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Deep Space Instrumentation Facility. ~o Nor can the
passive radio-astronomical observations measure to such
accura, cy." But for an E.M. signal originating at

' Deep Space Instrumentation Facility, Jet Propulsion Lab.
System specification, Code No. 23835, Spec. No. D0%-1389-DTL,
Rev. A. , 1970 (unpublished).

"Typical signal-strength measurement is about to two-digit
accuracy [A. T. Moffet (private communication)].

3f/r& 0.1 or nearer to a compact star, such a change of

signal strength should be observable on earth. In
pI'inclplc this cRcct may provide another test of

classical electromagnetic theory and general relativity,

or may be used to single out the particular amplitude

correction caused by gravitation.
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The transition probability for electron scattering in the Kapitza-Dirac experiment is calculated using
non«lativistic theory as a function of the time of Right t of the electron through the light beam, and as a
function of the intensity. It is found that for intensities up to approximately 10' %/cm' the probability
equals sinsaof, where ao is proportional to the intensity. At intensities of the order of 10s W/cm', the de-

pendence of the probability on the time is more complicated but it also oscillates between zero and nearly

unity as the time increases. Both 6rst- and second-order Bragg reflections are considered as well as condi-
t1ons off the Blagg max1mum.

I. INTRODUCTION
' 'N 1933 Kapitza and Dirac' predicted that electrons
- ~ of well-defined momentum could be rejected from
a standing light wave provided that X„=Xcos8, where

X„ is the de Broglie wavelength, X is the radiation
wavelength, and 0 is the angle of incidence. They called
this a first-order Bragg condition, the lattice spacing
being —,'X. The probability per electron that reflection
would take place was shown to be proportional to the
square of the light intensity. At the time an experiment
was impractical, given the intensity of available sources,
but recently several attempts have been made to
demonstrate this effect using Q-switched lasers as a light
source. ' Electrons scattered by the light beam have been
obsci vcd but, thc dcpcIldcIlcc of thc pl obabillty of
sca, ttering on the angle of incidence and on the intensity
of the light ha, s not yet been determined experimentally.

The formula for the transition probability given by
Kapitza and Dirac, ' derived using the theory of
stimulated processes, is not valid at intensities used
in current experiments, for it would predict probabilities
in excess of unity. It is therefore essential to reexamine
the theory of this scattering problem. The hrst extensive'
published investigation is that of Fedorov. ' The SchrOd-

' P. L. Kapitza and P. A. M. Dirac, Proc. Cambr. Phil. Soc. 29,
2N (1933).

~ L. S.Bartell, . R. R. Roskos, and H. Bradford Thompson, Phys.
Rev. 165, 1494 (1968); L. S. Bartell, Phys. Letters 27'A, 236
(1968);H.-Chr. Pfeiffer, ibid. 25A, 362 (1968);H. Schwarz, Ann.
Physik 204, 2/6 (1967); V. Takeda and I. Matsui, J. Phys. Soc.
Japan 25, 1202 (1968).

g M. V. Fedorov, Zh. Eksperim. i Teor. Fiz. 52, 1434 (1967)
LSov. Phys. JETP 25, 952 (1967)j.

inger equation, used to describe the electron, is cast
into the form of a Mathieu equation by neglecting
the time dependence of the standing light wave, treated
as a classical field. Solutions are found, however, only
in the case of either very low intensity, or of very high
intensity, and predictions are not made in the intensity
range used in recent experiments. Ezawa and Namai-
zawa4 have also investigated solutions to the Mathieu
equation. Schoenebeck' uses a modified 6rst-order
perturbation method to obtain a solution to the
problem.

In this article a somewhat diferent approach is
taken. The nonrelativistic Green function for an
electron in a standing-rvvave field is calculated using
perturbation theory. By neglecting the rapidly time-

varying part of the electron-6cld interaction, it is
possible to sum the perturbation series completely and
obtain exact scattering matrix elements between states
of definite electron moment. This permits the transition
probability to be evaluated for pra, ctically arbitrary
intensities and interaction times. It is possible in
addition to examine the transition probability for
electron momenta not satisfying the Bragg condition,
and to calculate the probability of higher-order Bragg
rcQections.

II. THEORETICAL BACKGROUND

A. Preliminary Remarks

The procedure adopted in this article is to calculate
the scattering amplitude via the nonrelativistic Green

4H. Ezawa and H. Namaizawa, J, Phys. Soc. Japan 25, 458
(1969).' H. Schoeneheck, Phys. Letters 2'/A. , 286 (1968).
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Qight of the electron through the laser beam in the real
experiment. The symbol t~ previously introduced has
been replaced by t for simplicity. j The momentum
distributions C~ and C; are normalized in the following

way:

iCr(p) ~'dp=N ' [C;(p)i'dp=1. (2.22)

The probability of detecting an electron may be written,

J"=g [S, 'iz=X-ia z dP, [C,(P,—2k&) [z
f

2

X — dpi . (2.26)
2x
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where the expression within the second curly brackets is
identical with that within the erst curly brackets, but
with k —+ —k, and where for simplicity to has been put
equal to zero.

For the calculation to correspond to the experiment
originally proposed by Kapitza and Dirac, ' it will be
assumed that C, (po) is sharply peaked near pz

———kk.
Other initial momentum states will be considered later.
Because, as usual, the electrons will be detected
incoherently, the final-state wave function may be
chosen to be sharply peaked near p= pr.

r*(P)= ( Pr)'"~(P Pr) (2—24)

The function ~C;~' in expression (2.26) can be con-

sidered as a 8 function in the integration over pr
provided that it is considerably narrower than the
function of pr resulting from the integration over orz.

The sharpness of the latter function depends on the
time. For example, consider the function resulting from
the integration of the first term in curly brackets in

Eq. (2.25):

1 ~icOI g
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2zr (~z —ze)[coi —2k(pr —ki' )z/ m—ie]

sin(pr —k k) kt/m
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(pt kk)k/m—
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K(p„t) is peaked at pr=kh and has a width approx-
imately equal to b, =2zrm/kt, which obviously decreases
with increasing t. If ~C;~ is to be considered as a 8

function, the momentum range in C; must be less than
h. This turns out to be a reasonable assumption in
practice. Suppose that the initial electron wavepacket
is localized in a region of space approximately 1 mm in
size. Then the width of C; must equal approximately
Ap=h/6@=10 " kg m/sec. The requirement that 6
be greater than hp implies that t must be less than 10 '
sec. This condition is satished in any experiment with
a Q-switched laser, where the pulse duration is of the
order of 10 'sec.

With this assumption (and with the previously
mentioned. assumption that C; is centered at po

———kh),
the probability (2.26) becomes simply

hpr is an infinitesimal range of final momenta and
8(p —pr) is a 8 function defined so that (2.22) holds.
An integration of the square of the scattering amplitude
must of course be performed over pr.

It will be assumed that only those electrons with
momenta pr near the value kk are detected. In this case,
the second term of Eq. (2.23) may be omitted, and the
scattering amplitude takes the form

5'rz' = (& &Pt) (ao/2zr) exp( iao(2t+co ' sin—2~t) )
gltzzI g 1

8() 1
dory +

2zr ~z —ze &ui —ze 2(a&i —2~—zz)

i =aoz[t+ (sin2&ot)/2u]z. (2.28)
2(biz+20& —zl)—

For times much greater than 1/&v, the second term in
brackets in (2.28) is negligible compared to the first
term. If a ruby laser is used, or =2.72&&10" sec ', and
so for times greater than roughly 10 "sec, the transition
probability equals just (azt)'. We reiterate that t is
the time of flight of the electron through the laser beam.
Introducing the relation between the intensity of light
and the quantity ao, we obtain for the transition
probability2[(vi 2(u 2k(pr —kk)/—m iej— —

1

XC;(pr —2kb) dkoz

coi ie &vz 2—k(pt k—k)/m —ir. —

(2.25)
2(coz+2(o 2k(pr kh)/—m ieg—

(2.29)
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where I is the sum of the intensities of the two traveling
waves forming the standing wave, and whele Fo is. the
classical electron radius. This formula is equivalent to
the one derived by Kapitza and Dirac. ' If I=10
W/cm', a typical value in a Q-switched laser experiment,
one calculates that P' equals unity for a time 1=0.28
X10 ' sec. This first-order treatment clearly cannot
be trusted for times of Right of this order or greater.

D. Higher-Order Correl:tions to S~ .
Low-Intensity Case

The next correction to the Green function which will

contribute to transitions from the state of momentum

po
———kh to the state of momentum p=kk occurs in

the third order of the perturbation series (2.5). This

correction is

AG" = ciao'(27r)-' exp{—i[(&0~+2ao) t+aoa) ' sin2(ut])

exp{i[&1(t—t8) +C02($3—I2) +%3($2 $1)+—M4ti] j
X ' 41 c4 (1+cos2a&/3) (1+cos2Mt~) (1+cos2co&i)

&]—ZC ~2 —Z6 M3 —ZC 6)4
—Z6

Xexp {—i[(M„,—~„)t,+(~„,—~„,)&2+(~„—~„,)t,])[)(—p+2k k+p,)+S( p 2k b—+p—5)]

X[8(p5+2kk+p8)+~( —
p&

—2kb+ p3)][~(—p3+2kIi+po)+&( —p3 —2kh+p&)]. (2.30)

Explicit calculations, not given here, show that contributions to AG" coming from terms containing the factors
cos2~)~, cos2co/2, and cos2cot3 are negligible compared to the single term without such factors, for times much

greater than cv ', as was the case in the first-order calculation just discussed. We henceforth neglect such terms

completely, and the problem reduces to that of an electron in a stationary sinusoidal held; Fedorov' arrives at the
same conclusion using a different argument.

Now performing the integrations over the intermediate times, and over the variables ~~, co3, and co4, we obtain
from Eq. (2.30)

AG" = (Ãao'/2~) exp{ i[(a)„—+2ao) t+ao(o ' sin2(A])

g'bed I 5

Jp5dpgdMi
(&i—«)(& i ~is —«)(~i ~i 3 «)(» ~uo

X[&( .)+&( ")][~( )+~( ")][~( . )+~( )]

P. kb
P

-2kb

2kb

(b) (c}

FIG. 1. Diagrams arising in third order.

where A»=co„—co», etc. , and the product of 5 functions
is identical with the last factor of Eq. (2.30).

The result of the product of the various 6 functions is
conveniently visualized by means of diagrams. The
quantities 2kh (—2kb) occurring in the arguments of
the 8 functions are indicated by incoming (outgoing)
horizontal lines, and the electron momenta p3, p~, etc. ,
are indicated by vertical lines. The three diagrams
corresponding to the part of AG" in which we are
particularly interested at the moment are shown in

Fig. 1. In Fig. 1(a), P, =P,+2kh, P, =P3—2kk, and

p=p5+2kh, which are the conditions dictated by one

of the triplets of 6 functions. If the electromagnetic
field had been quantized, 2kb would be identified with

the change in momentum of the radiation 6eld, due to
the absorption by the electron of a photon of momentum

kk from one wave (the "incident" wave) and the
emission by the electron of a photon of momentum
—kk into the other, stimulating, wave. This two-photon

process is indicated in I'ig. 1 by a single horizontal line

and vertex. Vertical lines on the diagram are identified

with factors in the Green function. In Fig. 1(a) the line

p corresponds to the factor (cubi
—ie) ', and the line p~

corresponds to the factor (~i 6„, ie)—', et—c. These
factors are called propagators. The quantity summed

to ~y —ze in any propagator is the difference between

the corresponding intermediate electron energy, and
the final energy, divided by h. Associated with every
vertex in a diagram is a factor Go ln the corresponding

contribution to the Green function.
Inspection of Eq. (2.28) shows that in first order, the

probability of scattering reduces to the absolute value

squared of a certain contour integral involving products
of propagators; this is true in any order of perturbation
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theory. This contour integral will be called a transition
amplitude. Corresponding to every scattering diagram

j is a certain contour integral E; and the sum of all
integrals for all possible diagrams is the complete
transition amplitude E, the square of which is the
desired probability. Ke will henceforth concentrate on
the transition amplitude rather than on the Green
function itself; the latter may be obtained in an
obvious way from E.

Vsing the rules described in the previous paragraphs,
the amplitude E; can be written immediately, given
an arbitrary diagram. For example, the amplitude
corresponding to the diagram of Fig. 1(a) is assuming

pp
———kh, and p=kh,

ap
dMj

2m (coZ —Ze)'

'iaptp (Zg Z)
2—=Z

(g ie)'—
(2.32)

31

where we have made the change of variable g=orz/ap and
where e/ap has been simply replaced by e to avoid
introducing a new symbol. ' In fact, all those diagrams
in which the intermediate electron momenta equals
~kh have an amplitude which is similar in form to
(2.32). If 2m+1 equals the order of perturbation,
v=0, 1, 2, . . . , we find~

00

E'= P-
&=p 2'

t.iaoty

(~ i ')2n+2
(2.36)

In the region ~'Z
—

i& ~ )1, the operations of summation
and integration can clearly be exchanged; the integrand
then contains the sum

Dirac formula (2.29) is the 6rst term in the expansion
of (2.35) in powers of apt. The Kapitza-Dirac formula
gives an accurate prediction at these relatively low
intensities (so far as Q-switched lasers are concerned),
only if the product apt is of the order of O. i or 0.2. If the
product apt equals unity, the probability given by
(2.35) equals 0.7, not 1.0 as predicted by (2.29).
Although this error would not seem serious, the situation
is quite different if apt=+, when the probability equals
zero according to (2.35). This illustrates one of the
hidden dangers in attempting the Kapitza-Dirac
experiment, not previously emphasized; it may very
well happen that for the interaction time and intensity
in a given experimental setup, the transition probability
equals zero. For a total intensity of 10' W/cm' this
would occur at a time t=e(0.88X10 ') sec, e integral.

Before proceeding to consider more general diagrams,
we examine again the contribution to the transition
amplitude from the "ladder" diagrams where the
intermediate momenta equal ~kh. This contribution is

'tapt 2 (Zg ') 2n+I

E,„,= —d'„= ' . (2.33)
2n. ( ie)'"+—' (2zz+1) ' n O(g —=Ze)'"+' (g —Zp)' —1

ie( &—1. (2.37)

(ZC ~)
2n+1

E =P E2 yr=i P
n=o n=o (2"+1)!

= —sin apt. (2.34)
&supt'7

E
2n. (g —i2)' —1

= —slnapt (2.38)
If these were the only diagrams of importance, one
could assert that the transition probability is

In each order of perturbation there is only one diagram
of this type; the contribution to the total transition

The function S(p) is now analytically continued by the
last member of (2.37) over the entire complex plane,
and we write for the transition amplitude

I= sin apt q (2.35)

an expression which is nearly the same as that derived
by Fedorov' for the case of low-intensity fields. As will
be discussed in more detail later, (2.35) holds for
intensities less than roughly 10' W/cm'. The Kapitza-

p= kh

p=3kh

' It may be remarked here that if the calculation were attempted
using the standard rules for constructing scattering amplitudes
from Feynman diagrams, Fig. 1(a) would give an infinite con-
tribution because the two intermediate propagators, lines p3 and
p~ in the diagram, blow up. These improper diagrams can be re-
moved by renormalizing the wave functions, but this procedure is
rather complex as may be seen in the article by Z. Fried and J. H.
Eberly, Phys. Rev. 136, 88/1 (1964).The procedure here obviates
this difhculty.

7 Only odd order perturbation terms contribute to transitions
from po= —kk to p=kk.

p=-kh

p=-3kh
I

p=-kh
O

FIG. 2. Example of a 6fth-order diagram.
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which is identical to (2.34). This procedure of ana-

lytically continuing the perturbation series over the

entire complex q plane will be extended to the case of

more complex diagrams.

E. General Case

In a more general diagram, the intermediate momen-
tum of the electron can naturally be greater than kk.
Consider, for example, the 6fth-order diagram shown
in Fig. 2, and the corresponding amplitude,

ap'
dMy

(Ml M)(M1 E'er Ze)(0&1 Ayg —M)(M] —Dyr —Ze)(M1 +y4 &&)(M 1—+go re)
(2.39)

We have pe= —kh, pr= 3kb,—pe= kk, p—3=kb, and
p4=3kk; hence D»=h„,= 4k k/m—=p and A„,=5»
=6„,=0. Introducing the new variables rf =cor/ae
and o.=p/ae, replacing e/ae by e as before, we obtain
for (2.39)

3kA', —kh, —3k', equals m&, m2, m&, e&, respectively.
In the example cited above (I'ig. 2), nor=1, m~ ——1, and
n, =1.The order of perturbation is N=2(nrr+me+nr)
—i. The number of diagrams which correspond to the
same integral E~ is'

gia0ty1
E5= — d'g (2.40)

2~ (rf i e) '—[(rf ie) (—rf n —i e) 7—'
/mt+m2 —1) t'mr+nr —1)

)k n,
(2.42)

The factors in the denominator have been grouped in
the way shown to stress the fact that when a factor
(rf —n —ie) occurs, it must be accompanied by a factor
(ri ie), —and that the remaining factors (rf

—ie) occur
in pairs. These statemerits hold in general, as may be
veriied by the inspection of an arbitrary diagram.

The general expression for the amplitude correspond-
ing to diagrams in which the absolute value of the
intermediate momentum can be no larger than 3kb is

The contribution to the total amplitude from these
diagrams is

E'= Q P nK~.
mI=1 m2, n2=Q

(2.43)

As in the example already discussed [Eqs. (2.36)—
(2.38)7, the order of integration and summation may be
interchanged in the region where the sum converges.
Using twice the formula

iaptg1
+N

2rr (rl i,e) 2™'—[(rf ie) (rf —n ie—)7~—'+» , (2.41) (2.44)

where m~, m~, and e2 are integers. The number of times we obtain for the sum of the products of the propagators
a propagator is found with momentum equal to kk, the expression

00 00 1 mr+ rn2 —1) esr+n 1r)~(~)= Z
mr=1 mr, n2=0 (rf —$e) ~&[(rf—je) (rf rr je)7—~2+—~2 yg& ) n&

1
= —1—

2
'g —16—

'g 0! ZE.

Z6

g —A —Z6

(2.45)

As previously, the function S is extended over the
entire complex plane by analytic continuation, and the
amplitude E may be derived from the right-hand side

of (2.45).
This procedure is now generalized to include diagrams

with intermediate momenta of arbitrary magnitude.
It is readily shown8 that the sum S becomes a continued

fractiog. ,

if 1 1 1 1 1
S(s) = -I

2&1—s —s —n —s —3n —s —6u—

+— (2 46)
1+ s —s —n —s —3n —s —6n — )

' The problem of counting diagrams of the type encountered
here has been considered by Z. Fried and J. H. Eberly, Ref. 6,
where a proof may be found for relation (2.42).



where for compactness g —ie has been replaced by s.
Expression (2.45) simply equals expression (2.46)
terminated at the third level.

The evaluation of the scattering amphtude

E= — dt) S(I))e'"'&
27r

(2.47)

reduces to the determination of the poles and residues of
the two continued fractions in (2.46). It is seen that E
consists of the sum of a number of complex exponentials,
one for each pole of 5. The amplitude of each exponen-
tial equals the residue of 5 at the corresponding pole,
and the argument is proportional to the product of the
location of the pole, the time, and the intensity.

We have not found an expression in terms of known
functions for S(s), Kq. (2.46), and hence it is not
possible to check analytically whether the solution
satis6es the original equation. The continued fraction
has the same form as those used in the solutions to the
characteristic equation of the Mathieu equation; this
is not surprising since the problem has formally a

- solution in terms of Mathieu functions. Because the
continued fraction is readily investigated numerically,
there is no pressing need to introduce these functions.
We remark that a procedure similar to the one developed
in this article has been used to obtain the Green
function for an electron in a circularly polarized
monochromatic traveling wave; in this case, the
continued fraction playing the role of (2.46) can be
expressed in terms of Bessel functions and the solution
can be shown to satisfy the original Green function
equation. ' One may therefore have con6dence that
Kq. (2.46) correctly describes the behavior of the
electron.

tensities, where o, is in the range from —1 to —10, the
residues at the poles near 0., 3e, and 6n must be included
and the transition amplitude has a more complicated
form. The sum of the residues of 5 equals zero, and
the sum of the absolute values of the residues equals
unity. This ensures that 6rst of all the probability
I'=

~

E~' tends to zero as( tends to zero, and secondly
that the probability cannot exceed unity.

In the numerical analysis the continued fraction is
terminated at a certain level. This is equivalent to
omitting contributions from diagrams which contain
electron momenta greater than a certain value. For
example, the transition amplitude obtained from the
terminated fraction (2.45) does not contain contribu-
tions from diagrams in which the electron momentum is
greater than 3kb, If the fraction were terminated at the
cxpllcltly wllttc11 poltlon of (2.46), diagrams 111 wl11ch

the momentum was greater than 7kb, would be omitted.
It was found that even at the highest intensity con-
sidered (I= 10s W/cm', tt = —1), diagrams in which the
intermediate momentum is greater than approximately
Iskb contribute very little to the transition ampHtude.

The transition probability has been evaluated
numerically as a function of the time for a number of
cases of practical interest. Graphs of this probability
are shown in Figs. 3 and 4. For the lowest intensity
LFig. 3(a), solid curvej, the probability varies practic-

0.5

III. NUMERICAL RESULTS

A. Transitions from Ps ———kh to P =RA

The behavior of S LKq. (2.46)j has been investigated
numerically using a digital computer. Isolated poles
are located near 1—1/n, —1—1/n, and two poles close
together are found at each of the locations o,, 3o., 6n, etc.
The value of the residue at a given pole depends strongly
on n, which is related to the intensity in the following
way:

n = —8 ((oh/mc') (rsXI0 II/aIh) ' .
For a ruby laser of total intensity I=10I W/cm' (an
order of magnitude lower than the output of available
Q-switched lasers), tt= —100. For n in this neighbor-
hood, the residues at the poles near 1—1/n and 1 1/n- —
arc nearly equal to +-,'and ——,', respectively, and the
residues at the poles near e, 3o., etc., are negligible.
The transition amplitude is then given to an excellent
appl'oxlIllatloll by cxpI'cssloll (2.34). A't Illgllcl III-

' R. Gush and H. P. Gush (unpublished).

0.5

0.5
Time, nanoseconds

FIG. 3. Transition probability P as a function of the interaction
time. The solid line is for transitions from —kk to kk, the dashed
line for transitions from —kk to —kk, and the dotted line is the
transition probability to all other states. The standing-vrave
intensity equals {a) 10' W/cm', (b) 2)&10' W/cm'.
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06--

(c)

itn =—'k and 5=k. The continued
fraction which is analogous t q. .46oE . 2.46 is

S(.) = ~.-P/2-
3s —n —p —s —3n —pp—

1 1

s —6u —2P — s —a+P/2—

06

--1
1 1

. )-iX
s —3n+P —s —6n+-, P—

(3.2)

(b)

0.6—

(o)

0.5
Time, nonoseconds

I.O

abilit I' as a function of the interactionI ro. 4. Transition proba i i y a tion
time for a st g-ndin -wave intensity o
(b) transition probability to a o er s

= —8/k. One can show that when 8==0 3.2where p= —n . ne
to (2.46). We have investigated the beha

'
ehavior of

this continued fraction in t e ca
= —10. In I'ig. 5 we show the results for n = — on y.
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C. Transitions from po ———kA to P=—0 = —APL

rin has been calculatedThe probability of no scattering
ee ualto-the initial momentum to e q

(2.46) with the exception that the second raction. in

the brackets is subtracte rom n

mmed. The transition probability is plotte in ig.
(dashed line), and Fig. 4 c, w ere
with the probability for transitions from — o

I.O—

B. Transitions from Pp= ( 0+5) P—g g to = (it+6) A

ve concentrated on transitions from

whi h the electro n
=kIg. It is clearly possi e o ex

tions to include the case in w ic e e

rnomenta does not satisfy t e ra
have treate e cad th se of transitions from

0.5
Time, nonoseconds

i.o

abilit I' as a function of the interactionp o

B=O. d h d li 8=-'k.intensity of 108 Wjcm~. Solid line,
dotted line, 6=k.



ELECTRON SCATTERI NG I ROM A STAN D IN G LI GHT KA VE

Also plotted in these figures is the probability of transi-
tion to all other states except kk and —kh, obtained by
subtracting from unity the sum of the two probabilities
explicitly calculated. At low intensities, transitions to
other states are almost negligible but this is not the
case at high intensities [Fig. 4(b)j. An electron beam
passing through the laser Geld of intensity I=10'
W/cm' would be scattered into a fan, as was predicted
qualitatively by Fedorov. '

l.O—

S"(s)=F '
(s+-',n)F —2

(3.3a)

F=s— (3.3b)
Q —s—4cL —8 =Q —s—12Q—3 g5

2

The results for the second-order Bragg reflection are
shown in Figs. 6 and 7 for two intensities, o, = —10 and
n = —S. The transition probability rises to a maximum

l,o—

5
Time, nanoseconds

FIG. 6. Transition probability for a second-order Bragg reQection,—2k' to 2k', for a standing-wave intensity of 10' W/cm'.

D. Transitions from Po
———2%A to P =2%Ps

In analogy with x-ray scattering, one would expect
higher-order Bragg reflections to occur. These corre-
spond in a quantized field description to the absorption
of e photons from the primary beam and emission of e
photons into the stimulating beam. We have examined
the second-order Bragg reflection corresponding to m =2.
The continued fraction may be shown to be

I

Time, nanoseconds

FzG. 7. Transition probability for second-order Bragg reflection,—2k' to 2k', for a standing-wave intensity of 2X10' W/em'.

considerably later than for the case of first-order Bragg
reflection, but it practically attains unity in the cases
studied and oscillates with time. Presumably, higher-
order reflections would behave similarly but these cases
have not been worked out.

In conclusion we repeat the important result,
with respect to experiments, that the transition
probability in the Kapitza-Dirac effect oscillates
rapidly with time of flight between zero and roughly
unity and, as a consequence, certain experimental
conditions are very unfavorable for a demonstration of
the effect. At moderate laser intensities, the electron
behaves like a two-state quantum-mechanical system
driven in resonance, passing periodically from the
initial state to the excited state, and back to the
initial state. It has also been shown that, at high
intensities, electrons are likely to be scattered into a
large number of final states which would make quantita-
tive analysis of a scattering experiment dificult. Lastly,
it has been shown that the probability of high-order
Bragg reflections can be nearly unity; this suggests
that an experiment to detect such reflections should be
no more dificult than the original experiment proposed
by Kapitza and Dirac.
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