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We construct a causal covariant quantum field theory which corresponds to a classical field with m2<0.
“Pseudotachyons” or “jelly” states lead to a causal screening of “tachyon’ states.

I. INTRODUCTION

ARIOUS attempts to quantize a classical Klein-

* Gordon equation with m?=—u?<0 have been
made by a number of physicists. Feinberg! considered
a field whose Fourier transform is restricted to a
spacelike hyperboloid, and introduced creation and
annihilation operators related to the sign of the energy.
This method leads to a noninvariant commutator
function and was subsequently criticized by Arons and
Sudarshan.? They proposed to construct a “tachyon”
field by starting from Wigner’s irreducible representa-
tions belonging to m? <0 particles and introducing the
Fock space in the way in which it is done in the ordinary
m*>0 case. Creation and annihilation operators are
then introduced as ladder operators in the Fock space,
and in this way one obtains a non-Hermitian field?
which violates the Einstein causality even on a macro-
scopic level. Our main interest here is a “quantization”
of the classical equation

(0u0* — 1) (x) =0, ¢

and since this equation gives a causal (hyperbolic)
propagation of a real field, it is clear that the Feinberg
and the Arons-Sudarshan approach (whatever its other
merits are) cannot be used as a quantization procedure.
We will see that the correct quantum theory correspond-
ing to (1) is quite different and much more complicated
than the aforementioned proposals. We will see in
particular that we are necessarily led to a theory in
which no ground state exists. The state space of the
quantized Hermitian field 4 (x) corresponding to the
tlassical ¢(x) in (1) can be written as a direct product:

Je=3X%,, 2

where $ corresponds either to states with complex
energies and indefinite metric (‘“pseudotachyon’) or to
a purely continuous spectrum of the Hamiltonian
(“jelly states”), whereas 3C; contains particlelike states

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.

1 G. Feinberg, Phys. Rev. 159, 1089 (1967).

2M). E. Arons and E. C. G. Sudarshan, Phys. Rev. 173, 1622
(1968).

3 J. Dhar and E. C. G. Sudarshan, Phys. Rev. 174, 1808 (1968).
In this paper the authors attempt to introduce a Hermitian
Lorentz-invariant field x(x). However, the statement that their
formula (1.8) defines an invariant function is wrong, and therefore
their aim was not achieved. Their subsequent treatment of
space-time properties of tachyons is misleading.
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(“tachyon states”). Owing to the presence of the
pseudotachyon or the jelly background (there is no
normalizable time-translational-invariant jelly state),
the tachyons propagate causally. The background can
never be removed, and therefore, strictly speaking,
it does not make sense to talk about tachyons in the
sense of Arons and Sudarshan and Feinberg in this
field theory. The causality is in correspondence to the
propagation of the classical initial states at less than the
velocity of light. It turns out that in the positive
definite “jelly” representation the translation and the
Lorentz transformation can be locally unitarily imple-
mented for every compact space-time region; however,
the global invariance is broken in the sense of Gold-
stone.! In contrast to the situation discussed by
Ezawa and Swieca,® there are no Goldstone particles
but just Goldstone excitations.

The interaction of such a field with an external
potential does not lead to a catastrophic behavior and
we think that an interaction with other quantized
fields may lead to a well-defined theory. We also
speculate that an interaction of ordinary fields may in
certain cases lead to a state space of the type (2).

II. PROPERTIES OF CLASSICAL THEORY

The classical field (1) leads to an energy-momentum
density

Pu(x) =3((0)*+22(0:9)* —u'0*; 2060:9) . (3a)

The energy density is not positive definite. For math-
ematical purposes we may introduce a positive definite
vector density

Pu(®) =3((9:0)°+ 2 (9:)*+c%% 201$0:¢),  (3b)
with
Py(x)>0, PrP,20.
The new vector is not conserved, but rather satisfies

P, (%)= (+u2) (0)¢ - )

4 J. Goldstone, Nuovo Cimento 19, 154 (1961).
8 H. Ezawa and J. A. Swieca, Commun. Math. Phys. 5, 330
(1967).
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3 QUANTIZATION OF m?<0 FIELD EQUATIONS

Using a Sobolev® norm,
lole= [ m+S@er+esl s,
t=const ?

one easily shows the causality of the propagation.
For this free-field equation (1), one could of course
have computed directly the propagation function

2 I1(uv/ 82 1
G(E)=if——9li )e(go)@)(g?)———ie(go)a(g2), ®)
Ve 2r

T f

iG(x—9)30B(V,ty) - ©6)

ty=0

¢(x’t) =

But the aforementioned method to establish causality
(and existence) of the propagation also works in more
complicated cases, for example, if we add to (1) a
potential term V(x)¢(x), where V is assumed to be
bounded below.” The exponential increase of G(£2) is
related to the increase of the nonconserved energy
J'Pqd*x. However, there is nothing alarming about
this: The physical energy /" P d3x [as well as the inner
product (¢,6)=3/$dop d*s in the complex case] is
strictly conserved, even though the classical fields may
increase at a point in space. Similarly to Ref. 7, one
can show the completeness of the eigenfunctions in the
presence of a stationary potential ¥ (x). Note that the
Fourier decomposition of the field ¢ is more complicated
than in the m?>0 case. We may write

1 iNt+ik X ] (k) @k
— g iNtH1k X -
(2m)3/2 /;{,»2 é1 (k2—p2)1/2
1 o &%
+ / ext+1k x¢2(k)
(2,".)3/2 K2<u? (#2_k2)1/2
1 i %
Ll I s
(@m)2 Sy (=)
A=MEk) =& —p)?, k=k(k)=(u—k)"2. (7)

The Fourier transforms ¢, and ¢; are necessary to
solve a Cauchy initial-value problem with local initial
data.

d(x,t)= +H.c.

III. ALGEBRAIC ASPECT OF QUANTIZATION

The algebraic aspects of quantization are contained
in the following formula (for {=0):

A(x)

/ e 3g(k) &, (8a)

T oy

w(x)= (8b)

ik x k a3k
o ],

) :]KaYoshida, Functional Analysis (Springer, New York, 1968),
nd ed.
" B. Schroer and J. A. Swieca, Phys. Rev. D 2, 2938 (1970).
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with
Lg(k), p(—k")]=is(k—K'),
Lg,q]=[p.p]1=0,
and ¢' (k) =¢(—k), p'(k) =p(—k) for Hermitian fields.
In order to compute the field at a later time, we have
to work out the Hamiltonian:

©)

H= | 3(x) d*«
/()

%/2 z[Pf(k)f)(k)+>\2(k)qf(p)q(k):| &k

+1 / ['() () —()g" (R)q (k)] &% . (10)
k2<u2

Computing 4 (x,0) =4 (x)e~*#* by using (9), we

obtain
1 1 1 p()
A )= — ikt x| o) — 2 ) g3k
&= ey / ) 2(q< i )
+ 1 /'H—‘k 1( (k) 1 k 3
— TNtk - x| - d
PR € 2\ +i>\1>( ))

+ 1 /ext+ik-x< (k)_‘_i (k))dak
(2m)3/2 ! xp 2

Ly Lo (e e
—_ € kt+1k - x —_ .
@2m)ir SR B

Before we study the representation problem we will
convince ourselves that the commutator is local and
Lorentz invariant.

1)

1 &k
[A(%),4(y)]= — / PO,
(2m)? I\
. . d*% —1 43
- /61)\50‘-‘1k~€_ + —— [ exbotik
(2m)? o (2m) 2
—1 %k
-2 feamni
(@2m)? 2k

Every single term is noncovariant, but the sum of all
four terms comes out covariant:

L LV e
—_—— 1€ 2
dr pV/E '

[A(),4(y)]=
1
- 4‘1—2%(&)5(?)- (13)

As quite often in relativistic quantum theory, formal
covariance goes hand in hand with causality. Evidently
(13) vanished for spacelike separations, whereas any
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combination in (12) not including all four terms is not
causal.

To see these statements, let us consider a special
term, for example,

M &k » kdk
/ erbortik b =) / ghoxtikr cosf ging Jf—-
0 0

2k 2k
2r @ [+ dk
_—— e — exkotikr_
r orJ_, 2k
Td [T

euio sinp—zur cosdzdd) .
7 oY 0

Introducing (for £>7) £ =a coshX, r=asinhX, we
obtain the integral

T [T

1’(97()

ghe sin (¢—ix)d¢ s (14)

which explicitly depends on the angle X and hence is
not invariant. It is straightforward to check that the
four X-dependent contributions add up to give an
integral over a path no! depending on X. The result of
this integration is (13).

The covariance also can be made plausible by apply-
ing the infinitesimal L transformation

d d
Ni=pi— —po—
dpo dpi

pi

to the momentum-space kernel €(po)d(p*+u?)|p2>,2 as
well as to e(po)d(p2+u?) | p2<u2. The two new invariant
contributions coming from the differentiation of the
¢(po) function compensate.

Finally, we want to point out that although the
Hamiltonian is diagonal in the p, ¢ variables for
k2>u? and k2<w?, this is not true for the Lorentz
transformation

N= / x30(x) d*x, =0 (15)

which mixes the p and ¢ belonging to the different
regions.

1IV. REPRESENTATION PROBLEM

The Hamiltonian (10) describes a collection of
positive as well as inverted (repulsive) oscillators. There
is not much of a problen as to what to do about the
first type. We write

1
0= @y

k)12
p(k) =£\—(\;i[a*(—k) —a(k)].

[a'(—=k)+a(k)],
(16)

BERT SCHROER 3

The first part of the Hamiltonian becomes

H¢=

ol

/k(k)[a’f(k)a(k)—l—a(k)a*(k)] d*k. (17)

For the quantized H, we take (subtracting a ¢ number)

H,= / ME&)at (k)a(k) d*F (18)

in the Fock space of the creation and annihilation
operators. Such an H; would be positive definite. But
at this point there is a certain ambiguity coming in.
Since A(u)=0, we could also have taken one of the
infinitely many infrared-type representations.

The Hamiltonian (18) is in some way the Hamiltonian
of particle-type modes. Following Feinberg, we call
these modes “tachyons.”

The remaining Hamiltonian for k?*<u? [Eq. (10)]
cannot really be parametrized in terms of “particle”
modes, since the spectrum of an inverted oscillator is
purely continuous. We have discussed the problem of
quantization of the degree of freedom related to an
inverted oscillator

Hoso= (PTP—K2QTQ)

in connection with bound states belonging to a complex
classical energy.” Here we can apply the same considera-
tions. We could introduce (non-Hermitian) “particle”
modes by

(19)

q= (a+D),

(2n)1/2
p'= ()26 —a).
In this case we obtain
H o= —«(a'b+b'a)+ (c number) ,
but the commutation relations are
[a,b"]=7, all other [ , ]=0.
This leads to particle modes with an indefinite metric:

d|0)=la), b'[0)=1b),

(20)
(a|a)=0=(b|b), but (a|b)=i.

In that case Ho is pseudoadjoint in a space with
indefinite metric and the eigenvalues of H are imaginary:

Hoso=i’<(Nb"Na) ) (21)

where Ny=—ib'a, No=N,', and NV is a kind of “number
operator’’:

Ny|nb)y=n|nbd) .

8 S. Doplicher, Commun. Math. Phys. 3, 228 (1966).



3 QUANTIZATION OF m?<0 FIELD EQUATIONS

Applying this to the k2<u? of (10), one obtains

Hy=i f k(K)(No—Ny) dk+R, (22)

where the rest R commutes with the field and its
canonical conjugate. This is an indication that our rep-
resentation of the field A(x) will be reducible. It can
be shown that there is no reduction if one wants to keep
the Poincaré invariance of the Wightman functions.®
Using the reducibility, we may change the Hamiltonian
and eliminate R.

Owing to the presence of a gradient term in % space,
the Lorentz transformation mixes the tachyon state
with the pseudotachyon. The two-point function
(4 (x)A4(y)) has tachyon and pseudotachyon contribu-
tions and is an invariant function which can be easily
explicitly computed. The higher functions are products
of the two-point function as in an ordinary free-field
theory. The representation of the Poincaré group is
“pseudo-unitary” (unitary with respect to the indefinite
metric) and therefore does not appear in Wigner’s
classification scheme. Since an indefinite Hilbert space
leads, however, to the well-known difficulties with the
principles of quantum theory, we will not investigate
this point further.

We now turn to a quantization in a positive definite
Hilbert space. To achieve this, we write the k?<u? part
of the Hamiltonian first for a quantization box with
volume V [k;= (2r/L)n]:

H;V =3 2 (91 —K*quP+ o’ —K°q27) 23)

where we have introduced

pritipai

l]1i+i42i
ki = ),
p(k:) 7

1({ = B
q(ks) "

Because of the reality condition, we have to limit one
momentum, for example, by assuming »k;,> 0.

The eigenfunctions for an inverted oscillator are
purely continuous; they can be chosen as eigenfunctions
of the dilatation operator”

(r)ie—l
@)1z Qm)1e’

r, 0 are polar coordinates of «x, y.

eimo

Yem(%,y) =

(24)

Here we have set

K\ /2 ] 1\V? 0
f’1=<5) (“'a:)’ "*=(5;> (”*"g)’
R\Y/ 9 I\Y/ 9
PF(&) (y‘%;)’ q2:(5;) (”7)'

9This has been demonstrated by M. Gomes (private
communication).
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The sum in (23) is finite as long as the quantization
volume is finite. In order to obtain a normalizable state,
we have to form packets:

[ HWem(y) de. (25)

The state space in which H;V acts is then spanned by
products of the type

yr=I1 /fi(e)'Pe,mi(xi,yi) de.

By construction these states are in the domain of H.
Let us consider a state of the total system of the
following form:

10p)v=1[0)v'Qyv,

where we have taken the “tachyon vacuum” |0)y,
and ¢, is a state of the jelly. It is now easy to see that
on a ‘relative homogeneous” state of the jelly
background,

(26)

2% =H /f(e)'pe,m=0<xi;yi) @7

is invariant against spatial translations. Therefore, the

expectation values of fields at equal times will turn

out to be translation invariant in the limit of V —co.
As a typical case, we consider

lim (04| 4x)A()[04)v

ekn - x+ikn’ -y

1
=T1}—r£° " Y. 0]a(kn)at(®,)|0)

1
+lm — 37 eknextin’ vy |g(k,)g(ka') ). (28)

V-0 V n,n’

Again the first term has a trivial limit because we
only obtain a contribution if k,’= —Kk,. In order to see
the existence of the limit for the second term, we have
to remember that ¢(k,) only acts on the nth factor in
the product wave function (26). On such a wave
function (24), the action is

1 a 19
o= ._*ew<r+i~ - ~>.
(26)12 ar rao

Since the expectation value of this expression vanishes

between states (24), we only receive a contribution for
k., =—Kk,:

(29)

1 ./[ ik - ( )(i3k +
— e =y —0~(fcc' f).
2m)32 Jyogye 2k (frec'])
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Hence altogether

O AW A®)|03) ~ — o

ST LI G
(2m)*2 Jirspe 2:(k)

. / won T (1) @0y
—_— ik - (x—y ¢ .
@ a2

The “relative homogeneity” of the jelly state gives,
therefore, a space-translation-invariant two-point func-
tion for equal times. The computation of (0y|4 (X)7(y)
X |0y) and the higher-point functions can be carried
out similarly.

The lack of invariance of the state |0y) under time
translation shows up if we compute the expectation
value for unequal times. A computation similar to the
previous one leads to

O A@DAG) 0= —— [eneoric
AR e ] € n

11 A%
- / ekt b () crrcqteaty)
(27)% 2 2k

11 %
_ / e—Kbotik-E (¢,C 1€2€ lTr‘/’)
(27)3 2 2k

11 %
(2 )3 E /e"(’””")""k'5—:2_(¢,C161T72¢)
m K

11 d%
(2 )35/e—x(xo+yo)+zk-52_(¢’61C261‘r62’r‘l,),
T K

a 19
cr=e9, 62=<i— — ——).
dr radb

The two last terms clearly destroy the invariance
against time translations. What is happening here?
Clearly the (symmetric) energy-momentum tensor
Tuy(x) is conserved in the same manner as for an
ordinary m?>0 field theory. (This is independent on
the structure of the representation space.) Hence the
global Hamiltonian and the Lorentz generators are at
least formally conserved quantities. Looking at the
matrix elements of # and N (and the matrix elements
of their squares), one realizes, however, that the jelly
background gives a nonvanishing contribution which is
proportional to the volume V. Alternatively, one may
consider the “local Hamiltonian”*

with

Hom / Too(s) f@) fr()dxdt,

10 D, Kastler, Derek W. Robinson, and A. Swieca, Commun.
Math. Phys. 2, 108 (1966).
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with
1 for |x|<R
=] i
0 for |x|>R+L,
SUpprEI:"‘T,T], fTZO
and

/ﬁ@ﬂ=L

Choosing 0 to be the double cone with the base R+T
(at t=0), one easily checks that H, executes the correct
time propagation inside ©. In other words, the time
propagation can be implemented by a unitary operator
(which is not unique) for every compact region ©.
However, the limit ©— R* does not exist in the
representation, due to the long-range aspect of the
reference state. The same holds for the Lorentz trans-
formations. Hence those transformations are spontan-
eously broken in the sense of Goldstone.* The Goldstone
particles, whose existence in the normal (positive-
momentum spectrum) theory has been demonstrated
by Ezawa and Swieca,’® are absent in our model. Instead
we have only “zero-energy excitation.” The situation is
analogous to the Galilei invariance in the idealized
(V—®) many-body problem. This invariance is
known to be always spontaneously broken,"! and the
zero-energy excitations in the absence of long-range
forces are just those of the nonrelativistic free Hamil-
tonian H,.

We want to emphasize that a spontaneously broken
invariance unlike an intrinsically broken symmetry is
almost as good as an ordinary quantum-theoretical
symmetry. For every finite space region the invariance
is there, and only as a result of long-range (cosmological)
features of the states does it get lost.

The local Lorentz transformation couples the dy-
namical variables of the tachyons to those of the
jelly background and in this way lead to a ‘“‘causal
screening”” of the Arons-Sudarshan-Feinberg tachyons.
It also may be of interest to mention that this m?2<0
quantization can be used to obtain a causal infinite-
component Majorana field.

V. CONCLUDING REMARKS

We have demonstrated that the quantization of an
m2<0 field equation leads to causal fields. We also
constructed a representation (by V-limiting) of the
free-field algebra.

The validity of causality means that tachyons cannot
be used for propagating signals with a speed faster than
the speed of light, a fact which unfortunately makes the
name an abusus linguae. Whereas the state space has a
quite unconventional structure (long-range correla-
tions), this is not in contradiction with causality inas-
much as the Einstein-Podolsky-Rosen “paradox” is
no repudiation of causality.

1 J. A. Swieca, Commun. Math. Phys. 4, 1 (1967).
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The crucial test of whether this theory is consistent
should be the coupling to a field with positive mass.
If such an interaction is stable, i.e., leads to a finite
probability of scattering for a finite number of physical
particles (and a slight rearrangement of the tachyon-
jellyon states), then the idea of using quantized m*<0
fields will be acceptable. It should be noted that because
of the lack of boundedness from below, the Hamiltonian
does not necessarily lead to an instability (counter-
example: a quantum many-body system in the finite-
temperature state space). There are indications that
the situation with respect to stability is quite different
from the well-known instability of the old Dirac electron
theory (without the “filled sea’). The “Pandora’s box”
of interactions will not be opened here.
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APPENDIX

The Lorentz invariance of the two-point function
F(£)=(4(x)A (y)) in the indefinite metric quantization
can easily be demonstrated by parametrizing ¢=x—1y
in terms of hyperbolic angles. With £¢= (¢,7), the result
can be written in the form

10 .
F(g),\, —_— ed sm%d‘b’
rdrJe

(A1)

with
72> 2

{wumw,

p(E2—=r)l2 . 2>p2,
The path C is the path in the complex & plane running
from —o to 4.2 The invariant function F(£) can
be expressed in terms of Bessel-Neumann functions.
Since the higher-point functions are products of the
two-point function, we have by defining

U4)]0)=10)
and (A2)

UQ)A @)U (A)=4 (Ax)

a Lorentz-covariant field. The action of U(A) on the
“one-mode” states (containing a mixture of tachyon
and pseudotachyon)

lf,g>=( [awse+ / w<x>g<x>)10> (A3)

2 For the timelike separation, this was discussed in detail by
B. Schroer, talk presented at the Conference on Special Topics
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can easily be computed and we obtain a pseudounitary
representation of the L group on the one-mode states.
The representation can be rewritten in terms of momen-
tum-space wave functions, but this is a bit cumbersome;
the x-space language for these m?<0 wave functions
seems preferable.

The discussion of propagative properties should be
done in terms of expectation values of physical observ-
ables and not in terms of space-time properties of wave
packets. To illustrate this point, let us consider a
state which is localized in the sense of Knight!3:

[qpm) =¢ilAW+(g) I()) , (A4)
with

supp(f(x),e(x))CB .

These states form a dense set and have the property
that if we consider the expectation value of a physical
observable affiliated with the region R, then this
expectation value vanishes if R and B have no overlap.
To be specific, let us consider the expectation value of
the local charge Qr assuming that we have a charged
field 4 (x) of mass m?>0.
Consider
E(V,t) = <<bf-ﬂ I QR (V,t) lq)f,ﬂ> )

Qr(V,))=U(vt,)QrU (vt,1) . (A5)

This function is only different from zero if the R trans-
lated in the timelike v direction /4as an overlap with the
forward light cone of B. Inside this cone the leading
time is easily computed to be

lim E(v,0)~{/,¢|Q(v.d) | fig)~ (c/£) |$(per) |2, (A6)

with

with }
é(p) =1 (p)+i2(p)v/p*+m?

Pa=mv/(1—?)!2,

Inside this cone this is the same leading term as that
of the asymptotic expansion of the one-particle wave

packet:
lo(vt,0) |2~ (1/)[$(pa) |2,

1 /_. g d3p
e € ¢P)2;;-

Note also that the center of the packet is inside the
cone; the spread also reaches the region outside. As far
as space-time causality is concerned, we have to take
the description in terms of E(v,f); the wave-packet
picture only agrees with the correct causal description
wnside the cone.

If we now go over to m?<0, we see that the descrip-
tion in terms of E(v,!) preserves its strict causality,

(A7)

and

(A8)
with

b(x)= (A9)

in Quantum Field Theory at the University of Missouri, 1970,
University of Pittsburgh Report No. NYO-3829-58 (unpublished).
13 J. M. Knight, J. Math. Phys. 4, 1443 (1963).
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whereas a wave-packet picture becomes quite useless.
The problem of asymptotic observables and causality
of tachyons and pseudotachyons is sufficiently complex
to warrant a separate discussion. The causal, Poincaré-
invariant quantization, which necessarily led us to an
indefinite Hilbert space, will only be of any use if the
invariant subspace of tachyons and pseudotachyons
does not appear in the asymptotic states.!

Note added in proof. The earliest and in our opinion
most relevant work on quantization of m?<0 equations

1 Here we have in mind a mechanism similar to the one given
by T. D. Lee and G. C. Wick, Phys. Rev. D 2, 1033 (1970).

PHYSICAL REVIEW D

VOLUME 3, NUMBER 8

BERT SCHROER 3

was done by Tanaka.'® Due to lack of references we only
became aware of that work after the completion of this
paper. The negative metric quantization is, apart from
minor modifications, already contained in Tanaka’s
work. The main difference between Tanaka’s and our
treatment is that we do not attribute physical signifi-
cance to the noncausal and noninvariant pieces of the
m?<0 field. As indicated at the end of the Appendix we
would formulate the interaction with physical particles
similar to Ref. 14.

15 S, Tanaka, Progr. Theoret. Phys. (Kyoto) 24, 171 (1960).
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Feynman-Parameter Approach to N-Tower Exchange in ¢° Theory*

B. HasstAcHER AND D. K. SINCLAIR
Institute for Theoretical Physics, State University of New York at Stowy Brook, Stony Brook, New York 11790
(Received 10 December 1970)

We investigate by Feynman-parameter techniques the asymptotic form of N-tower graphs in ¢? theory.
A detailed study of the two-tower case in the leading Ins approximation agrees with the second-order piece
of the eikonal expansion. By using certain assumptions about the N-tower case, we develop an iterative
scheme for summing all N-tower exchanges. This generates the eikonal form outside of the framework of
momentum-space techniques. Furthermore, only a limited class of structures contribute to the asympotic

form: the Mandelstam nests.

I. INTRODUCTION

TTEMPTS to find simple functional descriptions
of high-energy phenomena have recently led to
studies of field-theoretic generalizations of the classic
eikonal approximation.! Regge asymptotic behavior can
be generated in a field theory by exchanging a generic
ladder structure, called a tower, and performing a sum
over tower rungs.? From an eikonal point of view this
corresponds to taking a simple Regge amplitude for the
potential. The eikonal expansion then generates a pole
and a sequence of multiple pole exchanges which form
cuts in the j plane. Trilinear coupling of spinless
particles, the so-called ¢* theory, is the simplest struc-
ture within which one can study tower-exchange models.
One could argue that its use is unphysical since non-
tower structures cannot be neglected, for at large energy
s, tower structures are dominated by the Born term.
However, if we adopt the view that a study of tower
exchange here will give insight into quantum electro-
dynamics (QED), where g*~s and all tower-exchange
graphs are of equal importance, then ¢* becomes a
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useful tool for studying tower models. The simplest such
model is to exchange NV off-mass-shell towers between
continuous end lines in all possible ways. Even if one
desires only the high-energy limit of the summed ampli-
tude, this scheme is a structure of great complexity.
Some authors have studied such a model using recently
developed momentum-space techniques.®~® The result
they derive is simply the eikonal form discussed above,
ie.,

A(s,p) =2is/d2b eb(gix(d)i2e—1) (1.1)

where
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and d’ is described in Sec. II. ;
Momentum-space methods have two unpleasant fea-
tures which motivate our present work. The first is the
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