials takes a simple form, viz. ,

(o I T(expL —a.eL'(x) j, expL —b,bL"(o)3) I o&

=exp( —a —b ) exp/a // ,'(b~&be'-
+3- be -b-eb )b„,.D/4j

=exp( a.. b..) e—xpDa—.eb„, sa..be,)s D—/4j,
(3.13)

which can be veri6ed by expanding the exponcntia1s in
powers of //a /s/// e(x) and //b e/t/ e(0), respectively, and
applying (3.6). Differentiation of (3.13) with respect to
c„),and b„„yields the formula

(0( r(L"(x) exp) a.,L-e(x)j, —
L""(o)expb-b. bL"(0)0) I o&

( (/I///p/1xP+ jLl$x// $KxbpP)//s'D/4.

+L3sx (box tb//bbpp)//sD/4j

XL3"—(a "——;3"a-)"D/41)
&((0

~
T(expL —a eL e{x)j, expL —b„bL&b(0)j) ~ 0&,

SE. S. Fradkin, Nucl. Phys. 49, 624 (1963); G. V. Eamov,
Zh. Eksperim. i Teor. Fiz. 44, 210/ {1963l /Soviet Phys. JETP
1'T/ 141'/ i1963l]; R. Deibourgo, Abdus Saiam, and J. Strathdee,
Phys. Rev. j.87', I999 (1969);R. Delbour o and A. Hunt, Imperial
College, Lon.don, Report No. ICTP/69 8 (unpubhshed).

from which one obtains —by substituting a p=tn esp

+n ne and b e m——'me'+n 'ne' and then integrating
over all I6 components —an expression for the super-
pI'opRgRtor. It ls convcnlcnt to define R paiI of scalar
amplitudes X)&0) and S&" by writing

/Dpx, pv bpxbpl'cQis)+ ($ ///j/bP+b P//bx l/bKxbpP)$)(l) (3 14)

The amplitudes $&0) and S&') are now represented
formally by 16-dimensional integrals:

d4md'n d'm'd4n'{ 1+-,'(m'+n'+m" +n")
m'

X//'D/4+(1/18) (m'+n') (m"+n")(//'D/4) '

+(1/36)L(m m')'+(m n')s+(n m')'

+(n n')sj(//'D/4)')e~, (3.15)

S"'= — dbmd'nd'm'dbn'{//'D/4
~8

—(1/36}(m'+n') (m"+n")(//'D/4) '

+-', ((m m')'+(m n')'+(n m')'

+(n n')'j(s'D/4)'}e~ (3.16)

P = —(ns'+n'+m"+n")
+C( ')'+(mn'}'+{ m'}+(n ')

——;(m'+n')(m's+n's}j.sD/4. (3.17)

» they stand, the Riemann integrals (3.15) and (3.16)
are divergent. This divergence rejects the fact that one
is attempting to sum divergent series )the terms of
which can be recovered by expanding the integrands of
(3.15) and (3.16) in powers of //'D and performing the
resulting Gauss-type integrationsj. In earlier references'
the method of BoreI summation was used to obtain
amplitudes for which the divergent series correspond to
asymptotic representations. An equivalent method,
which is more convenient in the present case, is to
obtain these amplitudes by means of analytic continua-
tion in a set of auxiliary parameters n, P, y. To this end,
consldel thc integral

Xexp( —n(m'+n'+m"+n")

+PL(m m')'+(m n')'+(n m')'+(n n') s$/r'D/4

—
—s,y(ms+n')(m" +n")s/sD/4), (3.18)

which converges for real and positive values of I(~D

9 This technique for dedning an integral is a central feature of
the method of GeVfand and Shilov, Geeeraksed Functions (Aca-
demic, New York, 1964), Vol. I. This method was employed par-
ticularly by M. K. Volkov, Ann. Phys. (N. V.) 49, 202 (j.968);
and also by J, J. Giambiagi and J. Tiomno, Nuovo Cimento
Letters 2, 674 (1969); and by Abdus Salarn and J. Strathdee,
Phys. Rev. B I, 3296 (1970).
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(0) d ~(l} are expressed in ter
of M~0. p,V)»d its partial derivatives as o ow

(3.19)

KD 1 l9 1 8 1 8

4 ( 4 8 M B8 9 By-

x&(~,p,v) I - o .=-i=, 3.20)

g D 1 8 1 0
I
1+ + ~(,p,~) I.=.=,=,

4 4 98P 188'

~(-,p,v~ = —
,o, , ) = — d4md4rr(expI —n(m'+n')])

w ere e i
' = = =1 is to be taken in a sense towhere the limit n=P=y = 1 is to b

be specified below.
of the integrations in . ar

i
' ' ' t e ei ht components

for exam. e, since e
d is a bilinear form in t e eig cointegran i t e

' ~ these integrations are a~~,+ ~J,

.,=(~-p)/p

The integral {3.21) now takes the form

1 ~2D
&(~,p,v) = ——

- d. -pI-(8"/p)("D(--")) ]
(o op)—.o (1+o)'

(3.23)

est for the computations of Sec. IVOf particular interest or t e co
' . I

isteh Mellin transform of $(n,p,y e ne
integral representation

rameter o.0, which ultimately takes the value
zero, must in the course o t e in
the half-plane

Reo.0& 1.

s'D
~ +-( '+")— '+ (v-p) ' n(o. ,P,y) = —— s —s, , ;

' * 3.24o, , = —— ds F( s)P—(o.,P,y; s)(a'D)*, (3.24)

~2D 2

+ —(y —2p) (m'+rp') '—
~'D)'- '

+p'Lm'n' —(m I)'] —
I

4

lies arallel to the imaginary axiswhere the contour C0 ies para '. '
axis

with —1&Res&0. The amplitude is given y

Z(n, p,y; s)

d(s'D) (K'D) ~'X)(n,P,y)

s onl on the two com-Here the integrand depends on y
binations

m'e' —(m ri)'
(=m +8 and. I =4—

and the integral takes the form

210 1 ce (1 o2) 1/2

(1+o.) '(cr —o p) (o' —s') 1'(—s)

8 a'/P
d(a'D)(s'D) ' ' exp ——

d$ Pe &(n+y${',~'D)] '~(,pv =-
0

ds'(1 —v') '~'

X dl I'(o'+2m(y P)&(,'lp'D)—-
0

o inte ral, one can first replace it by a' 'r'D)') ' (3 21) To evaluate the o integra, on
' t ation variables from g, IIt is useful to change t11.e in egr

to o., v, which are de6ned by

=1—I2

(o o)a+8g 3(o —op

2o2 op't ' —') 2isinprs o (1+o)'(o o-1+o)' o —o

8 +(v-P) r"D

= 8n/P$ D+so p,

/2g r C is shown in Fig. 1. Since the inte-

g dfll oBfo 1 gr e o- like o- "-,i
distort the con o

'
c es on ytour so that it encirc es on y

larities at —1 and ~e, , t ormi.e. into t e orm
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Fig. 1—provided Res&0. One finds

1 "
(o —o. )'+'

do
P( ) ~ (1+ )'( ' v') "1 "v

I'(s+1)

27ri

(o o)z+3
do'—

(1+o)2(op vP)

1 (op —v)'+' 1 (op+v)'+'
= —I"(s+1)—

2v (1+v)' 2v (1—v) '

2("+1)"' (+3)("+1)"-
(1—v')'- 1 —v'

which can be substituted into (3.25) to give

&(~,P,v; «)

=-,'r(s+1) F(s+4)(-,'P)'(1/o')'+'I(s, oo), (3.26)

where

FIG. 1. 0-plane contours for the graviton superpropagator.

limits will vanish at integer values of s and so must
correspond to an entire function in momentum space. "

In order to construct the Mellin amplitudes corre-
sponding to X)"' and X)& ', it is necessary to differenti-
ate (3.26) with respect to the parameters n, P, and y,
which are then set equal to unity. Using the identity

BI(s,o'p)/Bo'p = (s+3)I(s—1, o.p) (3 29)

which can be deduced from the integral representation
(3.27), one finds

I(s,o p) = — dv(1 —v')'i'

-(o —v)'+' (op+v)'+'
x +4(op+1) '+'

— (1+v)' (1—v)' (1—v')'

8—%)(s) = —2(s+4)Z(s),
BQ

8—'Z(s) =sZ(s) —»(s+3)'Z(s —1),
8

—2(s+3)(op+1)'+' (3.27)
1—'v

rvhich can be evaluated with the help of a table of
integrals. However, for our purposes it will be sufficient
to evaluate only the expression

I(s)—= ll I(, +bO)+I(, —bO)j
dv(1 —v )'~' cosprs

0 (1+v) '

where

—Z(») =s(s+3)'Z(» —1)
t9+

Z(.) =(-', ) + r(.+1)r(.+4)I(.).
Finally one arrives at the formula

m" "'(x)=
2%i

ds r( —s) t z"&"bP&»(«)

+1(~lzv~ab+~zb~va ~1za~vb)p(1)(S)](K2D)z (3 3O)

(1—v)' (1—")'
=cosprs B($, s+4)F(-,', s+4; s+~p; —1)

+8( '„s+4)F( ', , s+4; s+—--,'; ——1)—

4&( »,—2)F(p—, 2; p; —1)

2v(s+3) where the amplitudes p&p&(s) and p&" (s) are given,
respectively, by

P& (s) =Z) (s) —(1/36)s(19«+53)Z(s —1)

+(5/36) s(s —1)(s+2) 'Z (s —2),
(3.31)2&"(s) = —

—p,s(s+8)'Z(s —1)

+(1/18)s(s —1)(s+2) 'P(s —2),

+2(s+3)&(&v2)F(p, 2; p, —1). (3.28) with P(s) given by

This expression corresponds to a particular limiting
procedure. Thus, holding o. and P fixed at positive real
values, the limit 0 p ~&'t0 can be interpreted as
y-+ p&bO. Considered as a function of the complex
variable y, the amplitude 2 has a branch point at y =2P
with the attached cut running to the left. We are taking
the average of the values on the upper and lower sides
of this cut in order to have a real amplitude. It may be
remarked that the difference of the upper and lower

Z(') =(-)*+r(.+1)r(s+4)
&&Lcoszrs B(P, s+4)F(-,', s+4; s+~p; —1)
+8( ', , s+4)F( ', , s+4; s+-,'—; ——1)——

+2(s+3)~(2,2)F(p, 2; 2, —1)j (3 32)
' The possibility of taking the limit 0.0 —+ 0 in dif'ferent ways is a

reflection of the arbitrariness in dining T products. See, for
example, the discussions by M. K. Volkov (Ref. 9) and B. W.
Lee and B. Zumino, Xucl. Phys. 138, 671 (1969).
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FIG. 2. (a) Electron self-energy Z; (b) photon self-energy II„„.

The momentum space amphtudes Z(p) and 1I„„(k)
which correspond to (4.1) and (4.3) are given, according
to the method of Ref. 9, by the respective contour
lntcgI'Rls

Of particular importance for Sec. IV is the behavior
near s=o, where

&(p) =
2xj

dz r( —z)['2"'(z)+22"'{z)]

2&"(z) =1+7.5z+0(z'),
Z)&'&(z) = —0.5z+0(s') . (3.33)

11"(k)= —.d- r( —)["'( )+-'+"'( )]2'j
IV. SECOND-ORDER COMPUTATIONS OF

SELF-CHARGE AND SELF-MASS

&&y„S(x)y„[«'D(x)]', (4.1)

where P&'&(z) and P&"(z) are given by Eq. (3.31).
Graphically, the pole r(—z) at z =0 corresponds to the
no-graviton exchange contribution, the pole at a=i
glvcs the onc-grRviton cxchRngc contllbutlon, Rnd so on.

Since, as will be seen in the following, the dominant
contribution to Z comes from the neighborhood of
s =0, the important quantities are

X)&'&(0) =1, X)&"(0) =0,
d &0) (0) 118ln2+31

= —24(1)+—
18

dZ'"(0) 52 ln2 —40

We now apply the method outlined above to the
computation of clcctrolTlagnetic corrcctlons to tlM

electron and photon masses in the presence of a gravita-
tional field. The graphs to be considered are of order t,"
and are shown in Figs. 2(a) and 2(b). In these figures
the electron propagator is represented by the solid line,
the photon propagator by the wavy line, and the multi-
graviton propagator by the dotted line. Corresponding
to Fig. 1(a), the configuration space amphtude for
electron self-energy is given by [using the approxima-
tion of Kq. (3.24)]

(I/~F(x) =e'v.S(x)v.D.e(x)[&"'(x)~"n.e
+z &"'(x)(n"n-e+~.en- n.-n.e)]-

g2 C+ieo

d. r(—z) [Z &»(.)+2K &»(z)]
c—ioo

&&II„„(k,z), (4.5)

where Z(p, z) and 1I„„(k,s) are dehned for sufficiently
negative real values of s by the convergent integrals

—Z(p z) = &Ex e'&'e'y S(x)y D (x)[«'D(x)]* (4.6)

—1I„,(k,z) = dx e'"* 'eTr[y„S( )xy, S(
—x)]

y[«'D(x)]'. (4.7)

The contour in (4.4) stands to the left of z=0 where, as
will be seen below, Z(p, z) has a simple pole. The contour
in (4.5) stands to the left of z= —1 where II„„(k,z) has
a simple pole.

Into the integrands of (4.6) and {4.7) one can sub-
stitute for the propagators Rs follows:

mKi(mg( —x'))
S(x)= (i7„8„+in)

4ir2+( —x')

D„„(x)=g„„/4s'x',

D(x) '= (—1/4z'x') '

(4.8)

Z(p, z) pA(p', z)+niB(p', z),
11„„(k,z) = (k'il„„—k„k„)C(k',z)+i1„„D(k',z),

(4.9)

one 6nds (the details are given in the Appendix)

and express Z and II„„as integrals over the Feynman
parameters n, P, and y. Alternatively, one could perform
the integrals directly in configuration space. The results
are as follows. Writing

wliei'e |k(&i) &leiiotes tlie logaiitliiilic derlvatlve of tlie r
function.

Corresponding to Fig. 1(b), the conf&guration space
amplitude for photon self-energy is given by

O,'KfS
A(P', z) = —— r(2 —z)r( —s)

4x 4m

Xzpi(2 —z, —s; 3; p'/m'),

—II„„(x)= dz r(—z)[X)&"(z)+-'2&"(z)]

)&Tr(y„S(x)y„S(—x))(«'D)*, (43)

n («m)"

s k4x)

XgPi(1 —z, —z; 2; p'/tl'),
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(~m) '&+' 1 t I'(2 —s)7'F (4—s)
C(k2 «) = —-'.~2~2I

E2~ i s r(-,' —«)

X«F2(4 —s, 2 —s, —s; 4 -' —s. k'/4m') (4.11)

obtains

5m 3n—ln — +0((~m) 2 lri(rem) 2) . (4.14)
m 4n- I(:m

(Km) '*+' 1 Lr(1—s)7'r(2 —s)
D(k', s) = —3n2r212I

&2~ i sy1 r(-; —s)

X«F2(2 —s, 1—s, —1—s 3 -' —s k'/4m')

where n=e2/42r denotes the fine-structure constant.
These results must be substituted into (4.4) and (4.5)
to give the electron and photon self-energies. Since
Z(p, s) and II„„(k,s) contain the factor (~m)", one can
obtain series developments in powers of (Km) ' by shifting
the contour to the right.

The leading singularity in the integrand of (4.4) is a
dipole at s=D which occurs in both of the scalar ampli-
tudes A and B. The next singularity occurs at s'=1: a
dipole in A and a tripole in B. The remaining singu-
larities at x =2, 3, . . . , are all tripoles. The contribution
of the leading dipole takes the form

A 8 (m
~(p') = ———("'(s)+2~"'(s))1-

4' Bs

I'(2 —s)
X 2F,(2—«, —s;3;P'/m')

r(s+1)
'

n t'42r —m' —p'
= —lnI

2~ E~m 2p'

Similar remarks apply to the photon self-energy. "
That is, a dipole at x =0 in the transverse part C yields
the usual electrodynamic result subject to the eRective
cutoff (4.13),

m "+'
C(k') =-'n2r2~2 —

t 2)&"(«)+-,"Z~'~(s)]-
Os 2'

I'(2 —s) 21'(4—s)
X

I'(s+ 1)1'(2—«)

X,F,(4—«, 2 —., —s;4, -', —s; k2, ~4m2)

—2ln

(1+1) '~2++X
X ln + —+0(1), (4.15)

(1+&)'&' —&X

where X—= —k'/4m'. Unfortunately, the longitudinal
part D(k'), which should vanish in a gauge-invariant
theory, also has a contribution from simple poles at
s= —1 and s'=0:

D(k') = n82r—2F2(3,2,0; 3/22; k2/4m2)

m'+p' m' —p'
X 1 -ln 01

p' m'

A 8 pm "I'(1—s)
&(p') = ——("'+2+"')I—

Ã Bs- k4 I (:+1)

(4.12)

3 782

+ ——2F2(2, 1; —1;3, —,'; k'/4m')
2 7r

(~/2~) (g2r2/4/~2 3m2+1k2)

X2Fi(1—s, —s; 2; P'/m')

2n t'42r ) m' —p'

&~mi 2p'

X»I — — I+0(1),
(m2 —p2)

4 m'

which clearly reproduces exactly the amplitudes of
ordinary zero-gravity electrodynamics, except that here
there remains a dependence on ~ in the form of an
effective inbuilt cutoff:

A. t, ff 1/z= 2 X10i2 GeV. (4.13)

In particular, " for the mass correction Z(p)I„= one
"Similar formulas have been obtained for a "scalar gravity"

model by P. Budini and G. Calucci, Nuovo Cimento 7'OA, 419
(1970).

which reflects a gauge noninvariance of our procedure. "
This will be discussed in Sec. V.

The charge renormalization may be computed from
the transverse part C(k') of the photon self-energy as

eg' 2N 2'—=Z2 ——1——ln +0((~m)' ln(~m) ') .
eo 3x' Nm

The contributions of the tripoles at s=l, 2, . . . , to
the electron self-energy will give terms like (inc)2~2",
n~&1, and can of course be neglected. The important
point about the results above is that the ultraviolet
singularities of the conventional theory have disap-
peared via the mechanism of the intrinsic cutoff 1/a.
They still leave their mark, however, as singularities of
self-energies in the ~ p/ane, i.e., they reappear if the
limit I(: —+ 0 is taken.

"Because of the absence of a ink' term, this non-gauge-invariant
part can be removed by a local counterterm in the Lagrangian.
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FrG, 3. Electron loop including gravitons.

V. GAUGE INVARIANCE AND
EQUIVALENCE THEOREMS

The Lagrangian of gravity-modified electrodynamics
given in Sec. III is formally gauge independent. It must
follow from this that the scattering amplitudes also are
gauge independent provided the computational pro-
cedure employs a gauge-invariant regularization. In-
deed, if these amplitudes could be expanded in powers
of e and I(: then they would be gauge independent in each
order. However, it is one of the main arguments of this
paper that, owing to the appearance of logarithmic
singularities at If: =0, an expansion in powers of f(: cannot
be made. The question therefore arises as to whether it
is necessary to include all graphs of order e' (and these
on general grounds must show gauge independence) or
whether this collection can be subdivided into sets

t possibly of order e'(rc')~(lnK) ] which are themselves
gauge independent. We are at present unable to decide
this point and so must confine ourselves to some specu-
lative remarks.

First, the prescription outlined in Sec. III for evaluat-
ing graphs with one superpropagator is not a gauge-
independent one. This much can be seen from the fact
that the vacuum polarization tensor II„„(e')obtained in
Sec. IV is not entirely transverse. Although the trans-
verse part of m„„ is satisfactory and defines a finite Z&,

the existence of a finite longitudinal component gives a
clear indication of the breakdown of gauge symmetry.

If we follow the standard procedure of selecting a
gauge-independent set of graphs in electrodynamics,
the method is well known and has been formulated by
Feynman and Ward. It consists of attaching photon
lines in all possible ways to the basic graph of Fig. 3.
This then leads to the set of four topologically distinct
graphs of Fig. 4. Now, since some of the vertex pairs in
these graphs $e.g., pairs I-3 and 2-3 in Fig. 4(b)j
are not connected by superpropagators, we cannot
apply the nonpolynomial methods of this paper for
computing these contributions. We are in a dilemma
now. If we do connect these vertices by graviton super-
propagators we can carry through the computation, but
the Feynman-Ward procedure for securing gauge in-
variance would now demand that we include more
complicated configurations with three or more super-

propagators. For example, graphs depicted in Fig. 5
would have to be added to Fig. 4(b). The resulting
graphs will themselves now need new superpropagators,
and so on. This "leap-frogging" of the Feynman-Ward
procedure for securing gauge invariance, and of joining
vertices with superpropagators has only one limit —we
must eventually reproduce the entire series S(e'). This
complete series, as stated before, is definitely expected
to be gauge invariant. The technical problem —which
we have not yet been able to solve —is how to avoid this
leap-frogging and to secure gauge invariance without
having to sum the entire S-matrix series S(e') to second
order in e' but to all "orders" in I(.".

Another problem which we have not resolved in this
paper is the problem associated with diferent formula-
tions of gravity theory. We have taken g&" as the basic
field in terms of which tensors like g„„are to be ex-
pressed. One could equally well start with the tensor
g„„as the basic interpolating field and then g&" would be
expressed as a ratio of two polynomials in g„„. If
equivalence theorems hold for the type of theory we
have been discussing (and these equivalence theorems
state that on-mass-shell matrix elements are identical
irrespective of which interpolating field we start from,
provided that these fields possess the same one-particle
asymptotic states and belong to the same locally com-
mutative equivalence class) then the results obtained in
this paper should stand, irrespective of which field g&"

or g„„we choose as basic. The only difference between
working with one or the other system of coordinates g&"

or g„„would be the technical diHerence of ease in obtain-
ing results more readily in one formulation of the theory
relative to the other. The same remark applies to co-
ordinate transformations considered by general rela-
tivists by means of which one can incorporate the
factor (detg) 'I4 into definitions of matter fields, e.g.,
g' = (detg) "4P, and thus eliminate this factor from some

of the terms in the full gravitational-matter Lagrangian.
The on-mass-shell results we have obtained should be
obtainable, if equivalence theorems hold, by using any
set of suitable coordinates, provided that appropriate
numbers of terms are added together to secure the
equivalence.

(a) (b) (c)

FIG. 4. Gauge-invariant set of graphs to order e'. FIG. 5. Superpropagator modi6cations of Fig. 4.
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In this connection it is worth remarking that rational
nonpolynomial Lagrangians as a rule give rise to theories
which are not strictly localizable (in the sense of Jaffe)
when no derivatives appear in the interaction. The
derivatives in the gravitational case could change this
effect by introducing cancellations. It is, however, also
perfectly possible to start with a strictly localizable
formulation of gravity theory by parametrizing the
vierbein with exponential coordinates, i.e., write, in-
stead of (3.7),

L&'= [exp(-2'/&h)$~',

where the symmetrical matrix h&" interpolates the
graviton. The exponential parametrization should give
a strictly localizable version of gravity ab imtio. This
scheme simpli6es some of the computations, e.g.,

(T detL(x)-' detL(0)-') =exp[41&2D(x)j,
while making others more difFicult. The computations
of Sec. IU would be unaffected by this change since the
leading terms O(e2 ln/&) are governed by the normalizing
conditions at s=0 [cf. Zq. (3.33)j,

2&')(0) =1, 2&"(0) =0,

which are unchanged. This equivalence of the two
formulations of gravity theory in the lowest order in no
way proves their general equivalence. So far as this
paper is concerned, this problem is open.

Also open are all problems connected with normal
ordering of the gravity-modified Lagrangian. In this
paper we have followed a naive ordering prescription
although it is known that normal ordering can dras-
tically alter the local-vs-nonlocal properties of field
theories, as well as their gauge properties.

Note added ir4 proof Since th.is paper was written two
important developments have occurred. (1) H. Leh-
mann and K. Pohlmeyer (private communication) have
established analyticity and unitarity for localizable
nonpolynomial (and nonderivative) interactions. In
addition, they have formulated an asymptotic condi-
tion which eliminates the usual distribution-theoretic
ambiguities to all orders in the major coupling constant.
(2) Assuming that equivalence theorems hold for
localizable Lagrangian theories —such as gravity theory
in an exponential parametrization Eq. (5.1)—we have
succeeded in formulating the computational procedure
in such a manner that gauge invariance is preserved to
all orders. We have speci6cally checked that to the
order n ink'm', there is no change in the numbers given
in this paper.

ACKNOWLEDGMENT

It is a pleasure to thank V. F. Weisskopf for a stimu-
lating discussion concerning the signi6cance of the
Schwarzschild radius in the present context.

APPENDIX

In this appendix the essential steps involved in the
computation of the electron and photon self-energies
will be outlined. From Kqs. (5.9) and (4.12) we have

—28
d4x e'& *[D('x)j'+'(ip"8„)h(x), (A1)

B(p2,2) =4e' d4x e'&'*[D(x)]'+'D(x), (A2)

We encounter the following integrals:

42r d8 sin'8 exp[ —i(—p')"'r cos8]

~1((—p')'"r)
=42r2, (A3)

( p2) 1/2r

42r d8 sin'8 cos8 exp[ —i(—P')'/'r cos8j

~2((—p')"'r)
=4/r2 . (A4)

2 ( p2) 1/2r

Simplifying the derivative in. A (p', s) by writing

86
(ip&8„)A =2ip "x„=2i( p')'" ——r cos8, (AS)

Bx Bt'

we obtain the expressions

(—11
A (p', s) = 162r2e2~ —

~
dr r'J2(( —p') '/'r)

& 2)
M, (r)

X(D)*+' — —, (A6)
Bf

~1((—p')'"r)
B(P2,z) = 162r'e' dr r' —( )D' d+(r) (A7)

( p2) 1/2

into which must be substituted the forms

D(r) = (1/42r2) (1/r'),

A(r) =(m/4 ')(K (mr)/r),

86(r) m K2(mr)

where the integrals are taken over the Euclidean region
in x-space and are defined initially for p2(0. The
angular integrations may be performed immediately
using the polar variables

dx =4xr' sin'8drd8,

p x= —(—p')'/'r cos8,

( x')—'/'=r
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er e for Res&0 and usingThe resulting integrals converge
the standard relations"

du u—
3~IKI(u) Ji(u( —P'/m') '")

=(— '/m') "'4 ~'r(1 —.)r(—s)

C(k's) = dQ2

Q1Q2

X dQ8
I (2 8) (Q1Q2+nln8+Q2Q3)0

11„(k3s)= (It,.k3 —k„k„)C(k3,s)+It„,D(k3,s,
e'A(s)

XF(l—s, —s; 2; p'/m3),

du u—"-IZ3(u)J8(u( —P'/m') '")
( QIQ3Q8,

Xexp( k'
Q1Q2 Q2Q8 QlQ8

—Q 152 —Q2m

= (—p'/2m') 4 'I'(2 —s) I'(—s)

XF(2—s, —s;3; p'/m'),

D(k3,s) =
e'A(s)

16
dQ1 dQ2

from which

(2—s)(1—s)(1—s)(—s) x'

2X8 2!

4tF(1 —s, —s; 2; x) (4Xx 2X&X~'
+

4 2 2X3X2I

s. ~4. &O~.

f these hypergeometrlc unc i
d thThis may be done by consl enng e

development

(1—s)(—8)
F(1—s, —8; 2; x) = 1+ -x

ixi &I

+ )

dQ8
2I (2 S) (nln2+nln8+Q2Q30

Q 1Q2Q8
2

X—
-nin8+Q8Q8+nin8

—42- +m'
2Q1Q2 Q2Q8 Q1Q8

Q1Q2Q8

Xexp k2

nin3+Q3Q8+nin8
Q fS Q2m ))

re A s =(43-)-"I'(2—s)/I'(s). These iterated inte-
r

' '
iall for k'(0 and a certain rangerais are defined initial y orgr

of s values. e na. Th fi 1 answer may be analytlca y con-

e D k' s) first and start. by defining

'
ued to other values.

inte ration variables x'=1/n3, y3= Q3, s = ni
d then converting to po ar coo

y =r sine cosy, s=r sine sing.

e'A 8)8r'(
(AS) (

=I 18(r8+1)

m'(2

This latter sum may readily bebe shown to be

—{1+[(1—x)/x] ln(1 —x) )

in this result (with x=p m', p2, m2 lus ag

feld-Watson integral, we arrive at t e na

lf- g m-
ron self-mass given in Eq. 4.12 .

The compum utation of the p oton se -en
1 1 tion was performedwhat lengthier. . The electron ca cu a ion

. B wa of contrast and
ff tt hi '

o1 d
1 in configuration space. By way o con

also to illustrate the different ec n'

hoton self-energy in mop p
ual I'e nman Q-varla es. nspace using the usua y

heck we have compute e
energies both in configuration space an in m

m of E (47) written in terms
o

' ' d D(k' s), defined in Eq. (4.9) isof the function C(k3,s) an, ,s,
eman Manuscript Project, Tables ofW. Krdelyi et al. , Bateman a es o

Integral Transforms (McGraw Hill, ew 0
and II.

~ 8 2z—1dr r2z ' Sing COSq Sln 8 COS

X r'sin cos q
s' —' 4v SIII y —k S111 8 COS 88 SIII y+m

(k3 m'

kr3 r' sin80 cos3p sin3y

e'A (r) I'( —e —1)
D(k',.) =

x/2

d8

m2 z

—k28 OS0 2z-1Xslnql cosp sin Oqco
slIl 8 sin p co

X sin sin p cos q4v
' ' cos388sk8 —m3(s+1 —sin38)],

where 02&0 and Res&1.

r inte ration is performed by definlng I=1 r and
dard text" on Laplace trans-then consulting a stan ar ex

forms. The result is
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e'A {s) I'(s)
I(-,) X(-k )'

128 r(2 —.)
—k' —1 1 —3

X G»"
4m' —s, —-'„—3—s

—k' —1 1 —3
+G33"

p
—k' —1, 0, —2

!+G-"I
&4m' —1—s ——,

' —2 —s)

r{ )r(~)
(1 x—)& 'x— '{x+n)"dx=n"

r(~+~)

X2Fy( —X, v,' a+v, —1/a), Rep) 0, Rep) 0

leading to

e'A (s)r(—s —1)I'(s)
(4m')*

These G-functions may be combined together to give32r(2 —s)

The 0 integration may be carried out, using sin'0 as
D(y' q) =the variable, from the relation"

sr(4 —s) f' g2
X k't —' 2Fg!

—s, 4—s; 4;
4r(4)

I'(3—s) &k'

+m t '2Fy —s 3—s'3'
r(3) 4m'

r(2 —.) .tk—m'(s+1) t '2Fg —s, 2 —s;2;—
r(2)

' ' '4m2

where /=sin'2y and 0&Res&1.
Using the standard integral"

X3F2(v,ag, a2, p+u, v, bg, n), !n!& I

we obtain an expression for D(k', s) in terms of 3F2
functions. This may be usefully converted into one
cxplcsslon ln terms of McycI' 0-functionsq giving

t'-k' -2, -1, Iq—3sog3"!
k4 ' ——1

It was for this reason that the Meyer functions were
introduced. The final answer, expressed in terms of the
more tractable 3F2 function, is

D(k', s)
3e' (m')*+' r(-')r(1 —.)r(1—.)r(1—s) r(s)

Ss'+" 4' I'(s —1)r(3) r(-,'—s) (1+s)
XSF2(2—s, 1—s, —1—s; 3, —,

' —s; k'/4m') .
The same manipulations for C(k', s) yield

C(k', s)
e'(m')'+' I'(-', )r(1—s) r(2 —s) I'(4 —s) I'(s)

16~'+"4 r(s —1)r(4) r(-',—s)

X,F,(4—s, 2—., —', 4, —;—s; k'/4m'),

which simplifies slightly to give Eqs. (4.11).The con-
tribution of the double pole at s'=0 is obtained from the
power-series expansion of the 3J"2 functions as in the
electron self-energy calculation.


