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Quantization of m' ( 0 Field Equations*
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We construct a causal covariant quantum field theory which corresponds to a classical field with m~&0.
"Pseudotachyons" or "jelly" states lead to a causal screening of "tachyon" states.

I. INTRODUCTION

V ARIOUS attempts to quantize a classical Klein-
Gordon equation with m = —p,'(0 have been

made by a number of physicists. Feinberg' considered
a field whose Fourier transform is restricted to a
spacelik. e hyperboloid, and introduced creation and
annihilation operators related to the sign of the energy.
This method leads to a noninvariant commutator
function and was subsequently criticized by Arons and
Sudarshan. ' They proposed to construct a "tachyon"
field by starting from Wigner's irreducible representa-
tions belonging to m'&0 particles and introducing the
Fock space in the way in which it is done in the ordinary
m'&0 case. Creation and annihilation operators are
then introduced as ladder operators in the Fock space,
and in this way one obtains a non-Hermitian field
which violates the Einstein causality even on a macro-
scopic level. Our main interest here is a "quantization"
of the classical equation

and since this equation gives a causal (hyperbolic)
propagation of a real field, it is clear that the Feinberg
and the Arons-Sudarshan approach (whatever its other
merits are) cannot be used as a quantization procedure.
We will see that the correct quantum theory correspond-
ing to (1) is quite different and much more complicated
than the aforementioned proposals. We will see in
particular that we are necessarily led to a theory in
which no ground state exists. The state space of the
quantized Hermitian field A(x) corresponding to the
classical g(x) in (1) can be written as a direct product:

3'.=BC&X],

where R corresponds either to states with complex
energies and. indefinite metric ("pseudotachyon") or to
a purely continuous spectrum of the Hamiltonian
("jelly states"), whereas X& contains particlelike states

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.' G. Feinberg, Phys. Rev. 159, 1089 (19@').' M. E. Arons and E. C. G. Sudarshan, Phys. Rev. 193, 1622
(1968).

r J. Dhar and E. C. G. Sudarshan, Phys. Rev. 174, 1808 (1968).
In this paper the authors attempt to introduce a Hermitian
I.orentz-invariant field x(x). However, the statement that their
formula (1.8) defines an invariant function is wrong, and therefore
their aim was not achieved. Their subsequent treatment of
space-time properties of tachyons is Inisle@ding.
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("tachyon states"). Owing to the presence of the
pseudotachyon or the jelly background (there is no
normalizable time-translational-invariant jelly state),
the tachyons propagate causally. The back.ground can
never be removed, and therefore, strictly speaking,
it does not make sense to talk about tachyons in the
sense of Arons and Sudarshan and Feinberg in this
field theory. The causality is in correspondence to the
propagation of the classical initial states at less than the
velocity of light. It turns out that in the positive
definite "jelly" representation the translation and the
Lorentz transformation can be locally unitarily imple-
mented for every compact space-time region; however,
the global invariance is broken in the sense of Gold-
stone. ' In contrast to the situation discussed by
Ezawa and Swieca, ' there are no Goldstone particles
but just Goldstone excitations.

The interaction of such a field with an external
potential does not 'lead to a catastrophic behavior and
we think that an interaction with other quantized
fields may lead to a well-defined theory. We also
speculate that an interaction of ordinary fields may in
certain cases lead to a state space of the type (2).

II, PROPERTIES OF CLASSICAL THEORY

The classical field (1) leads to an energy-momentum
density

The energy density is not positive definite. For math-
ematical purposes we may introduce a positive definite

vector density

P„(x)=-', ((a,y)s+ p(a;y)'+c'y'; 2a,d a,y), (3b)

with

Ps(x) &~ 0, PsI'„&~ 0 .

The new vector is not. conserved, but rather satisfies

r)"P„(x)= (c'+p') (r),y)y .

4 J. Goldstone, Nuovo Cimento 19, 154 (1961).
~ H. Ezawa and J. A. Swieca, Commun, Math. Phys. 5, 330

(1967).
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Applying this to the k2(/i2 of (10), one obtains

H p, i ——«(k) (.V.—3/2) d'tt+R,

The sum in (23) is finite as long as the quantization
volume is finite. In order to obtain a normalizable state,

(22)
we have to form packets:

H V l Q(pl'2 «2q1, 2+p 2 «2II2, 2) (23)

vrhere we have introduced

Pli+&P2i /Ili+2II2i
p(k') = —,v(k') =

K2 K2

where the rest 2 commutes with the field and its
canonical conjugate. This is an indication that our rep-
resentation of the field A(x) will be reducible. It can
be shown that there is no reduction if one wants to keep
the Poincare invariance of the Wightman functions. '
Using the reducibility, we may change the Hamiltonian
and eliminate g.

Owing to the presence of a gradient term in k space,
the Lorentz transformation mixes the tachyon state
vrith the pseudotachyon. The two-point function
(2 (x)A(y)) has tachyon and pseudotachyon contribu-
tions and is an invariant function which can be easily
explicitly computed. The higher functions are products
of the two-point function as in an ordinary free-field
theory. The representation of the Poincare group is
"pseudo-unitary" (unitary with respect to the indefinite
metric) and therefore does not appear in Wigner's
classification scheme. Since an it2defittite Hitbert space
leads, however, to the 2Mll-ktM2ott digctitties with the
principles of quantum theory, we will not investigate
this point further.

We now turn to a quantization in a positive defilite
IIilbert space. To achieve this, we vrrite the k'& p' part
of the Hamiltonian first for a quantization box with
volume V Lk;= (2tp/1. )n]:

f(e)It. ,-(x,y) « (25)

The state space in which H;~ acts is then spanned by
products of the type

f '(2) l/y, ;(x ',y ') dc .

By construction these states are in the domain of H.
I.et us consider a state of the total system of the

following form:

10' )v =
I 0)v'8&v, (26)

~I v =II f(e)lt. ,=-o(x',y*) (2&)

is invariant against spatial translations. Therefore, the
expectation values of fields at equal times vrill turn
out to be translation invariant in the limit of V —+~.

As a typical case, we consider

»m (0~I~(x)~(y) I02)v

= lim —P (0 la(k„)at(k„') IO)
V V„„

eikrt ~ x+ik22' y

where we have taken the "tachyon vacuum" I0)v',
and tP„ is a state of the jelly. It is now easy to see that
on a "relative homogeneous" state of the jelly
background,

Because of the reality condition, we have to limit one
momentum, for example, by assuming ek;,&0.

The eigenfunctions for an inverted oscillator are
purely continuous; they can be chosen as eigenfunctions
of the dilatation operator'

(r) is—l eim//
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communication}.
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Since the expectation value of this expression vanishes
between states (24), we only receive a contribution for
k„'= —k„:

(22r) 2/2 2t(

d'k
ix y) (f CCtf)

2K

Again the first term has a trivial limit because vre
only obtain a contribution if k„'= —k„. In order to see
the existence of the limit for the second term, we have
to remember that II(k„) only acts on the ttth factor in
the product wave function (26). On such a wave
function (24), the action is
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The crucial test of whether this theory is consistent
should be the coupling to a 6eM with positive mass.
If such an interaction is stable, i.e., leads to a 6nite
probability of scattering for a 6nite number of physical
particles (and a slight rearrangement of the tachyon-
jellyon states), then the idea of using quantized 2N2(0
6elds will be acceptable. It should be noted that because
of the lack of boundedness from below, the Hamiltonian
does not necessarily lead to an instability (counter-
example: a quantum many-body system in the 6nite-
temperature state space). There are indications that
the situation with respect to stability is quite diferent
from the well-known instability of the old. Dirac electron
theory (without the "611ed sea"). The "Pandora's box"
of interactions will not be opened here.

with

I 8
F([)~ sd sinod@

t' Bf

2~(rs ]2)1/2 rs) I2

+(I2 rs) 1/2 P)&2

(Al)

The path C is the path in the complex 4 plane running
from —00 to +~.12 The invariant function F($) can
be expressed. in terms of Bessel-Neurnann functions.
Since the higher-point functions are products of the
two-point function, we have by de6ning

U(A)10&= I0&

(A2)
U(h.)A (x)U'(A) =A (Ax)

a Lorentz-covariant Iield. The action of U(A) on the
"one-mode" states (containing a mixture of tachyon
and pseudotacllyoI1}

lie)=( ~(*)/(x)+ (*)),(*))lo) (A3)

~~ For the timelike separation, this was discussed in detail by
B. Schroer, talk presented at the conference on Special Topics
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APPENDIX

The Lorentz invariance of the two-point function
F($) = (A (x)A (y)& in the indeanite metric quantization
can easily be demonstrated by parametrizing $=x—y
in terms of hyperbolic angles. With f= (I,r), the result
can be written in the form

with

O(P) =f(P)+sg(P)V'P'+~'

p, i =2/2vt/(1 —2)2)1/2.

Inside this cone this is the same leading term as that
of the asymptotic expansion of the one-particle wave
packet:

Ie(vv) I'-(Ii&') Ie(p.)) I', (AS)
with

P(x) =-
(22r)"'

d p
e '&'j(p)—.

2pQ

Note also that the center of the packet is inside the
cone; the spread also reaches the region outside. As far
as space-time causality is concerned, we have to take
the description in terms of F(v,t); the wave-packet
picture Only agrees with the correct causal description
inside the cone.

If we now go over to m~&0, we see that the descrip-
tion in terms of E(v,I) preserves its strict causality,

in Quantum Field Theory at the University of Missouri, 191'0,
University of Pittsburgh Report No. NYO-3829-58 (unpublished)."J.M. Knight, J. Math. Phys. 4, 1443 (1963).

can easily be computed and we obtain a pseudounitary
representation of the I. group on the one-mode states.
The representation can be rewritten in terms of momen-
tum-space wave functions, but this is a bit cumbersome;
the x-space language for these m'&0 wave functions
seems preferable.

The discussion of propagative properties should be
done in terms of expectation values of physical observ-
ables and not in terms of space-time properties of wave
packets. To illustrate this point, let us consider a
state which is localized in the sense of Knight":

) &'[&—(r)+~(())
I 0)

supp(f(x), g(x))( 8 .
These states form a dense set and have the property
that if we consider the expectation value of a physical
observable aiBiated with the region R, then this
expectation value vanishes if R and 8 have no overlap.
To be speci6c, let us consider the expectation value of
the local charge QII assuming that we have a charged.
field A (x) of mass 2/22&0.

Consider
F-(v, &) =Br .IQ. (v.,&) I~i

Qn(v, I) = U(vt, I)QIIUI(vt, t) .
This function is only dgferent fr0212 sero if the 2('. trans-
lated in the timelike v direction h(is an oval(ip with the
forward light cone of B. Inside this cone the leading
time is easily computed to be

lim &(v&)-(f glQn(v, &) If g&-(~/&') li(p. i) I', (A6)



1770 BERT SCHROER

whereas a wave-packet picture becomes quite useless.
The problem of asymptotic observables and causality
of tachyons and pseudotachyons is sufficiently complex
to warrant a separate discussion. The causal, Poincare-
invariant quantization, which necessarily led us to an
indefinite Hilbert space, will only be of any use if the
invariant subspace of tachyons and pseudotachyons
does not appear in the asymptotic states. '4

Note added irl, proof. The earliest and in our opinion
most relevant work on quantization of m'(0 equations

~4 Here we have in mind a mechanism similar to the one given
by T. D. Lee and G. C. Wick, Phys. Rev. D 2, 1033 (1970).

was done by Tanaka. "Due to lack of references we only
became aware of that work after the completion of this
paper. The negative metric quantization is, apart from
minor modifications, already contained in Tanaka's
work. The main difference between Tanaka's and our
treatment is that we do not attribute physical signifi-
cance to the noncausal and noninvariant pieces of the
m'(0 Geld. As indicated at the end of the Appendix we
would formulate the interaction with physical particles
similar to Ref. 14.

"S.Tanaka, Progr. Theoret. Phys. {Kyoto) 24, 171 (1960).
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Feynman-Parameter Approach to N-Tower Exchange in y' Theory*

B. HAssLAcHER AND D. K. SINcLAIR

Institute for Theoretica/ Physics, State University of Nem Fork at Stony Brook, Stony Brook, New Fork 11790

(Received 10 December 1970)

We investigate by Feynman-parameter techniques the asymptotic form of N-tower graphs in @ theory.
A detailed study of the two-tower case in the leading lns.approxim'ation agrees with the second-order piece
of the eikonal expansion. By using certain assumptions about the ¹ower case, we develop an iterative
scheme for summing all N-tower exchanges. This generates the eikonal form outside of the framework of
momentum-space techniques. Furthermore, only a limited class of structures contribute to the asympotic
form: the Mandelstam nests.

I. INTRODUCTION

A TTEMPTS to 6nd simple functional descriptions
of high-energy phenomena have recently led to

studies of field-theoretic generalizations of the classic
eikonal approximation. ' Regge asymptotic behavior can
be generated in a field theory by exchanging a generic
ladder structure, called a tower, and performing a sum

over tower rungs. ' From an eikonal point of view this
corresponds to taking a simple Regge amplitude for the

potential. The eikonal expansion then generates a pole
and a sequence of multiple pole exchanges which form

cuts in the j plane. Trilinear coupling of spinless

particles, the so-called g' theory, is the simplest struc-

ture within which one can study tower-exchange models.

One could argue that its use is unphysical since non-

tower structures cannot be neglected, for at large energy

s, tower structures are dominated by the Born term.
However, if we adopt the view that a study of tower

exchange here will give insight into quantum electro-
dynamics (QED), where g' s and all tower-exchange

graphs are of equal importance, then @' becomes a
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useful tool for studying tower models. The simplest such

model is to exchange Ã oG-mass-shell towers between

continuous end lines in all possible ways. Even if one

desires only the high-energy limit of the summed ampli-

tude, this scheme is a structure of great complexity.
Some authors have studied such a model using recently
developed momentum-space techniques. ' ' The result

they derive is simply the eikonal form discussed above,
i.e.)

g(s,1)=2is d'$ era (e'x" ~&I" '1), —

where
de

X(g s) g2 e
—ib bSn(-br)

(2n-)'

n(t) = 1+X(t), —
r dqd5 6(7+ 8 —1)

d (v, ~,t)

and d' is described in Sec. II.
Momentum-space methods have two unpleasant fea-

tures which motivate our present work. The first is the

3 S.J. Chang and T. M. Yan, Phys. Rev. Letters 2S, 1586 (1970).
4 B. Hasslacher, D. K. Sinclair, G. M. Cicuta, and R. L. Sugar,
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