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APPENDIX 8: ORIGIN AND INTERPRETATION
OF WAVE EQUATION (Al)

There is no complete closed solution of the relativistic
two-body problem in quantum field theory even for
small coupling constant o., let alone the large-o, case that
we are considering. The Klein-Gordon and Dirac
equations provide nonperturbative closed solutions and
correspond in perturbation theory to a summation of a
whole class of diagrams; but they do not contain
relativistic recoil corrections, which become essential
when the masses of the constituents are comparable, as
in positronium. The infinite-component wave equations
remove completely the last difFiculty yet allow closed
solutions, because the Lorentz transformations are
applied to the system as a whole and not to the relative
coordinates. "The method of constructing such wave
equations is as follows. We start with the nonrelativistic

Hamiltonian, which in the case of dyonium is

I
II= ~,'+

29S
p2

2m' r

We then transform II into an algebraic form to identify
a complete linear space of states which in this case is a
particular representation space of the dynamical group
50 (4,2) characterized by v. The group SO(4,2) contains
Galilean as well as Lorentz boost operators; we replace
the Galilean boost operators by the Lorentz boost
operators to arrive at states with momentum I'„. On

this space of states with momentum I'„, we construct a
colserved curremf operator J„correctly generalizing the
nonrelativistic mass spectrum (2). Because the external

photon must be coupled to a conserved current, which

is unique for a given mass spectrum, we can evaluate
the form factors from the matrix elements of J„.
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Formal low-energy theorems for matrix elements involving the stress tensor can be used to derive the

differential equations that express scale and conformal invariance. We show that these equations, when

applied to a single-particle matrix element of two fields, yield an integral representation that violates

causality save for the trivial case where it reduces to the tree graphs of a free field, Although it is possible

to construct conformally invariant, fully o8-mass-shell amplitudes whose restriction to the mass shell yields

a nontrivial result, these on-mass-shell amplitudes are not invariant under conformal transformations. This

pathological behavior can be traced to an implicit assumption of analyticity when the stress tensor carries

off small momenta that is, in general, false.

' 'HERE has been considerable interest recently in

the possibility that scale invariance and, perhaps,
even the full conformal group, may have some role to

play in high-energy physics. ' Three general areas have

been studied: the scaling behavior of 6eld theory at
short distances, theories with broken scale symmetry,
and the structure of amplitudes that are strictly in-

variant under the conformal group. The study of strict
conformal symmetry is motivated by the idea that,
although many high-energy processes, such as elastic
scattering, are by no means scale invariant, there may
be other reactions of an inclusive nature, such as
inelastic electroproduction, that do become conformally

invariant at high energy. Thus, at high energy, these

processes may be described by conformally invariant

amplitudes with massless particles. We have shown. '
*Research supported in part by the U. S. Atomic Energy

Commission under Contract No. AT(45-1)-1388.
' A review of the recent work with references to the literature

has been given by P. Carruthers, Phys. Repts. (to be published}.
~ D. G. Boulware, L. S. Brown, and R. D. Peccei, Phys. Rev.

D 2, 293 (1970).This paper also contains a brief introduction to
the geometry of the conformal group.

that, when the amplitudes for massless particles are
obtained as the limit of o6-mass-shell amplitudes, fully

conformally invariant structure functions can be con-

structed for the electroproduction process. ' On the

other hand, the application of strict conformal sym-

metry to mass-shell amplitudes, 4 for zero-mass external

particles, gives rise to various difFiculties. We shall

discuss some of the troubles here.
We begin by considering5 o6-mass-shell amplitudes

that have a stress-tensor insertion carrying o6 mo-

mentum k. They obey divergence conditions (Ward-like

identities) that yield low-energy theorems. A proper
stress-tensor vertex is thereby determined including

terms up to order k. The symmetry of the stress tensor,

in conjunction with this determination in order 1,
implies that the oR-mass-shell amplitudes without the

3%e found, however, that invariance under the full conformal
group gives no restrictions on these functions other than that of
simple scale invariance.

'Such an application of strict conformal symmetry has been
suggested by D. J. Gross and J. Wess, Phys. Rev. D 2, 753 (1970}.

' Our method is a straightforward extension of that of Gross
and %'ess to oG-mass-shell amplitudes.
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stress tensor insertion are Lorentz invariant. ' The
special condition that the stress tensor be traceless
gives a further condition on the proper vertices which,
when coupled with the low-energy theorem, implies that
the amplitudes are invariant under the conformal
group: The terms of order 1 require dilation invariance
while the terms of order k require invariance under
special conformal transformations.

The application of conformal invariance to the on-
mass-shell single-particle matrix element of two Geld
operators requires that it obey a single-parameter
integral representation. This integral representation
generally violates microscopic causality. When causality
is enforced, the representation reduces to that of a
trivial tree graph. We 6nd, moreover, that the ampli-
tude of two Geld operators has a structure that is
entirely diGerent from that of the corresponding ampli-
tude for the source of the Gelds. Although the con-
formally invariant mass-shell amplitude is trivial, a
wide class of conformally invariant off-mass-shell
amplitudes can be constructed explicitly. 7 We shall
show by a simple example that the mass-shell limit of
a conformally invariant o6-mass-shell amplitude may
not obey the differential equations that convey con-
formal symmetry. This pathological behavior results
from a lack of analyticity near the mass shell p'=0;
the amp1itude contains terms of the form p'lnp' or
yp Inp' that vanish on the mass shell but for which the
operations of going on the mass shell and applying the
conformal generators do not commute. This trouble is
rejected in the failure of the stress-tensor low-energy
theorem; it contains an implicit and invalid assumption
that the amplitude is analytic near p'=0.

In order to discuss the low-energy theorem, we must
first make some deGnitions. The connected, I-point
Green's function is related to its truncated part T by

(oI T*(x~(») "&.(*-))Io)--
(dp) "".*.(2 )'~(Z p)S (p) ~

(2~)4n

in terms of its proper part T&"(p~ ~ p„),

(0I iT*(xg(xg) x.(x.)T&"(0)) I0)

(~p)
gizmo(QS(p). . .

(2~)4n

Xp'b(pb) &""(pb, pb+k)Sb(pb+k) j
&&S.(p-)T(p~ pb+k" p-)

+Si(pr) S-(p-)T""(pi p-)) (3)

Here k is the momentum carried o6 by the stress tensor

Since the stress tensor is conserved, the single-particle
vertex obeys the divergence condition

k„F~"(p, p+k) = L(p+X k)~+-,'i 0.""k, jS'(p+k)
S- (p)I-(p+k-~k) ~-;;."k,j, (5)

where X=—', for spin —,
' while X=0 and the spin terms do

not appear for spin 0. The general vertex obeyss

k,T "(pi p.) = p(p,-~+).,k +-,'i~:"k„)

XT(p~ "p+k" p-) (6)

We can expand the divergence condition (5) in

powers of k and assemble the terms in the form

k 1'""(p p+k) =5k (L""S '(p)+iL2~"" S '(p)3

+k (D&"+(2X—1)g&")S '(p)

8 8 8)
+k„kp K""I'+Kg"" +4i o "~ —+0'"~

op, ap. op„l

XS-'(p)+o(k'), (7)

8I pv —pp pv

~p~ ~pl

Here X, denotes either a spin-0 or a spin-~~ Geld, and
5 is its full propagator. If we use the stress-tensor
single-particle vertex j. &",

(0 I

—T*(x (*)T""(0)x (*'))I0)

dplp
e' ' "'*'~S(p)1'~"(p—,p')S(p'), (2)

(2') b

we can write the general stress-tensor matrix element

6 If a manifestly translation-invariant notation is not used, then
the terms of order k ' in the low-energy theorem would require
this invariance irrespective of the symmetry of the stress tensor.

7 This is done in Appendix A of Ref. 2.

I 8 8

~p~ ~pI

1( 8 8 8 8 ~ 8)K" =-I p-- —+p ——-p
ap, ap, ap„ap, ap„ap, &

'The divergence conditions can be derived by an external-
source technique. This technique gives a divergence condition
on the general matrix elements (2) and (3) which directly imply
the proper vertex identities quoted in the text. Alternatively,
the proper vertex identities can be inferred from the structure of
I eynman graphs. They can also be obtained from the equal-time
commutators that result from a derivative of a time-ordered
product, but this method requires a careful de6nition of covariant
T* ordering, since stress-tensor matrix elements generally involve
noncovariant contact terms. It has been used by C. G. Callan,
S. Coleman, and R. Jackiw, Ann. Phys. (5j.Y.) 59, 42 (1970).
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l9

E~+P,+1)
~pp

All of the terms that occur in Eq. (7) are symmetric conformal invariance:
in the indices p and v except those in the first pair of
braces, which are antisymmetric. Since T&" is sym-
metric, so is I"&" and these terms must vanish:

1 '——zo PP
2 s '(P) =o (15)

(9) whereI-""s '(P)+ [l ""s '(P)7=0.

This is simply the statement of the Lorentz invariance
of the propagator S(p), and we 6nd that this invariance
follows directly from the divergence condition. It
follows from the order-1 terms of the low-energy
theorem. It is a simple matter to prove that a symmetric
tensor is determined to 0 (k) by its contraction with k„.
Hence,

8 8 8
El'= E" ~ =p— — ——p~

~p ~pl ~p
(16)

The quantities D and E& provide a di6erential-operator
realization of the generators of the conformal group,
The conformal equations (13) and (15) uniquely deter-
mine the propagators, save for an over-all constant, to
be those of a massless free field,

r"(p, p+I ) = [D"+(2~—1)g"jS- (p)

+0 E~"+Kg~"
Pp

In an entirely similar manner, we find that the diver-
gence condition (6) requires that the amplitude T be
I.orentz invariant and provides the determination

so '(p)=p'

sr~ '(p) =qp.

(17)

and the equations that convey the conformal sym-
metry of the truncated amplitude,

In general, the special condition that the trace of the
stress tensor vanishes gives the identity

T" (P P ) =Z(1—3~ )T(p P +& P) "(19)

T""(P~ P-) = —& [D.""+1.g""3 & l D.+~ +1jT(p~ P.) =o, (20)

+k E ~"p+g~9.
~pap

t' 8 8
+~i] o,"~——-+o„"~

ap.„ap.„)

XT(px p )+0(A') (11)

8
E.p+(X.+1)

~pan (jp

XT(pg. p„)=0. (21)

These low-energy theorems are generally valid o8 the
mass shell, but they may fail on the mass shell of a
zero-mass particle since in this case the vertex may not
be analytic for small k.

The special condition that the trace of the stress
tensor vanish provides further identities for the verti-

ces.' For the single-particle vertex', one finds that

1'"F(p p+&) = (»—1)LS '(p)+S '(p+&)j (12)

We should emphasize that the validity of these equa-
tions rests on the tacit assumption that an expansion
in powers of k is permissible. This, as we shall find, is
in general not true for amplitudes on a zero-mass shell.

As a first example of the pathologies that arise from
on-mass-shell conformal invariance, we study two

equivalent forms of a scalar amplitude, the source
correlation function

We expand this constraint in powers of k, and identify
the terms of order 1 and order k with those previously
determined by the low-energy theorem (10).The terms

of order 1 give the statement of dilation invariance:

where
[D+2(X—1)jS '(p) =0, (13)

D==D~„=p-
L9

The terms of order k give the statement of special

w(x, p', p)

= (—~') (—~")(p'
I T(e(~)&(~')) lP).o

&"*T(p' P—, c' —v)—
(2m)'

and the corresponding field correlation function

(22)

~ The trace identities can be derived by methods similar to those
outlined in Ref. 8. However, in contrast to the divergence condi-
tions which can always be maintained in the process of renormali-
zation, the trace identities can be modi6ed by renormalization.
See K G. Wilson, Phys. Rev. D 2, 1473 {1970);2, 1478 {1970);
and C. G. Callan, ibid. 2, 1541 {1970).We shall not consider such
effects here.

1 1

,
e'"'

, ;,T(P' P, ~—' —c—)——
(2z.)' q' q"

(23)

Here p' and p are on the zero-mass shell, p"=O=p'.
It is a straightforward matter to transcribe the con-
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formal equations for the truncated. amplitude (20) and
(21) into equations for W and C. We need not write
down the equation of dilation invariance, for it simply
requires that once a term of the appropriate dimension
has been factored out of the amplitude, the remainder
is a function of dimensionless parameters. Hence we
may write

Pro. 3. Graph for the doubly truncated
amplitude T3.

calculation that we have outlined is

F) 2(n Py)=Ai 2e l'(~ )+Bi ~e-l*«+ '

where

14'(»O' P) = (*') 'I")(~,P,v)+D~(x)

~'(»P' P) =F~(~,P v),

(24.)

(25)

+El,2g 2«

+E) 2~ "

dc
u e'(»+"»e'('

c

dadbdc

~=(p'+P)x, P=(p' P)*,—v=(p' P)'x'.—(26)

The two dimensionless functions now obey the same
equation of special conformal invariance:

E' I' E~+ —— +i (x'xB x'8 ~+—x'—)I 2
~pl ~pl

XF(,2 ——0. (27)

)The h (x) that appears in Eq. (24) automatically obeys
this equation. $

By writing the derivatives that occur here in terms
of derivatives with respect to parameters a, P, and y,
one can identify three independent partial differential
equations that are the coeKcients of the three inde-
pendent vectors (p'+p)&, (p' —p)', and x&. Although
these partial differential equations are of second order,
they are linear in the variables n, P, and p. Hence, the
general solution can be obtained by taking a Fourier
transform and solving the resulting Grst-order differ-
ential equations being careful to include various
8-function solutions. The result of the rather lengthy

X ( 2~i(aa+bP+cv)gi(b 'a )/4cf(—(I(r) (28)

Consider the last term involving the triple integral.
The integration over b can be done explicitly, giving
an integrand that involves only o, = (p'+p)x and
y —p' = (p' —p)'x' —

L (p' —p) xO'. In the brick-wall
frame, p= (E,O,O,E), p'= (L', 0, 0, E), these va—riables
become n = —2Ex and y P'=4E'$x' —(x')'j, and —we
see that singularities will occur for spacelike intervals
since x' occurs in the combination x' —(x')'. Such
spacelike singularities violate microscopic causality,
and so this term cannot appear in a causal theory. YVe
can evaluate the c integral in the Ci, 2 term, obtaining
an integrand that involves the Bessel function of
imaginary argument, Eo(L—b(b+1) (p' —p)'x'Jl'). This
gives a causal solution if b is restricted to the interval—1(b(0, a restriction that is consistent with the
conformal differential equations. Hence the general,
causal, conformal solution is

FL2=Ag, 2e'"*+BL2e '"'*

+Ci, 2 db e'~&"' 2')*

X&0(f—&(b+ &) (p' —p)'*']"') (29)

Pro. 1. Graphs labeled A, 3, C, and D represent the corresponding
conformal solutions for the source function 5'.

Pro. 2. Conformal graph for the 6eld
function C.

The source function 8' and field function C are
simply related to this solution by Eqs. (24) and (25).
(The terms involving A and B do not appear for C
since they are disconnected. ) The resulting functions
are trivial; they correspond to those low-order graphs
of a massless A&4 theory that are Gnite. The graphs for
the source-function 8' are displayed in Fig. 1, with each
graph labeled by its coefFicient; the graph for the Geld
function C is in I'ig. 2. Ke must note that the appli-
cation of the O'Alernbertian operators 8'8" to the Geld
function C does not produce all of the possible source-
function 8" terms but only that involving the 5 func-
tion. Thus, the implications of conformal symmetry
depend upon whether one uses the full amplitudes or
the truncated ones. The reason for this pathological
behavior is clear. The graphs A, B, and C in Fig. 1 are
not well defined because of the factor (x') ', and the
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Fio. 4. Graph for the singly truncated
ampbtude M3.

FIG. 5. Type of graph that gives non-
analytic te~ms at the mass shell.

T2(yp'=0) =yx(x2) 'e '&'*,

while the sir gly truncated amplitude is given by

(30)

I +31
M2(yP' =0) = — dy e'~J

~2' (x y)2 (y2)2

(31)

The amplitudes are obviously dilation invariant. How-
ever, although the doubly truncated amplitude T3 is
invariant under special conformal transformations, the
singly truncated amplitude M3 ls not. In order to
investigate this, we consider the oG-mass-shell extension

M2(yp'~0) = dn e '"&"*((yx/x2)Ln(1 —n) p"x2]"2

XE2(Ln(1 —n) P"x2$"2) —ivP'(1 —n)

&&%2(Ln(1—n) p"x2j212)) (32)

integrations involved in attaching the external legs do
not exist. It is not possible to renormalize these graphs
and still. maintain conformal invariance. Ke would
like to emphasize that the pathology is a general one
which Rppcars fol Rll field wclghts ' ln gcncI'Rl, thc
solutions for 8' and 4 are diGercnt but still incon-
sistent.

A diferent example of conformal difhculties is pro-
vided by the theory of coup1.ed, massless, spin-0 and
spin-2 fields. In particular, we consider the two lowest-
order amplitudes with two and one truncation corre-
sponding to the graphs of Figs. 3 and 4. On the mass
shell, the doubly truncated amplitude becomes

It is a straightforward matter to show that this of[-
mass-shell amplitude is invariant under special con-
formal transformations although its restriction to the
mass shcH ls not, . This pathological behRvlol Rl iscs
because the amphtu(k ls not analytic at p =0. In
fact, near the mass sheH wc have

M2(yp' 0) =M2(yp' =0)

)&L'2uyxp" +imp'$ ln(p"x') . (33)

Although the terms involving p" lnp" and yp'lnp"
vanish on the mass shell, they are not annihilated by
the special conformal differential operator, but rather
give a 6nite contribution when the mass-shell hmit is
taken after this operator has been applied. This con-
tribution cancels the terms that make the mass-shell
amplitude not invariant under the transformation.

We have found that the conformal invariance of the
full theory is not present in the on-mass-shell ampli-
tudes. It might be objected that this difficulty appears
only in amplitudes that are partly in con6guration
space, as is the case with our example, and that, from
the low-energy theorem for the stress tensor, one would
6nd the fully on-mass-shell amplitudes to be con-
formally invariant. This is not true. The p" lnp" or
yp' lnp" behavior generally results from the momentum
integration in a graph of the form shown in Fig. 5
unless some form factors vanish on the mass shell. The
logarithimic terms destroy the stress-tensor low-energy
theorem at p"=0. They arise from the infrared inte-
gration region. Thus, only the introduction of finite
particle masses can prevent their appearance, but this
spoils the conformal symmetry.


