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Deep Space Instrumentation Facility.? Nor can the
passive radio-astronomical observations measure to such
accuracy.” But for an E.M. signal originating at

% Deep Space Instrumentation Facility, Jet Propulsion Lab.
System specification, Code No. 23835, Spec. No. DOW-1389-DTL,
Rev. A, 1970 (unpublished).

2 Typical signal-strength measurement is about to two-digit
accuracy [A. T. Moffet (private communication)].
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M/r<0.1 or nearer to a compact star, such a change of
signal strength should be observable on earth. In
principle, this effect may provide another test of
classical electromagnetic theory and general relativity,
or may be used to single out the particular amplitude
correction caused by gravitation.
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The transition probability for electron scattering in the Kapitza-Dirac experiment is calculated using
nonrelativistic theory as a function of the time of flight ¢ of the electron through the light beam, and as a
function of the intensity. It is found that for intensities up to approximately 107 W/cm? the probability
equals sin?aof, where ao is proportional to the intensity. At intensities of the order of 10° W/cm?, the de-
pendence of the probability on the time is more complicated but it also oscillates between zero and nearly
unity as the time increases. Both first- and second-order Bragg reflections are considered as well as condi-

tions off the Bragg maximum.

I. INTRODUCTION

N 1933 Kapitza and Dirac! predicted that electrons
of well-defined momentum could be reflected from

a standing light wave provided that A, =N\ cos®, where
)\, is the de Broglie wavelength, A\ is the radiation
wavelength, and & is the angle of incidence. They called
this a first-order Bragg condition, the lattice spacing
being i\. The probability per electron that reflection
would take place was shown to be proportional to the
square of the light intensity. At the time an experiment
was impractical, given the intensity of available sources,
but recently several attempts have been made to
demonstrate this effect using Q-switched lasers as a light
source.? Electrons scattered by the light beam have been
observed but the dependence of the probability of
scattering on the angle of incidence and on the intensity
of the light has not yet been determined experimentally.
The formula for the transition probability given by
Kapitza and Dirac,! derived using the theory of
stimulated processes, is not valid at intensities used
in current experiments, for it would predict probabilities
in excess of unity. It is therefore essential to reexamine

the theory of this scattering problem. The first extensive:

published investigation is that of Fedorov.? The Schrod-

1 P. L. Kapitza and P. A. M. Dirac, Proc. Cambr. Phil. Soc. 29,
297 (1933).

2 L. S. Bartell, R. R. Roskos, and H. Bradford Thompson, Phys.
Rev. 166, 1494 (1968); L. S. Bartell, Phys. Letters 27A, 236
(1968) ; H.-Chr. Pfeiffer, ibid. 26A, 362 (1968) ; H. Schwarz, Ann.
Physik 204, 276 (1967); Y. Takeda and I. Matsui, J. Phys. Soc.
Japan 25, 1202 (1968).

3 M. V. Fedorov, Zh. Eksperim. i Teor. Fiz. 52, 1434 (1967)
[Sov. Phys. JETP 25, 952 (1967)].

inger equation, used to describe the electron, is cast
into the form of a Mathieu equation by neglecting
the time dependence of the standing light wave, treated
as a classical field. Solutions are found, however, only
in the case of either very low intensity, or of very high
intensity, and predictions are not made in the intensity
range used in recent experiments. Ezawa and Namai-
zawa? have also investigated solutions to the Mathieu
equation. Schoenebeck® uses a modified first-order
perturbation method to obtain a solution to the
problem.

In this article a somewhat different approach is
taken. The nonrelativistic Green function for an
electron in a standing-wave field is calculated using
perturbation theory. By neglecting the rapidly time-
varying part of the electron-field interaction, it is
possible to sum the perturbation series completely and
obtain exact scattering matrix elements between states
of definite electron momenta. This permits the transition
probability to be evaluated for practically arbitrary
intensities and interaction times. It is possible in
addition to examine the transition probability for
electron momenta not satisfying the Bragg condition,
and to calculate the probability of higher-order Bragg
reflections.

II. THEORETICAL BACKGROUND
A. Preliminary Remarks
The procedure adopted in this article is to calculate
the scattering amplitude via the nonrelativistic Green

4H.) Ezawa and H. Namaizawa, J. Phys. Soc. Japan 26, 458
(1969).
5 H. Schoenebeck, Phys. Letters 27A, 286 (1968).
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function of the electron interacting with the laser field,
using momentum-time representation. This Green
function is defined in general through the following
equation:

p? 9
<_— ““;1*_)6(9;1; POJO)
2m at

+N-1 / dsp'(p| H: ()| p")G (' ,t; Poyto)

=—N#s(p—po)s(t—to), (2.1)

where p, p’, and p, are eigenvalues of the momentum
operator, Hr(f) is an interaction Hamiltonian, and
N=(2wh)3/V, where V is a quantization volume. This
is an integrodifferential equation in contrast to the one
for the Green function in position representation, a
differential equation. The exact solution may be
expressed in terms of a zeroth-order Green function,

Go(p,t; Posto) = —iNO(t—10)5 (p— Do)
Xexp—i(p*/2mh) (t—to),

which satisfies the following equation:

(2.2)
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It is readily shown that the exact Green function
satisfies the equation

G(p,t; Po,to) =Go(p,t; Posto)
N2 / e / 3 a3 AU Golp 1 ' )
X@'[H: ()| p")G@" Y ;poto). (2.4)

The following iterative solution exists for the above
Green function:: '

G(D,t; Posto) =Go+AG+AG + - - - =Go(p,t; Posto)
+N-2p1 / e / asp'ddp" dt'Go(p,t; p'\t')
X@'Hi()|p")Golp"V'; P;,to)
+N=42 / e / a2 dl"Go(p,t; ')
X' He()[p")Go(@" ¥ 59" ,1")

X" [Hi(t") [p™)Go(d¥,t"; Posto)++ - - .

In terms of this Green function, any wave function
in momentum space can be propagated forward in
time using the following relation:

(2.5)

B(p,)=iN-1 ] EYCRLY YR, (2. (26)

1713

It may be verified that ®(p,f) is a solution of the
Schrodinger equation in momentum representation,

(1’1 —ih—a—>q>(p,t)
2m at
+N"‘/ a3/ 1) |p)(0 ) =0, (2.7)

provided that ¥ (p,?) is a solution.

The use of G(p,t; Po,lo) in a scattering problem may
be summarized as follows. Suppose that at time ¢ the
particle in question is known to be free and is described
by a free-particle wave function, ¥;(p,’). Taking into
account the interaction Hjy, this free-particle state will
evolve into a state

B(p,) =i / BHCRLD WP . (28)

If we project this state on to a free-particle state at
time ¢, we obtain the quantity

si=it=[ [ vencond nen. 09

Allowing # to tend to —o and ¢ to tend to + o,
one obtains the usual definition of the scattering
amplitude. If, however, the interaction is known to be
zero for times up to #'=¢, and after times ¢=1,, the
scattering amplitude is given by Eq. (2.9) with ¢ =4,
and {=1;.

The latter situation corresponds rather closely to the
Kapitza-Dirac experiment as it has been performed.?
Experimentally, electrons are released from a gun and
travel freely towards the standing light wave in the
laser cavity. They suddenly enter a region where the
radiation field is large, and just as suddenly leave,
having passed through the laser beam. At the edges of
the laser beam the electrons are free, and inside they
are of course interacting with the laser field. Because
the interaction considered will be independent of ,,
the velocity of the electron perpendicular to the
direction of propagation of the laser beam, the duration
of the interaction #,—Z, equals simply the width of the

- laser beam divided by v,. In other words, the interaction

may be thought of as deliberately switched on at time
t=to, and switched off at time {=¢,.

Finally, one obtains the probability of scattering
taking the absolute value squared of Sy; [Eq. (2.9)]
and summing the result over a range of final states.

B. Choice of Hamiltonian and Zeroth-Order
Green Function

The Hamiltonian of the electron in the presence of
the standing wave is given by the usual nonrelativistic
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formula
I=p*/2m—ep- A/mc+e2A%/2mc? | (2.10)
where A, the vector potential, may be written,
A=A, coskz coswt . (2.11)

It is assumed that the wave is linearly polarized and
monochromatic. For reasons of simplicity it will be
further assumed that the plane containing the initial
and final electron momenta, and the z axis, is perpendic-
ular to A. This permits one to neglect the term in 3C
containing p-A. It is convenient to write the Hamil-
tonian in the following way:

3C=H0+H1 s (2123,)
where
Hy=p*/2m~+a(1+cos2wt) , (2.12b)
Hi=a(14-cos2wt) cos2kz , (2.12¢)
and
a=e*A¢/8mc? . (2.12d)

Because the potential H; does not depend on the coor-
dinates x# and y, the problem may be treated in one
dimension; from now on the symbol p will refer to
the z component of the momentum.

The zeroth-order Green function is chosen to be the
solution of the equation,

(Ho—1hd/01)Go' (p,t; po,to)

=—Nhs(p—po)d(t—to), (2.13)
that is,
G/ (p,t; posto) = —iNO(t—10)5(p— po)
Xexp{ —i[ (p*/2m-a) (t—to)+ (a/2w)
X (sin2wt—sin2wt) 1/%}. (2.14)

The reason for this choice, rather than the function Gy
already mentioned, is to take into exact account from
the outset as much of the Hamiltonian as possible.
This reduces the number of diagrams which must be
considered in the perturbation calculation.

The matrix element of the interaction Hamiltonian,
required in the perturbation calculation of G(p,t; po,to),
Eq. (2.9), is

W' H(O) | p")=Ha(p' "5 1)
=aV-3(1+cos2wt’) f dz cos2kze—i=('—p") [

=a(3N)(14cos2wt’)[8(—p'+2kH+p"")
+6(—p' —2kh+p")].

In order to establish certain mathematical procedures
and to introduce a simplified notation we now discuss
in detail the term AG in the expansion of the Green
function, and we evaluate its contribution Sy’ to the
scattering amplitude. It will be shown that the transi-
tion probability corresponding to Sy is equal to that
deduced by Kapitza and Dirac.!

(2.15)
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C. Scattering Amplitude in First Order

The first-order contribution to the Green function
appearing in Eq. (2.5) is rewritten mutatis mutandis

AG = N2 f / / AP ay G (s ')

XHA(p' "5 )G (P 5 poste) . (2.16)
Introducing (2.14) and (2.15) into Eq. (2.16) and

making use of the definition of the unit step function,

. 1 [* dwet
0(f) = lim -— -, 2.17)

0% i J o w—ie

we obtain the following expression for AG:

Nd()
AG=<—2—> exp{ —i[ (wp+2a0)t

™

— (wpot2@0) b0+ (a0/w) (sin2wi —sin2wio) ]}

ei[wl(t—to)‘*‘AzzotO] 1
X /d“'l {

w1 —1€ w1— Ay —1e

eiZw to e—i2mto

2(w1—2w—Ap—1ie)  2(w1H2w—Ay—1i€)
X[6(—p=42kh~4-po)+6(—p—2kn+po) ].

In deducing (2.18) from (2.16), integrations have been
performed over the intermediate momenta, the time,
and one intermediate frequency resulting from the
definition of 6(¢). For convenience the following symbols
have been introduced :

(2.18)

wp=p*/2mh , (2.19a)
wpy=pot/2mi (2.19b)
Apy=wp—pys (2.19¢)
ap=a/2h . (2.194)

Before proceeding to carry out the remaining integra-
tion in expression (2.18), we examine the contribution
of AG to the total scattering amplitude:

Syl =iN~? / / dpdpols* ()
XAG(p,t; posta)¥i(posto) -
¥: and ¥y are the initial- and final-state wave functions,
Ui (p,t) =Cr(p)eiert, (2.21a)
Yi(po,to) =Ci(po)eionto , (2.21b)

[We remind the reader at this point that the time
difference {—¢, contained in (2.20) must be interpreted
as the duration of the interaction, that is, the time of

(2.20)
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flight of the electron through the laser beam in the real
experiment. The symbol ¢ previously introduced has
been replaced by ¢ for simplicity.] The momentum
distributions C; and C; are normalized in the following
way:

- / |Co(p) | ap=N-1 / o) Pdp=1. (2.22)

It follows immediately that
S7i = (2 N)lay exp{ —iao[ 21+ sin2wt]}

glwit

X/dP Cf*(P)/dm ;
w1—1€

X[C,—(p—Zkh) {

1
01— 2k(p—ki) /m—ie
1
+
20w —20w—2k(p—Ekh)/m—ic]

1
+ }
2Lwi+20+2k(p—kh)/m—ie]
+Ci(p+2kh) {k— —k}}, (2.23)

where the expression within the second curly brackets is
identical with that within the first curly brackets, but
with £— —£%, and where for simplicity #, has been put
equal to zero.

For the calculation to correspond to the experiment
originally proposed by Kapitza and Dirac,! it will be
assumed that C;(po) is sharply peaked near po=—Fkh.
Other initial momentum states will be considered later.
Because, as usual, the electrons will be detected
incoherently, the final-state wave function may be
chosen to be sharply peaked near p=p;:

Cr*(p)= (N Apy) %8 (p—py) - (2.24)

Ap; is an infinitesimal range of final momenta and
d(p—pys) is a & function defined so that (2.22) holds.
An integration of the square of the scattering amplitude
must of course be performed over p;.

It will be assumed that only those electrons with
momenta p; near the value k% are detected. In this case,
the second term of Eq. (2.23) may be omitted, and the
scattering amplitude takes the form

Sl =(N-1Aps)Y2(ao/27) exp{ —iao(2t+wsin2uwit)}

XCi(Pf—Zkh)/dcu

1

+
2[w1—20—2k(ps—k#) /m—1i€]
1

+
2wt 2w—2k(ps—kt)/m—ic]

eiaut 1
wor—ie {wl—Zk(p,—kh)/m—ie

] . (2.25)
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The probability of detecting an electron may be written,

P'=% |S;!|?=N""ae? / dps|Ci(pr—2kH) |2
S

1
Ly
2T

The function |C;|? in expression (2.26) can be con-
sidered as a 6 function in the integration over py
provided that it is considerably narrower than the
function of p; resulting from the integration over w.
The sharpness of the latter function depends on the
time. For example, consider the function resulting from
the integration of the first term in curly brackets in
Eq. (2.25):

K(ps0) ! / dw o
P e ) O i) Lo — 2k (py k) m—ic]

i —kh)kt
- _ei(p,—kh)k:/mw 2.27)

(br—kW)k/m

K (pys,f) is peaked at py=Fk% and has a width approx-
imately equal to A=2mwm/kt, which obviously decreases
with increasing ¢ If |C;|? is to be considered as a &
function, the momentum range in C; must be less than
A. This turns out to be a reasonable assumption in
practice. Suppose that the initial electron wavepacket
is localized in a region of space approximately 1 mm in
size. Then the width of C; must equal approximately
Ap=n/Ax=10"" kg m/sec. The requirement that A
be greater than Ap implies that £ must be less than 10~°
sec. This condition is satisfied in any experiment with
a Q-switched laser, where the pulse duration is of the
order of 1078 sec.

With this assumption (and with the previously
mentioned assumption that C; is centered at po= —k#),
the probability (2.26) becomes simply

2

X (2.26)

P'=

ag eiwlt 1 1

- /dwl +

2T w;—’iel_ wi—ie  2(w1—2w—1€)
2

=ao[ 1+ (sin2wt)/20]2. (2.28)

+ —__"—__:I
2(w142w—1€)

For times much greater than 1/w, the second term in
brackets in (2.28) is negligible compared to the first
term. If a ruby laser is used, w=2.72X10'® sec™!, and
so for times greater than roughly 10713 sec, the transition
probability equals just (aof)?.. We reiterate that ¢ is
the time of flight of the electron through the laser beam.
Introducing the relation between the intensity of light
and the quantity ao, we obtain for the transition

probability
(mcl t )2
P'= ,
w7

(2.29)
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where 7 is the sum of the intensities of the two traveling
waves forming the standing wave, and where 7, is. the
classical electron radius. This formula is equivalent to
the one derived by Kapitza and Dirac! If =108
W/cm?, a typical value in a Q-switched laser experiment,
one calculates that P’ equals unity for a time {=0.28
X107 sec. This first-order treatment clearly cannot
be trusted for times of flight of this order or greater.

AG" =Nag®(27)~* exp{ —i[ (wp~+2a0)i+aow™! sin2wi]}
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D. Higher-Order Corrections to Sy;:
Low-Intensity Case

The next correction to the Green function which will
contribute to transitions from the state of momentum
po=—k#h to the state of momentum p=~% occurs in
the third order of the perturbation series (2.5). This
correction is

X]- . '/dtl- . .dw4exp{i[wl(t—t3)+w2(t3—t2)+0)3(t2—11)+w4[1:|}

(w1—1€) (wa—1€) (w3 —1€) (ws—1e€)

(14cos2wiz) (14 cos2wts) (1-+cos2wly)

Xexp{ —i[ (wps—wp)ts+ (wps—wps)fat (Wpo—wpe)t1 1} [6(—p+2k%+ps) +5("'P—2kh+P5):|

Explicit calculations, not given here, show that contributions to AG” coming from terms containing the factors
cos2wty, cos2wly, and cos2wl; are negligible compared to the single term without such factors, for times much
greater than w™, as was the case in the first-order calculation just discussed. We henceforth neglect such terms
completely, and the problem reduces to that of an electron in a stationary sinusoidal field ; Fedorov?® arrives at the
same conclusion using a different argument.

Now performing the integrations over the intermediate times, and over the variables ws, ws, and ws, we obtain

from Eq. (2.30)
AG" =(Nay?/2r) exp{ —il (wp+2a0)i+aw™ sin2wi]}

eiwlt

X/,/./dpsdpsdwl(wl——ie)(w 1= A ps—1€) (w1— A gy —1€) (01— Ay —1i€)
X3 )8+ YI0( - )8 - )I0B( - 42(-- )], 23D

where Ap;=w,—w,;, etc., and the product of 8 functions
is identical with the last factor of Eq. (2.30).

The result of the product of the various & functions is
conveniently visualized by means of diagrams. The
quantities 2k% (—2k%) occurring in the arguments of
the & functions are indicated by incoming (outgoing)
horizontal lines, and the electron momenta ps, ps, etc.,
are indicated by wvertical lines. The three diagrams
corresponding to the part of AG” in which we are
particularly interested at the moment are shown in

2kh

Ps

2kh

(a) (b) (c)

Fic. 1. Diagrams arising in third order.

Fig. 1. In Fig. 1(a), ps=po+2kh, ps=ps—2kh, and
p=ps+2kh, which are the conditions dictated by one
of the triplets of 8 functions. If the electromagnetic
field had been quantized, 2k% would be identified with
the change in momentum of the radiation field, due to
the absorption by the electron of a photon of momentum
kh from one wave (the “incident” wave) and the
emission by the electron of a photon of momentum
—E# into the other, stimulating, wave. This two-photon
process is indicated in Fig. 1 by a single horizontal line
and vertex. Vertical lines on the diagram are identified
with factors in the Green function. In Fig. 1(a) the line
p corresponds to the factor (wi—ie)™, and the line ps
corresponds to the factor (wi—Ap—ie)™, etc. These
factors are called propagators. The quantity summed
to wi—7e in any propagator is the difference between
the corresponding intermediate electron energy, and
the final energy, divided by #%. Associated with every
vertex in a diagram is a factor ao in the corresponding
contribution to the Green function.

Inspection of Eq. (2.28) shows that in first order, the
probability of scattering reduces to the absolute value
squared of a certain contour integral involving products
of propagators; this is true in any order of perturbation
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theory. This contour integral will be called a transition
amplitude. Corresponding to every scattering diagram
7 is a certain contour integral K; and the sum of all
integrals for all possible diagrams is the complete
transition amplitude K, the square of which is the
desired probability. We will henceforth concentrate on
the transition amplitude rather than on the Green
function itself; the latter may be obtained in an
obvious way from K.

Using the rules described in the previous paragraphs,
the amplitude K; can be written immediately, given
an arbitrary diagram. For example, the amplitude
corresponding to the diagram of Fig. 1(a) is assuming
po=—kh, and p=Fh,

(103 eiwlt
Ky=— [ doy——
27 (w1—17¢€)*

1 gl (jagl)’

v )

1 (2.32)
2T I(n——'ie)" 3!

where we have made the change of variable n=w;/ao and
where e/a, has been simply replaced by e to avoid
introducing a new symbol.® In fact, all those diagrams
in which the intermediate electron momenta equals
k% have an amplitude which is similar in form to
(2.32). If 2n+1 equals the order of perturbation,
n=0,1,2, ..., we find’

etaotn (idot) 2n+1

1
K2n+1= - /d'l ; =7 .
2 (n—ie)**+2  (2n+1)!
In each order of perturbation there is only one diagram

of this type; the contribution to the total transition
amplitude from this class of diagrams is

(2.33)

© e (iaol)2"+l
K'=3 Kip1=1) ———— =—sinaq.

2.34
n=0 n=0 (2n+ 1) ! ( )

If these were the only diagrams of importance, one
could assert that the transition probability is

(2.35)

P=sina ,

an expression which is nearly the same as that derived
by Fedorov® for the case of low-intensity fields. As will
be discussed in more detail later, (2.35) holds for
intensities less than roughly 107 W/cm?. The Kapitza-

6 It may be remarked here that if the calculation were attempted
using the standard rules for constructing scattering amplitudes
from Feynman diagrams, Fig. 1(a) would give an infinite con-
tribution because the two intermediate propagators, lines p3 and
ps in the diagram, blow up. These improper diagrams can be re-
moved by renormalizing the wave functions, but this procedure is
rather complex as may be seen in the article by Z. Fried and J. H.
Eberly, Phys. Rev. 136, B871 (1964). The procedure here obviates
this difficulty.

7Only odd order perturbation terms contribute to transitions
from po=—Fk# to p=Fkh.
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Dirac formula (2.29) is the first term in the expansion
of (2.35) in powers of aof. The Kapitza-Dirac formula
gives an accurate prediction at these relatively low
intensities (so far as Q-switched lasers are concerned),
only if the product af is of the order of 0.1 or 0.2. If the
product @ equals unity, the probability given by
(2.35) equals 0.7, not 1.0 as predicted by (2.29).
Although this error would not seem serious, the situation
is quite different if aof=m, when the probability equals
zero according to (2.35). This illustrates one of the
hidden dangers in attempting the Kapitza-Dirac
experiment, not previously emphasized; it may very
well happen that for the interaction time and intensity
in a given experimental setup, the transition probability
equals zero. For a total intensily of 107 W/cm? this
would occur at a time {=#(0.88X1078) sec, # integral.

Before proceeding to consider more general diagrams,
we examine again the contribution to the transition
amplitude from the ‘“ladder” diagrams where the
intermediate momenta equal 4=%%. This contribution is

© 1 eiaoh]
K'=% —|d

n=0 27

SE— (2.36)
17(.'7 _ie)2n+2

In the region |n—ie|>1, the operations of summation
and integration can clearly be exchanged; the integrand
then contains the sum

o 1 1
S == == )
O o i1

In—ie|>1. (2.37)
The function S(n) is now analytically continued by the
last member of (2.37) over the entire complex plane,
and we write for the transition amplitude

1 e'iaotn

K'=— | dp———
(n—ie)?—1

= (2.38)

= —sinael,

p=kh

p=3kh

pE kh
pz-kh

p=-3kh

ps-kh

I'16. 2. Example of a fifth-order diagram.
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which is identical to (2.34). This procedure of ana-
lytically continuing the perturbation series over the
entire complex 7 plane will be extended to the case of

more complex diagrams.

(1/05
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E. General Case

In a more general diagram, the intermediate momen-
tum of the electron can naturally be greater than k7.
Consider, for example, the fifth-order diagram shown
in Fig. 2, and the corresponding amplitude,

eiwlt

K5= -_

We have po=—kh, pr=—3kh, po=—Fkh, ps=Fk#k, and
pa=3kh; hence A, =A,,=—4k*h/m=u and A,,=A,,
=Ap,=0. Introducing the new variables n=wi/ao
and a=u/a,, replacing €¢/a, by e as before, we obtain
for (2.39)

1 eiautr]
K5 = - dll .
2] (n—ie)’L(n—ie)(n—a—ie) J*

The factors in the denominator have been grouped in
the way shown to stress the fact that when a factor
(n—a—1ie) occurs, it must be accompanied by a factor
(n—1e), and that the remaining factors (n—ze) occur
in pairs. These statements hold in general, as may be
verified by the inspection of an arbitrary diagram.
The general expression for the amplitude correspond-
ing to diagrams in which the absolute value of the
intermediate momentum can be no larger than 3%% is

(2.40)

1 eiaotq
KN = 'I . . . )
2r)  (n—ie)*™[(n—ie)(n—a—ie) Jmrtn

(2.41)

where .1, ms, and 75 are integers. The number of times
a propagator is found with momentum equal to k%,

oy .
2T (w1—1€) (w1 —Apy —1€) (w1— Apy —1€) (w1— Aps —i€) (W1— A py—1€) (0 1— A po—1€)

(2.39)

3kh, —kh, —3kh, equals mi, ms, my, na, respectively.
In the example cited above (Fig. 2), mi=1, ms=1, and
ny=1. The order of perturbation is N =2 (m+mas+n,)
—1. The number of diagrams which correspond to the
same integral Ky is®

<'m«1+'}n2- 1><m1+n2—-— 1>

n= .
Mo Mo

The contribution to the total amplitude from these

diagrams is

(2.42)

K=Y Y nKy.

m1=1 m2,n2=0

(2.43)

As in the example already discussed [Egs. (2.36)-
(2.38)7], the order of integration and summation may be
interchanged in the region where the sum converges.
Using twice the formula

o /fmt+n—1
£(" )
n=0 n

we obtain for the sum of the products of the propagators
the expression

L R

= (2.44)

w © i 1 M1+M2—1 M1+ﬂ2—1
St= % , _ —( X )
mi=1 mz,n2=0 (n—2€) 2™ (n—1ie) (n—a—ie)]””“'”\ M (2
1 1 (2.45)
+ 2.45
1 1 1
=—|1-——- 14+ —1.
2 1 1
[ n—ie— n—ie— —
n—a—1ie n—a—1ie
As previously, the function S is extended over the 171 1 1 1 1
entire complex plane by analytic continuation, and the S@)= 5 : ;: —o— 2—30— 7 —Go— ’
amplitude K may be derived from the right-hand side
of (2.45). 1 1 1 1 1
This procedure is now generalized to include diagrams '1—_; ; e — 72— 3o 7—6a— - )—1, (2.46)

with intermediate momenta of arbitrary magnitude.
It is readily shown?® that the sum S becomes a continued
fraction,

8 The problem of counting diagrams of the type encountered
here has been considered by Z. Fried and J. H. Eberly, Ref. 6,
where a proof may be found for relation (2.42).
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where for compactness n—ze has been replaced by z.
Expression (2.45) simply equals expression (2.46)
terminated at the third level.

The evaluation of the scattering amplitude

1
K=— (2.47)
2

m

JEESE

reduces to the determination of the poles and residues of
the two continued fractions in (2.46). It is seen that K
consists of the sum of a number of complex exponentials,
one for each pole of .S. The amplitude of each exponen-
tial equals the residue of S at the corresponding pole,
and the argument is proportional to the product of the
location of the pole, the time, and the intensity.
We have not found an expression in terms of known
functions for S(z), Eq. (2.46), and hence it is not
possible to check analytically whether the solution
satisfies the original equation. The continued fraction
has the same form as those used in the solutions to the
characteristic equation of the Mathieu equation; this
is not surprising since the problem has formally a
solution in terms of Mathieu functions. Because the
continued fraction is readily investigated numerically,
there is no pressing need to introduce these functions.
We remark that a procedure similar to the one developed
in this article has been used to obtain the Green
function for an electron in a circularly polarized
monochromatic traveling wave; in this case, the
continued fraction playing the role of (2.46) can be
expressed in terms of Bessel functions and the solution
can be shown to satisfy the original Green function
equation. One may therefore have confidence that

Eq. (2.46) correctly describes the behavior of the

electron.

III. NUMERICAL RESULTS
A. Transitions from po= —k#% to p=~k#
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tensities, where « is in the range from —1 to —10, the
residues at the poles near a, 3e, and 6a must be included
and the transition amplitude has a more complicated
form. The sum of the residues of S equals zero, and
the sum of the absolute values of the residues equals
unity. This ensures that first of all the probability
P=|K]|? tends to zero as ¢ tends to zero, and secondly
that the probability cannot exceed unity.
In the numerical analysis the continued fraction is
terminated at a certain level. This is equivalent to
omitting contributions from diagrams which contain
electron momenta greater than a certain value. For
example, the transition amplitude obtained from the
terminated fraction (2.45) does not contain contribu-
tions from diagrams in which the electron momentum is
greater than 3k7%. If the fraction were terminated at the
explicitly written portion of (2.46), diagrams in which
the momentum was greater than 7% would be omitted.
It was found that even at the highest intensity con-
sidered (I=10° W/cm?, a= —1), diagrams in which the
intermediate momentum is greater than approximately
15k# contribute very little to the transition amplitude.
The transition probability has been evaluated
numerically as a function of the time for a number of
cases of practical interest. Graphs of this probability
are shown in Figs. 3 and 4. For the lowest intensity
[Fig. 3(a), solid curve], the probability varies practic-

The behavior of S [Eq. (2.46)] has been investigated
numerically using a digital computer. Isolated poles
are located near 1—1/a, —1—1/a, and two poles close
together are found at each of the locations «, 3a, 6a, etc.
The value of the residue at a given pole depends strongly
on a, which is related to the intensity in the following

way:

= —8(wh/mc?) (roxw™ I Jwh) . 3.1)
For a ruby laser of total intensity 7=107 W/cm? (an
order of magnitude lower than the output of available
Q-switched lasers), a=—100. For « in this neighbor-
hood, the residues at the polesnear 1 —1/aand —1—1/«a
are nearly equal to 43 and —3, respectively, and the
residues at the poles near «, 3a, etc., are negligible.
The transition amplitude is then given to an excellent
approximation by expression (2.34). At higher in-

9R. Gush and H. P. Gush (unpublished).
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Fi1c. 3. Transition probability P as a function of the interaction
time. The solid line is for transitions from — k% to k%, the dashed
line for transitions from —k#% to —k#, and the dotted line is the
transition probability to all other states. The standing-wave
intensity equals (a) 108 W/cm?, (b) 2)X 108 W/cm?2.
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F1G. 4. Transition probability P as a function of the interaction
time for a standing-wave intensity of 10° W/cm?. (a) —k# to kh;
(b) transition probability to all other states; (c) —k# to —kh.

ally sinusoidally, reaching nearly unity and decaying
to zero. At high intensities the behavior is more complex
and the probability does not reach such high values.
The graph of Fig. 3(b) shows the probability for an
intensity approximately equal to the maximum
intensity employed by Bartell et al.? The time of flight
of the electron through the laser beam in their experi-
ment was equal to 0.47 X 10~? sec. Referring to Fig. 3(b),
one sees that it is quite possible that this experiment
was conducted near a minimum in the transition
probability. We reach a similar conclusion concerning
the experiment of -Pfeiffer?; this may explain why, in
both of these experiments, difficulty was found in
observing scattering. In any case it is evident that
unless the experiment is carried out with good control
over the laser intensity and over the interaction time,
quite variable results could be expected, particularly
at the higher intensities where the probability varies
rapidly with time [Fig. 4(a)].

B. Transitions from po= (—k+3)7% fo p=k+3)A

So far we have concentrated on transitions from
po=—kh to p=Fh. It is clearly possible to extend these
calculations to include the case in which the electron
momenta does not satisfy the Bragg condition. We
have treated the case of transitions from po= (—k-6)%

GUSH AND H. P.

GUSH 3

to p=(k+0)%, with =2k and 6=~k. The continued
fraction which is analogous to Eq. (2.46) is

1

5@ =| (s-8/2-

z—a—pB— z—3a—35B—

1 1
2—6a—23— z—a+p/2—

L )T

X ..
z2—3a+B— 2—6a+38—

where 8= —ad/k. One can show that when 6=0, (3.2)
reduces to (2.46). We have investigated the behavior of
this continued fraction in the cases of a=—5 and
a=—10. In Fig. 5 we show the results for a= —10 only.
Two features are obvious: (1) The transition probability
goes down as one moves away from the exact Bragg
condition, although not as rapidly as one would have
expected on the basis of a first-order calculation, and
(2) the period of oscillation of the transition probability
changes substantially as 6 is changed. In the case of
a=—5 (higher intensity), it was found that the
off-Bragg-condition probability dropped even more
slowly with increasing 8. It would appear that if the
intensity is high enough, scattering takes place over a
wide range of the incident electron momentum. This
is probably the reason that Bartell e al.2 did not find
strong evidence that the Bragg condition was fulfilled.

C. Transitions from po= —k#% to p= —k#

The probability of no scattering has been calculated
assuming the initial momentum to be equal to —k2.
The continued fraction S has just the same form as
(2.46), with the exception that the second fraction in
the brackets is subtracted from the first rather than
summed. The transition probability is plotted in Fig. 3
(dashed line), and Fig. 4(c), where it can be compared
with the probability for transitions from —k% to k#.

o] 0.5 1.0
Time,nanoseconds

T1c. 5. Transition probability P as a function of the interaction
time for transitions from (—%--8)% to (k-+38)7% for a standing-wave
intensity of 108 W/cm2. Solid line, 8=0; dashed line, s=3%k;
dotted line, 6==%.
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Also plotted in these figures is the probability of transi-
tion to all other states except k% and —k%, obtained by
subtracting from unity the sum of the two probabilities
explicitly calculated. At low intensities, transitions to
other states are almost negligible but this is not the
case at high intensities [Fig. 4(b)]. An electron beam
passing through the laser field of intensity 7=10°
W/cm? would be scattered into a fan, as was predicted
qualitatively by Fedorov.?

D. Transitions from po= —2k% to p=2k#%

In analogy with x-ray scattering, one would expect
higher-order Bragg reflections to occur. These corre-
spond in a quantized field description to the absorption
of n photons from the primary beam and emission of #
photons into the stimulating beam. We have examined
the second-order Bragg reflection corresponding to z=2.
The continued fraction may be shown to be

S (Z) =F—‘l[(z+%a)ﬁ‘___2_} , (333)
with

1 1 1 1

F=z— (3.3b)

2—3a— z—4a— z—4Pa— z—120—

The results for the second-order Bragg reflection are
shown in Figs. 6 and 7 for two intensities, a= —10 and
a=—>5. The transition probability rises to a maximum

T I ! | I T [ T
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F16. 6. Transition probability for a second-order Bragg reflection,
—2kh to 2kh, for a standing-wave intensity of 108 W/cm?.
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F1c. 7. Transition probability for second-order Bragg reflection,
—2kh to 2kh, for a standing-wave intensity of 2)X 108 W /cm?,

considerably later than for the case of first-order Bragg
reflection, but it practically attains unity in the cases
studied and oscillates with time. Presumably, higher-
order reflections would behave similarly but these cases
have not been worked out.

In conclusion we repeat the important result,
with respect to experiments, that the transition
probability in the Kapitza-Dirac effect oscillates
rapidly with time of flight between zero and roughly
unity and, as a consequence, certain experimental
conditions are very unfavorable for a demonstration of
the effect. At moderate laser intensities, the electron
behaves like a two-state quantum-mechanical system
driven in resonance, passing periodically from the
initial state to the excited state, and back to the
initial state. It has also been shown that, at high
intensities, electrons are likely to be scattered into a
large number of final states which would make quantita-
tive analysis of a scattering experiment difficult. Lastly,
it has been shown that the probability of high-order
Bragg reflections can be nearly unity; this suggests
that an experiment to detect such reflections should be
no more difficult than the original experiment proposed
by Kapitza and Dirac.
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