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enological Lagrangian to study P decay. From the
invariance of the Lagrangian under the given chiral

symmetry or non-Abelian gauge group, a Noether's
theorem is used to define physical current densities
whose various T-products describe the decay process.
However, these currents are derived by a Noether's
theorem based on c-number variation techniques. In
fact, Adler and Dashen'~ list at least two basic hypoth-

"S.L. Adler and R. F. Dashen, Current Algebras and Appb-
cutions to I'article I'hysics (Benjamin, New York, 1968).

eses in their monograph on current algebras which
rest upon the c-number Noether's theorem techniques
and as such do not consider any factor-ordering prob-
lems that might be present in these nonlinear, non-

Abelian gauge theories.

A'ote added in proof. Equation (2.13) is also the neces-

sary and sufhcient condition for the nucleon current
density J"(x), to satisfy the covariant conservation law

v„J~(x)=0.
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A new approach to the bound-state problem in the frame of quantum electrodynamics is proposed, with
special emphasis on the electron-proton bound states. It is an alternative approach to the usual one, which
is based on the Bethe-Salpeter equation, and does not contain the ambiguities and unfamiliar features
inherent in the Bethe-Salpeter theory. This approach is based on a straightforward generalization to quan-
tum electrodynamics of the well-known Hartree-Fock approximation for the nonrelativistic theory of
many-electron atoms.

I. INTRODUCTION
" 'T is well known that at the beginning of the last
~ ~ decade Bethe and Salpeter' ' (BS) suggested a fully

covariant equation for the description of two inter-

acting particles. In contrast to previous approaches,
which introduced the nonrelativistic concept of in-

stantaneous potentials to account for one of the par-

ticles, BSconsidered the relativistic retarded interaction
between the particles. 'The BS approach was based on

the intuitive Feynman-diagramatic techniques, and it
was shown soon afterwards' that the equation could be

derived more rigorously by using basic concepts of
quantum field theory. Nevertheless, as stressed in Ref. 4

for example, so far it has not been possible to prove

whether or not the BSequation provides in fact an exact
solution corresponding to a realistic physical situation.

Furthermore, the difhculties inherent in the BS equa-

tion were apparent from the beginning. ' ' A signi6cant

simplification is obtained, however, if self-energy effects

are removed from the equation. In terms of Feynman

diagrams, this approximation is equivalent to the sum of

only ladder diagrams, but, as shown by Cutkosky, in

the limit when the mass of one of the particles becomes

in6nite, the ladder approximation gives an equation
*Present address: Tel-Aviv University, Ramat-Aviv, Israel.
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' H. A. Bethe and E.K. Salpeter, Phys. Rev. 84, 1232 (1951).
~ J. Schwinger, Proc. Natl. Acad. Sci. (U.S.) 3'7, 452 (1951).
~ M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
4 M. Giinther, J. Math. Phys. 5, 188 (1964).
' G. C. Wick, Phys. Rev. 96, 1124 (1954).
6 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

which does not correspond to the motion of a particle
in the field of a fixed center of force. ' " It seems
therefore that from the ladder approximation alone
we cannot expect to obtain, for example, the exact
energy shift or the linewidth of two-body bound
states. ""

We propose in this paper an alternative approach
that does not contain the unfamiliar features and
ambiguities of the BS equation. ' 8 In contrast to the
single BS equation we obtain a system of two coupled
equations which, as will be shown, contain the main
effects arising from the interaction between the par-
ticles. This system of two coupled integrodiGerential
equations for two particles is actually a simple and
natural "generalization, of the well-known Hartree-Fock
(HF) equations in the familiar theory of nonrelativistic
many-electron atoms. We are only interested here in
the special case when %=2, where E is the total num-
ber of particles. "More precisely, we shall only consider

~Actually most of the subsequent investigations on the BS
equation refer to the ladder approximation (see Refs. 5, 6, and
8—10).

J. S. Goldstein, Phys. Rev. 91, 1516 (1953).
9 F.L. Scarf, Phys. Rev. 100, 912 (1955).
» S. N. Biswas and H. S. Green, Nucl. Phys. 2, 177 (1957).
'j G. R. Allcok, Phys. Rev. 104, 1799 (1956)."S. S. Schweber, An Introduction to Relativistic Quantum Field

Theory (Harper R Row, New York, 1961).
'3 E. A. Power, Introductory Quantum E/ectrodynamics (Green,

London, 1964).
'4 In the ordinary HF theory the HF approximation is applied

to a system of identical particles, i.e., to electrons in many-
electron atoms (or molecules), and nucleons in many-nucleon
nuclei. Here we shall study the relativistic bound states of non-
identical particles as, for example, the relativistic hydrogen atom.
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U~(x) = P(l x—x'
l )P,*(x'g,(x')d'x', (1.1)

where P(l x—x'l) = —e'/l x—x'l is the attractive
Coulomb potential between the particles.

Similarly, the self-consistent potential acting on the
proton due to the electron is

U.(x) = ~(l x-"l)4.*(")4.(*)d'*'. (1.2)

Now using Eqs. (1.1) and (1.2), we may write the cor-
responding Schrodinger equations

7'lp, (x)+U„(x)lp,(x) =E,g, (x),
2m.

h
VQ, (x)+U, (x)If'„(x)=E„p„(x),

2m'

(1.3)

which correspond to the approximate Hartree equations.
For m,/m„«1 it is of course possible to neglect the
quantum-mechanical effects on protons and simply drop
out the last equation altogether. Thus, for an inGnitely
massive and localized proton we have, to a very good

here, in an explicit way, the case of two distinguishable
particles. Instead of using in this generalization the
instantaneous potential to describe the interaction, we
shall consider the appropriate intermediate particles
which mediate the interaction, i.e., photons for elec-
tromagnetic interactions and mesons for strong inter-
actions. This fact, and the fact that in this generaliza-
tion we do not include any external one-particle
potential (which assures the existence of many-particle
bound states), means that we shall not have a proper
self-consistent potential nor proper stationary HF
states, but unstable ones as it should be. The external
potential appears in the nonrelativistic HF theory of
many-electron atoms as the bare attractive Coulomb
interaction between the atomic nucleus and atomic
electrons. In the standard HF theory the initial ex-
ternal potential is transformed into a realistic self-
consistent field which includes also the interaction
among the electrons. This is an average potential acting
on one electron, due to the nucleus and the remaining
electrons.

In the theory we intend to develop here, the self-
consistent potential does not contain an initial external
Geld and therefore arises purely from the HF approxima-
tion to the attractive interaction between two particles.

In order to show that our generalized HF approxima-
tion can really describe bound states, let us consider the
instructive example of the nonrelativistic hydrogen
atom. Let P, ,~(x) be the HF wave functions for an elec-
tron and proton, respectively. Then the HF self-con-
sistent field acting on the electron due to the proton 'is

given by

approximation,

and Eqs. (1.3) reduce to the single equation

i.e., the ordinary Schrodinger equation for hydrogen.
Notice that in the HF approximation just considered,

the full two-body wave function has the structure
It(xi, X2) =p, (xi)II~(X2). This wave function is not of
course an eigenstate of the total momentum, but an
approximate eigenstate of the c.m. coordinate operator.
This approximation is quite correct in the limit when
the mass of one of the particles is inGnite, i.e., when
m, /m~=0. To calculate the full corrections due to the
finite mass of the proton (i.e., when m. is replaced by
the reduced mass of the system), it is necessary to take
into account the so-called correlation effects which are
not included in the HF approximation.

Ke infer, therefore, that the HF approximation for a
system of two interacting particles with attractive
forces accounts in fact for the bound states of the
system. In addition it should be stressed that we began
with a self-consistent Geld which does not include at all
some initial external potential.

It has been shown in the nonrelativistic theory" that
the HF equations are mathematically equivalent to the
sum of various Feynman diagrams, constructed ex-
clusively with self-energy parts of first order. " This
Feynman-diagramatic interpretation of the HF equa-
tions in the nonrelativistic theory with instantaneous
two-particle interaction paves the way to generalize the
HF equations for the case when the interaction is
mediated by other particles.

In Appendix A we discuss the interpretation of the
nonrelativistic HF equations in terms of Feynman
diagrams.

In Sec. II, we extend to the relativistic domain the
Feynman diagrams contained in the HF approximation
and derive the equations that lead to these diagrams.
We call these equations relativistic HF equations for
hydrogen. " "

"V. Tolmachev, Vestn. Leningr. Univ, Ser. Fiz. i Khim N4
11 (1962).

'6 In quantum electrodynamics, these self-energy parts of the
erst order correspond actually to second-order perturbation
theory.' We stress here the point that these are not the relativistic
HF equations which appear in the literature (see Refs. 18—21).
Our equations are expressed in terms of the retarded interaction
between the particles in contrast with the ordinary relativistic
HF equations, which involve static potentials and correspond
therefore to the semirelativistic approach to the two-body
problem.' I. P. Grant, Proc. Roy. Soc. (London) A262, 555 {1961).' G. L. Malli and C. C. J. Roothaan, Bull. Am. Phys. Soc. 9,
101 (1964).

'0 M. Synek, Phys. Rev. 133, A961 (1964)."S.Fraga and G. Malli, Jj/Iany-E/ectron System Properties and
Interactions (Saunders, Philadelphia, 1968).
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and are described by plane waves of momentum q'
and p', respectively. Notice that the IIamiltonian
H =Ho+H; t contains, in addition to the electron field,
the proton-antiproton field. Our state

I
q'p') belongs

to the invariant subspace of Ho with X,= 1 and X„=1,
where X, is the number of electrons and X„ is the
number of protons. We also point out that all our
propagators will be de6ned in terms of this state rather
than the vacuum state.

We define now the one-particle propagator for elec-
trons and protons in the following way:

(p'q"
I T{p '(xg '(x))

I
q'p')—= ——'.S~' '(x —*'), (2 2)

which can be expressed in terms of the vacuum propaga-
tor as follows:

—-', Sp' '(x —x') = —-', Sp" &(x—x')

1 sag 'e ' "&' *'0(x'—x) (23)
(2ir)' E,,„

qy, g gy„g

e
9g

x Q y, g x

where

Sp" "(x—x') =
(2ir)'

d p
(p+m„p)e '" &* *'0(x x')—

2E„

FIG. i. Second- and fourth-order relativistic Feynman dia-
grams for one-particle propagators.

II. RELATIVISTIC HF EQUATIONS

To obtain the relativistic HF equations, we shall

follow the derivation of these equations in the non-

relativistic theory of many-electron atoms (see Ap-

pendix A). In order to fix the ideas, let us assume that
the system is formed by an electron and a proton and

consider only the bound states of the system. Our

initial state will be, in ordinary second-quantization

representation, one whose occupation numbers are one

electron of momentum q and one proton of momentum

p'. We shall denote this state by Iq'p') = Iq')I p'). The

particles do not interact in zero approximation, i.e.,
both satisfy the free Dirac equation,

(i71'8„m, „)tt. ,(x—) =0,, (2 1)

In Sec. III we consider the Hartree approximation to
the relativistic HF equations for hydrogen, to obtain a
system of equations which reduce in the nonrelativistic
limit to Eqs. (1.3). When the proton is assumed to have
in6nite mass, both equations lead to a single Dirac
equation for an electron in the presence of an instaneous

Coulomb 6eld. Making use of these results, we prove
next that the relativistic HF equations for hydrogen

yield the proper results for the energy shift and line-

width of the bound states. Finally we define two

amplitudes for the electron and proton which play the
role of wave functions, and derive the equations that
are satisfied by these amplitudes.

1 d g
(p —m, , „)e'&'*-*'&0(x'—x) .

(2ir)' 28,

co, ~ &"'(p) and ~, ,„&"'(p) are free Dirac four-spinors, and

r refers to the spin of the initial electron and proton. It
is simple to prove that (2.3) reduces to (A6) in the

nonrelativistic limit.
We notice here the di6erence between the one-

particle propagator SJ and the ordinary Feynman or
vacuum propagator S~o. in addition to S~o, S~ has an
electron (proton) state of momentum q' (p') which like

all positron (antiproton) states vanishes for xo')xo
[see Eq. (2.3)j. Nevertheless, it is a genuine electron

(proton) state corresponding to a positive-energy solu-

tion of the Dirac equation, or to positive-frequency part
of second-quantized 6elds.

Using Eq. (2.3), it is simple to prove that the free

one-particle propagator Sp' &, like the ordinary Feyn-
man propagator S&0'», is a Green's function of Eq.
(2.1), i.e. , S~' & sa, tisfies

(iq~8„—m, ,„)S, ~(x—x') = —2ib«&(x —x'). (2.4)

I.et us now construct the Green's functions for the

interacting particles and the corresponding Feynman

diagrams. To do this we express the propagators in the

interaction representation and apply to them the

standard Dyson-Wick procedure. We obtain

(p'q'I r{y(xg(x')S (+,— )) I
q'p')

lim
+O (S (+00, —00))

=(P'q'I &{4(x)4(x'))Iq'P') (2 3)
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where
+ (—i,

(+ co, —co ) = Q—

0 )glOI+. . +IS'n IXT{KI(yi) K(y.))e " "
and

(2.5')

2.3, reduces towhich, by using Eq. (2.

( 'v'I T{~(k(x)|t(x))) Iv'P'

m
= lim —,Sp —0 + li111

e-++0

Xo)("(g "e( ) (1 —'p
g(0) (2 g)

0 0 — &(ri&ir) (2 9)( 'v'I T{A'(tt(x)4(x))& Iv'P' =

* =~&{0.(x)44(x)0 (x)+4.(x)x a(x)P, (x) ) . (2.5"Xi(x) =e

c
'
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FIG. 5. (a) Electron propagator in
the presence of an external Geld. (b)
Electron propagator in the presence
of a proton.

Equations (3.11) are the relativistic HF equations
which in the Hartree approximation reduce to Eqs. (3.3)
and in the nonrelativistic approximation to Eqs. (1.3).

IV. CONCLUSIONS

We now summarize the essential features of the
present approach to the relativistic treatment of the
two-body problem and the main steps which lead to it.

In the Introduction we showed, by using as an ex-
ample the nonrelativistic hydrogen atom, that the HF
approximation yields the Schrodinger equation in the
appropriate limit. We pointed out, therefore, that the
HF approximation accounts for the bound states of the
system; since the self-consistent field does not contain
any initial potential, it corresponds to the Hartree
approximation of the HF equations.

The next step consisted in the extension of the HF
equations to the relativistic domain. To do this, we
generalized the Feynman diagrams which appear in
the nonrelativistic HF equations LFig. 3(a)j and
derived the equations that lead to these diagrams
(Fig. 2). In order to achieve this goal, we had to express
the propagators in terms of one-particle states rather
than the vacuum state. Next we showed that the
"relativistic HF approximation" is equivalent to the
sum of a subset of all the Feynman diagrams which
contribute to the interaction between the particles. In
second order, all the diagrams are contained in the HF
approximation, but in fourth order, for example, the
last three of Fig. 1 are excluded.

The last step, Sec. III, was to prove that the HF
approximation involves the main part of the inter-
action, i.e., yields the proper values for the energy shift
and linewidth of the bound states. This was achieved
very easily by showing that the Hartree approximation,
Eq. (3.1), to the relativistic HF equations reduces to
the usual theory, Eq. (3.7), in which the proton is re-
placed by a Coulomb potential, destroying at the same
time the covariance of the theory [compare Eqs.
(3.6) and (3.8)j.

There exists, as is well known, another approach to
the relativistic two-body problem, namely, the BS
equation. This approach is fully covariant. and has
proved to be successful in some cases. Nevertheless, it
contains some ambiguous features and in its simple
version, i.e., the ladder approximation (which as in the
HF approximation consists of selecting g, subset of

Feynman diagrams, namely, ladder diagrams) does not
yield in the nonrelativistic limit the motion of a particle
in a Axed center of force. '

In order to compare our approach with the usual one,
let us consider the second-order radiative corrections
AE &2) to the o.-level shift. In Fig. 4 we illustrate the
corresponding Feynman diagrams. The double lines
represent the electron propagator in the external field
A„'*'(x). The level shift AE is complex except for the
ground state, which is a true stationary state. The real

-part corresponds to the energy shift and the imaginary
part to the linewidth. The in6nities which arise from
these diagrams must be isolated and canceled against
the 5m term, which has not been included as explained
in Sec. II. The Feynman diagrams of Fig. 4 correspond
to second-order terms of Zq. (3.7) and, as pointed out
above, the Hartree approximation to the relativistic
HF equations is equivalent to Kq. (3.7), except for the
fact that the propagator S~"(xi,x2) satisfies Zq. (3.8)
instead of Kq. (3.3). But, as we saw in Sec. III, Eq. (3.3)
reduces to Eq. (3.8) if one takes the nonrelativistic limit
of the integral factor.

In Fig. 5 we show, in terms of Feynman dia-
grams, the expansion of —2S~"(xi,x2) of Eq. (3.7) and
—2S~H'(xi, x2) of Eq. (3.1). From Fig. 5(b) we see
diagrammatically how the double line is generated as
the result of the repeated action of the external Geld
A'*'(x). Figure 5(b) shows explicitly the correspondence
between the external field and the proton loops. We
stress, though, that the action of the external field
does not correspond simply to proton loops. The elec-
tron itself contributes to proton loops and more com-
plicated diagrams, like those of Fig. 1, appear in higher
orders. In order words and to conclude, we can say that
the interaction between the particles arises not through
unrealistic external fields, but through a "self-consistent
bootstrapping" mechanism, as clearly depicted in the
present formulation.

APPENDIX A: NONRELATIVISTIC HF EQUA-
TIONS AND CORRESPONDING FEYNMAN

DIAGRAMS

We pointed out in the Introduction that the system
of HF equations in the theory of nonrelativistic atoms
can be interpreted as a sum of some particular set of
Feynman diagrams. We shall discuss here this point in
a more explicit form.
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Fio. 6. First- and se'cond-order nonrelativistic Feynman diagrams.

H=HO+H' A
=-

2'g (1&s&N)

I.et us consider the Hamiltonian for many-electron
atoms,

nected diagrams. We obtain in first and. second order
those diagrams shown in Fig. 6.

Let us consider now the special set of Feynman
diagrams which we call HF diagrams. These correspond
to those built up from self-energy parts of erst order,
i.e., to those shown in Fig. 7. Inserting these diagrams
in one of the electronic lines of the first-order diagrams
(a) and (b) of Fig. 6, we obtain the HF diagrams of
second order. Doing the same thing with the second-
order diagrams(c) and (g) of Fig. 6, we obtain the HF
diagrams of third order, and so on. The sum of all the
diagrams constructed in the way just mentioned is
equivalent to the following Green's function:

G;,,'"F(i—i') =G'0(i —i') 8,;

(1(s& X)(1(i(j(N)
+ Z 4(l ' — I)+ 2 ~(') (A1) Z

+00

«~ "2(",—', )

H=Q ~i'e "+2 Z 'ajar 'j ,&A&t,
i i j7cl

(A2)

where a,t and a; are creation and annihilation operators
for electrons in single-electron states q;(x) which are
solutions of the Schrodinger equation for the motion
of one electron in the field of the bare nucleus, i.e.,

where U(r, ) = —Ze'/r; is the single-electron potential
energy of the ith electron interacting with the atomic
nucleus; p(Ir; —r, I) =e'/Ir, —r;I is the potential energy
due to the interaction between the ith and jth electrons;
Z is the nuclear charge and E is the total number of
electrons.

In second quantization, the Hamiltonian (A1) can be
written in the following way:

where

G,'(i —i')

XG (i —4)G,;"'(—0)G~„'P,—i'), (AS)

=(~
I
~(o'"(i)o'(i)) I ~o)

=e—'*'"""(' "L(1—e )8(i—i') —n,0(i' —i)]
1, i+F

ni
0, i+G

(A6)

is the electron propagator in the absence of the other
electrons, i.e., the single electron propagator affected
only by the atomic nucleus.

The energy shift AE is given by

k2

A.+U(r) v'(&) =E'v'(*),
2m

where x—= (r,a) and 0 is the electron spin.
The matrix elements v;;,» are given by

1 dg k8
(A&) AA. =- —r ——+z;)

2 p g 2 18'

XG;, H (i;(+OIg), (A7)

0,0'
«'y;*(r,.) q, *(r',~')y(Ir —r'I)

Xq'(r', a') p~(r, o). (A4)

Considering for simplicity the case of some non-
degenerate atomic state with closed shells which has
one electronic state i+8 occupied, and unoccupied
ones i+G, we can construct, by using the ordinary
Dyson-Wick techniques, the Feynman diagrams which
give rise to the correction AE of this state, due to the
interelectron interaction.

It is necessary to consider only topologically con-

where g is the intensity parameter for the interaction
between the electrons and appears in H=H+gH; ~.

The diagrammatic representation of Eq. (A6) is
shown in Fig. 8.

Solving Eq. (A6) graphically, it is quite easy to see
that it contains in fact all the diagrams which we have
called HF diagrams.

+

+-

FxG. 7. Self-energy diagrams
of erst order.

FIG. 8. Nonrelativistic Hartree-Fock equations.
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It is simple to prove now that the HF Green's func-
tion (A6) has the form

G '"'(1 1'—)=PC C'*

P(-)(x) = — d'p
(2w)"' v,)o

&(e (""'"(' "'[(1—v,)e(1—t') —v,8(1'—1)j, (A8)

where s, =n„and C;, obey the well-known HF equa-
tions or

ev—)C'.+Z (~ '*.s —~*'.')
&((Q C,,C;,*v,)Cs„=0, (A9)

which. , as is well known, were originally derived from a
variational principle.

APPENDIX 3: GENERALIZATION OF
WICK THEOREM

and )P(x) =ft(x)yo.
Thc gcnclallzcd Kick theorem 1s qultc RnRlogous to

thc ordinary onc, with thc only difference that lnstcRd
of considering the vacuum state ~0), we consider now
the one-electron state ~(to'o) =b,,t(qo) ~0). In order to
apply Kick's theorem for this state rather than the
vacuum state, we must redefine the Ar-product. (We
point out here that in order to prove Kick's theorem,
we make use of the fact that we have two different
ways of ordering the operators and not the speciGc
properties of the T- and E-products, as will be clear
later on. ) To redefine the S-product, we perform a some-
what diferent separation of the Geld operators, namely,

Kick's theorem relates the T-product of held opera-
tois wl'tll tllc slllll of A -Products of tllc saiiic oPcrators )P(+)(x)—
with all possible sets of contractions. "Ke have

T{X(xi).~ X(x„)}= P 1V{X(xi) X(x )}, (81)
contractions

where the sum is over all sets of contractions. The X's

refer to electron-positron field operators. By definition,
the T-product orders the operators according to their
time arguments, and the X-product orders them in such
a way that all annihilation operators stand to the right
of creation operators. For n =2, the contractions dehned
in relation (Bl) are given by

1 m ~
'('

+ —
I b-(qo)~"(qo)e "*.

(2')s)' E(qo))

2'{X(xi)X(xs)}=X{X(xi)X(xs)}+X(xi)X (xs), (82) The new E-product will order the Geld operators in
such a way that the new )p( )(x) operators will stand to
the right of the new operators defined by relations (85).
Because of this new separation, we now have

&")(x)I
Vo"') =lb")(x) I Vo"') =o,

and consequently
(83

(qo"'~ AT[X(xi) X(x )$~ go"') =0

where X (xi)X (xs) represents the contracted factors.
According to the usual separation of the 6clds into

positive- and negative-frequency parts [sec Eq. (2.6')j,
we have, on account of the fact that )p(+)(x)~0)
=lb(+)(x) ~0) =0,

(O~Ar{X(xi). X(x„)}~0) =0,

I
)p(+) (x) — dsp

(2~)'" v,)o

m 2 b.(p)~'(p)e '" *,
~(p)~

Kith this new definition of the X-product, the
generalized %ick theorem can be proved in a way
similar to the ordinary one, by using mathematical
induction. 22

"V.Tolmachev, Advan. Chem. Phys. 14, 421 (1969).


