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points out that 65 transforms physical mass states into
unphysical (imaginary mass) states. These transforma-
tions (discussed in I) are generated by the covarient

position operator X&. This problem may be avoided if
one considers the XI'M algebra as an algebra of ob-
servables rather than the group which it generates.
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The relativistic quantum dynamics of two particles having both electric and magnetic charges (e,g) is
discussed. It is shown that this model with its strong long-range forces is a physical realization underlying
the dipole magnetic form factor Gsi(t) of the proton calculated in the relativistic O(4,2) model. The mass
spectrum gives a linear trajectory for low values of the principal quantum number N, contains ¹ degen-
eracy and parity doubling. The slope of the trajectory and the slope of the form factor can be related in
principle to the masses of the constituents and the effective electric coupling o.=——(eie2+gig2).

' PERHAPS the single most important piece of infor-
mation we have at present about the structure of

the proton is its magnetic form factor Gsrr (f), which is
known now' up to f =25 (GeV/c)s, an extremely wide
range of momentum transfer. Many other data involve
small momentum transfers and are not sensitive enough
to distinguish between various models. The rapid falloff
of the form factor, going like 1/P for large f, can be
understood in terms of the effects of multiparticle states
in one form or another. ' There is so far only one definite
relativistic composite-particle model which yields the
exact dipole form of Gsr(t) of proton and neutron, and
also predicts Gs(t) of these particles and their excited
states. ' The model gives further a mass spectrum,
corresponding to linearly rising trajectories4 (for not-
too-large energy values) with a spectrum and degener-
acy of states which has also appeared in Veneziano-type
models. Physically, the model uses (in analogy to the
H atom, but qualitatively distinct from it) forces inside
the proton which are long-range, but strong. Mathe-
matically, it makes use of the relativistic states provided
by a specific fermion representation of the rest-frame
dynamical group O(4, 2).' The representation used is
quite diGerent from that of the relativistic H atom. '

*Supported in part by the U. S. Air Force Office of Scientific
Research under Grant No. AFOSR-30-67.

i D. H. Coward ef oL, Phys. Rev. Letters 20, 292 (1968) [final
version: P. N. Kirk et al. , SLAC Report No. SLAC-PUB-659,
1969 (unpublished) g.

2 J. S. Ball and F. Zachariasen, Phys. Rev. 170, 1541 {1968);
D. Amati, L. Caneschi, and R. Jengo, Nuovo Cimento 98, 783
(1968); A. Salam and J. Strathdee, Phys. Rev. D 1, 3296 (1970).

3 (a) A. O. Barut and K. Kleinert, Phys. Rev. 161, 1464 (1967);
(b) A. O. Barut, D. Corrigan, and K. Kleinert, Phys. Rev.
Letters 20, 167 (1968). For le* form factors, see D. Corrigan,
B. Hamprecht, and H. Kleinert, Nucl. Phys. 811, 1 (1969).

4 A. O. Barut, Acta Phys. Acad. Sci. Hung. 26, 1 (1969).
5 Various aspects of the model have been reviewed in my reports

in Lecturesin Theoretical Physics, edited by A. O. Barut and W. E.
Brittin (Gordon and Breach, New York, 1968), Vol. X and in
Springer Tracts of Modern Physics, edited by G. Hoehler (Springer,
New York, 1969), Vol. 50.

Consequently, it is necessary to find a physical realiza-
tion of this type of strong long-range forces.

The purpose of this paper is to show that the bound
states of two spinless particles having both electric and
magnetic charges contain the desired strong, long-range
forces, and give precisely the fermion tower of states
with the lowest total angular momentum —,'. This tower
of states coincides with the representation of 0(4,2)
used to calculate the form factors. We further derive a
mass formula corresponding to linear Regge trajecto-
ries, and make some numerical order of magnitude esti-
mates from the slopes of the trajectories and slopes of
the form factors.
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pole problem has been extensively investigated. ' More
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recently, Schiff' proposed to identify the "quarts" with
spin-~ magnetic monopoles, and Schwinger' proposed
to identify the "quarks" with spin-2 particles having
both the electric and magnetic charges; he called these
doubly charged particles "dyons. "Following this termi-
nology, I call the simplest structure consisting of the
bound states of two spinless dyons a "dyonilm. "With
respect to the existence of dyons, I should like to
emphasize the following: Because of the invariance of
all electromagnetic phenomena —in particular, of the
energy-momentum tensor T„„of the electromagnetic
field—under a rotation in the two-dimensional space
spanned by the electric charge and the magnetic charge,
and, simultaneously, by E and B, the question is not
whether magnetic charges exist. Rather the question
should be, what is the electric and magnetic charge of
each new particle, once the convention is made that one
particle (say, the electron) has only an electric charge,
as we have tacitly assumed in the historical develop-
ment. ln other words, we must consider a priori all

particles to be endowed with both an electric charge e

and a magnetic charge g. The observable quantities
arising from the interaction of two particles can depend
only on the invariant combinations n= —(e~e2+g~g2)
and v=(eqg2 —e2gq). Dirac's symmetric form of the
Maxwell's equations is then a logical consequence of the
fact that all equations must be invariant under the
rotation in charge space. Thus, it is perfectly sound, in
fact necessary, to start with doubly charged particles,
and we do this.

Co&sider now the system of two spinless dyons. It is
important to note that, because the conserved total
angular momentum J satisfying the angular momen-
tum commutation relations J=rXm —(v/c)r/r, {~=p
—~[rXAr 8j/r[r' —(r 6)'j) has an extra term pro-
portional to v=e&g2 —e2g&, two spinless dyons can pro-
duce, in a first-quantized theory, a half-integer spin
state, "because of the quantization of J along r:

v/Ac= (ezg2 g~e2)/A—c= —p, p=o, +-', , &1, . . . . (1)

For each quantized value of v/Ac, the states of the

system correspond to a degenerate unitary irreducible
representation of the group 0(4,2) with the lowest spin

I el/Ac, labeled by the quantum numbers INjm). The
parity connects the two representations v and —v. (v is a
Casimir operator. ) The nonrelativistic dynamical prob-
lem has been investigated extensively' '; the Hamil-

tonian can be solved exactly, most easily from the
0 (2, 1) dynamical group of the radial wave equation. We

N= '+[(j-+')' p'j-v'—+e' m'=0, 1 2 . . . . (3)

This formula contains a fine-structure splitting, and for

I
v

I
&0 the 0(4) symmetry is broken. However, it is by

now well understood that the use of the dynamical

group 0(4,2) is not at all restricted to the 0(4) sym-

metric situations, and in fact we are interested in the
more general broken 0(4) symmetry. "

The formalism of the dynamical group allows us to
treat the system relativistically, which has not been

done until now.
In the relativistic theory, we start from a basis of a

representation of 0(4,2) representing the rest-frame

states, then define the states with momentum E„by
applying pure Lorentz transformations e'&'M to the
rest-frame states, and, finally, introduce a conserved

current operator J„(k) as a function of group generators

and momenta. The current-conservation condition, or,
equivalently, a "free" infinite-component wave equa-
tion on the representation space, determines then the

mass spectrum, and via tke "minimal" colpting mitk

J„(k),one evaluates form factors. With this approach it
is possible, for example, to take into account auto-
matically the recoil corrections in the H atom to all

orders, ' " except Lamb-shift-type terms, " which are
small for the H atom. These terms, however, cannot be
neglected if e is large; in fact they may dominate. For
this reason the coefficients in J„(k) were treated. as
parameters in the 0(4,2) model discussed in Ref. 3(b).
Thus, there is still a gap in relating the parameters of

the relativistic current J„ to the masses of the con-

stituents of dyonium.
It is, however, instructive to see what happens to the

relativistic Balmer formula when n is large. Thus, for the

special values given in (A2) and (A3) (i.e., neglecting
Lamb-shift-type terms), we obtain the mass formula

3P= (m~'+m2') +2m~m2N/(N'+n') "' (4)

where N is essentially as given by Eq. (3), and m& and

m2 are the masses of the two dyons.
The difference with the H atom is that n= —(e~e2

+g~gg), the effective electric coupling, is now large. For
example, for a dyonium with total electric charge

e =e~+ e~, total magnetic charge g =g~+g2 =0, and v/Ac

obtain the mass formula (v/Ac=@, m=reduced mass):

1 e ) N P~—+ (I pl+~)'~ ]~
~~=~;.+ - —

I

mc~— '
—, (2)

N'[l+ l~ I+(l+ la I)'j

'L. I. Schiff, Phys. Rev. Letters 1'7, 714 (1967); Phys. Rev.
160, 1257 (1967).
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=-'„rr/Ac ——,'(A%')—137/4. (This is a lower limit; n
would be even larger if e is the difference of two large
numbers. ) Thus, for low-lying states we have from (4)
the linear trajectory in the quantum number E:

Mrr'= (mis+mss)+AN,

where the slope is determined in terms of the masses of
the constituent and n.'-

X =2mtms/(rr/Ac) . (6)

The magnetic form factor of the dynonium obtained
from the matrix elements of the conserved current
operator J„(h) is given by

Gsr(t) =const(1 —cosh'Ht/4M') —', (I)
where M' is the ground-state mass (proton) and the
parameter cosh'8 is also given in terms of the masses of
the constituents" in the special case (A3): cosh'e
=M '/q' where q' is the magnitude of the center-of-
mass three-momentum at the bound state. The slope of
the form factor is then given by'5

cosh'0 2m/—2
dt, s 4M~' LM' —(ml ills)']t M' (mt—+ms) ]

= (2mss) 'n'/(n' —E') . (8)

dG

We now make some estimates using the empirical slope
of the Regge trajectories and the slope of the form
factors assuming, for the sake of an order-of-magnitude
estimate, the simplified (although incomplete) Eqs. (5)
and (8).'s From the slope of the trajectories (with re-
spect to JV), X=1 GeV', we find wires=sn/ho=16
GeV', using the value of n/bc=34 discussed above. On
the other hand, from the empirical form-factor slope of
approximately 1/2ms'=2. 8 (GeV) ', we see that one
of the masses of the constituents must be small, about
~ GeV, and the other therefore large, like an atom.
These numbers must be taken as order-of-magnitude
estimates only; the more accurate values will depend on
the more detailed mass formulas'4 and other empirical
consequences of the model.

A model of this type opens up a number of new ways
of looking into the problem of hadron structure and

"It is worth noting that the singularity of the 0(4,2) form factor
(7) coincides with the singularity of the triangular diagram at
tI=4mp —(mp+mI2 —3P)'/m12 where m2 is the internal line
coupled to the photon. This equality, 6rst noticed in the case of
the H-atom equation t A. O. Harut and H. Kleinert, Phys. Rev.
160, 1149 i1961'lj can also be used to derive the mass formula.
However, this does not mean that the O(4,2) vertex is equivalent
to a triangular diagram; in particular, the normal threshold is
obviously missing in our vertex. See also C. Fronsdal, Phys. Rev.
171, 1811 {1968);P. Budini and G. Calucci, Nuovo Cimento
(to be published)."In the nonrelativistic kinematics, these two quantities, i.e.,Df/dn and dG/dt, are sufhcient to obtain 0.: n/Ac=42(diV/dn)
X (dG/dt)' '. A previous estimate (Ref. 5) based on this formula
gave n=3 for the proton. However, in the relativistic kinematics,
these two quantities are not sufFicient to determine the three
unknowns A mI and m&, unless we use the independent estimate
of 0. given above.

hadron interactions. For example, we can associate
meson towers with the representations ~ =0, and obtain
essentially the same trajectory as in Eq. (5), which
explains the approximate equality of the slopes of
mesons and baryon trajectories. Furthermore, the abso-
lute values of the magnetic moments of the dyonium
/there are several of thempossible with dyons (&e, &g)]
can now be computed, and will be due to both e; and g;
(although g=gi+gs=O). We further expect a great
symmetry in the states of a dyonium atom, but the
scattering of two dyoniums (i.e., dyonium molecule)
would have a broken symmetry. Ordinary hadron
systems (pp or sp) correspond in this model to dyonium
molecules, " a remarkable electromagnetic origin for
strong interactions. To conclude, we have tried to show
in this paper that the electromagnetic form factor is one
of the important experimental manifestations of the
relativistic dynamics of the dyonium model. "

where
(~.P"+PS+v)u(P) =o,

J„=rriI'„'+nsP„+usP„S'+irr4L„„q",
r„'=I'„+A„, S'=S+A

(A1)

(A2)

Here I'„and S are 0(4,2) generators, and

q = [oi'P„P~—(nsP P~+P)')'~'

is the magnitude of the center-of-mass momentum.
The constant parameters are given in terms of the
masses of the constituents mi, m2 and the coupling
parameter rr (in analogy to the relativistic H atom
without Lamb-shif t-type terms):

rr, =1, cr, = cr/2mi, c—rs= 1/2mi, p= (mi sos')/2rifi,
y=rr(mt'+mls')/2m„rr4 ——0. (A3)

As compared to the previous wave equations, "' " the
new terms A„and A. are responsible for the spin-orbit
splitting and have the effect that the quantum number
n is replaced by S."The particular choice of the param-
eters n;, p, 7 given above reduces the set of parameters to
~i, rws, and n. In Ref. 3(b), a direct experimental
determination of these parameters is given.

«7 This interpretation of the, broken symmetry of hadron and
the difference between symmetry of the multiplets and symmetries
of scattering was discussed extensively several years ago. See
A. O. Barut, in High Energy Physics and Elementary Particles
(IAEA, Vienna, 1965), pp. 679—694, and in Eon-Compact Groups
in Particle Physics, edited by Y. Chow {Benjamin, New York,
1966), pp. 1-22.

"A detailed semiclassical study of the dynonium can be found
in the author's contribution in Topics in 3fodern Physics —A
Tribute to E. U. Condon (Colorado Associated U. P., Boulder,1971).For details and tables on form factors see A. O. Barut, in
Proceedings of the Second Co~al Gables Conference on Fundamental
Interactions, edited by H. Odabasi and W. E. Brittin (Gordon
R/Breach, New York, 1970), pp. 199—220.

APPENDIX A: WAVE EQUATION

The infinite-component wave equation underlying the
mass formula (4) can be taken to be of the form
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APPENDIX 8: ORIGIN AND INTERPRETATION
OF WAVE EQUATION (Al)

There is no complete closed solution of the relativistic
two-body problem in quantum field theory even for
small coupling constant o., let alone the large-o, case that
we are considering. The Klein-Gordon and Dirac
equations provide nonperturbative closed solutions and
correspond in perturbation theory to a summation of a
whole class of diagrams; but they do not contain
relativistic recoil corrections, which become essential
when the masses of the constituents are comparable, as
in positronium. The infinite-component wave equations
remove completely the last difFiculty yet allow closed
solutions, because the Lorentz transformations are
applied to the system as a whole and not to the relative
coordinates. "The method of constructing such wave
equations is as follows. We start with the nonrelativistic

Hamiltonian, which in the case of dyonium is

I
II= ~,'+

29S
p2

2m' r

We then transform II into an algebraic form to identify
a complete linear space of states which in this case is a
particular representation space of the dynamical group
50 (4,2) characterized by v. The group SO(4,2) contains
Galilean as well as Lorentz boost operators; we replace
the Galilean boost operators by the Lorentz boost
operators to arrive at states with momentum I'„. On

this space of states with momentum I'„, we construct a
colserved curremf operator J„correctly generalizing the
nonrelativistic mass spectrum (2). Because the external

photon must be coupled to a conserved current, which

is unique for a given mass spectrum, we can evaluate
the form factors from the matrix elements of J„.
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Formal low-energy theorems for matrix elements involving the stress tensor can be used to derive the

differential equations that express scale and conformal invariance. We show that these equations, when

applied to a single-particle matrix element of two fields, yield an integral representation that violates

causality save for the trivial case where it reduces to the tree graphs of a free field, Although it is possible

to construct conformally invariant, fully o8-mass-shell amplitudes whose restriction to the mass shell yields

a nontrivial result, these on-mass-shell amplitudes are not invariant under conformal transformations. This

pathological behavior can be traced to an implicit assumption of analyticity when the stress tensor carries

off small momenta that is, in general, false.

' 'HERE has been considerable interest recently in

the possibility that scale invariance and, perhaps,
even the full conformal group, may have some role to

play in high-energy physics. ' Three general areas have

been studied: the scaling behavior of 6eld theory at
short distances, theories with broken scale symmetry,
and the structure of amplitudes that are strictly in-

variant under the conformal group. The study of strict
conformal symmetry is motivated by the idea that,
although many high-energy processes, such as elastic
scattering, are by no means scale invariant, there may
be other reactions of an inclusive nature, such as
inelastic electroproduction, that do become conformally

invariant at high energy. Thus, at high energy, these

processes may be described by conformally invariant

amplitudes with massless particles. We have shown. '
*Research supported in part by the U. S. Atomic Energy

Commission under Contract No. AT(45-1)-1388.
' A review of the recent work with references to the literature

has been given by P. Carruthers, Phys. Repts. (to be published}.
~ D. G. Boulware, L. S. Brown, and R. D. Peccei, Phys. Rev.

D 2, 293 (1970).This paper also contains a brief introduction to
the geometry of the conformal group.

that, when the amplitudes for massless particles are
obtained as the limit of o6-mass-shell amplitudes, fully

conformally invariant structure functions can be con-

structed for the electroproduction process. ' On the

other hand, the application of strict conformal sym-

metry to mass-shell amplitudes, 4 for zero-mass external

particles, gives rise to various difFiculties. We shall

discuss some of the troubles here.
We begin by considering5 o6-mass-shell amplitudes

that have a stress-tensor insertion carrying o6 mo-

mentum k. They obey divergence conditions (Ward-like

identities) that yield low-energy theorems. A proper
stress-tensor vertex is thereby determined including

terms up to order k. The symmetry of the stress tensor,

in conjunction with this determination in order 1,
implies that the oR-mass-shell amplitudes without the

3%e found, however, that invariance under the full conformal
group gives no restrictions on these functions other than that of
simple scale invariance.

'Such an application of strict conformal symmetry has been
suggested by D. J. Gross and J. Wess, Phys. Rev. D 2, 753 (1970}.

' Our method is a straightforward extension of that of Gross
and %'ess to oG-mass-shell amplitudes.


