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From the physical three-vector Maxwell equations for an electromagnetic (E.M.) field in static gravita-
tion, we examine the artifice of replacing the gravitation by an equivalent medium and we find modified
Debye potentials for an E.M. wave in a simple, angularly homogeneous, material medium in a Schwarzs-
child gravitational field. The fact that these potentials do not obey the generalized scalar wave equation
implies that gravitation scatters the vector E.M. wave and a scalar wave differently. Also, we obtain and
solve by perturbation the amplitude and eikonal equations for a high-frequency wave in a weak spherical
gravitational field. To the order M /r, the state of transverse polarization does not change along a ray path
whereas the transverse-field amplitudes are modified by the factor eM/r which strengthens the field near
the mass. The longitudinal-field amplitude, on the other hand, is modified by e /r. These effects, in
principle, may provide a further test of classical E.M. theory and general relativity.

I. INTRODUCTION AND SUMMARY

HE bending of light and electromagnetic (E.M.)
waves by a spherical gravitational field has been
known for many years.! Recently, the delay in traveling
time of radar signals, which appears together with the
bending as a general-relativistic effect along the path of
propagation, has attracted both theoretical? and ex-
perimental® interest. The underlying methods of analy-
sis have made use of the photon null geodesics, or an
“equivalent” index of refraction to account for the
geometrical-optics effect due to gravitation.

However, except for some static problems, the
dynamic gravitational influence on the amplitude and
polarization of an E.M. wave has not been treated be-
fore, nor have the Debye potentials of such waves been
found.* Furthermore, the concept of replacing gravity
by an ‘“equivalent medium” was not clear.5 These
problems are investigated here.

In Sec. IT A, from the physical three-vector Maxwell
equations for an E.M. field in static gravitation, we
clarify how and in what sense an equivalent medium
replaces such gravitation. In Sec. IT B we express an

* This work was supported by the U. S. Air Force Office of
Scientific Research, Grant No. AFOSR 70-1935.
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E.M. wave in an angularly homogeneous simple ma-
terial medium in an external Schwarzschild gravitational
field by its modified Debye potentials. We find that even
in the vacuum limit these potentials do not satisfy the
generalized scalar wave equation, and thus see that such
a gravitational field scatters a vector E.M. wave and a
scalar wave differently, contrary to previous belief.®

In Sec. IIT A we simply find the approximate ampli-
tude and familiar eikonal equations for a high-frequency
wave in a weak spherical gravity, and in Sec. III B we
solve them by perturbation. To order M /r we find that
along a ray path the state of transverse polarization is
not changed, whereas the transverse-field amplitudes
are changed by eM/”. Thus the transverse fields become
stronger the nearer to the mass M they get. On the
other hand, the longitudinal-field amplitude, if it exists,
is modified by the factor e=/7. Although it may not be
within the present capacity of the existing NASA deep-
space network to measure them, these effects in prin-
ciple may provide a further test of the validity of
today’s general-relativistic E.M. theory.”

II. PHYSICAL ELECTROMAGNETIC FIELD
A. In Static Gravitation

In a static gravitational field described by a synchro-
nous coordinate frame {x*}={tx'x%x?} with metric
20,=0 (i=1,2,3) and g,, not functions of time, and
with the neglect of the E.M. contribution to gravitation,
the Maxwell equations for physical E.M. fields are®

3
VyX[(Vgw)E]=——B,
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3 ELECTROMAGNETIC FIELD AND WAVE PROPAGATION...

Here all fields and sources are locally physically mea-
surable quantities in the usual sense for observers fixed
in {«*} with x*=const, and V, is the conventional del
operator in the spatial coordinates {x‘} with length
interval do?= —g;;dx*dx’. The constitutive relations be-
tween (D,H) and (E,B) are determined completely by
the local intrinsic physics of the medium as if there were
no gravitation, except for possible gravitationally in-
duced strains in the medium.

It must be clear that no equivalent medium can
rigorously replace gravitation to account for its effect on
the E.M. field. However, for linear media in which the
physical fields are related by

D=¢E+e¢'B, H=1-E+K:'B 2
we can define new mathematical symbols by
e=(VgwE, b=B, d=D, h=(/gH. (3)

Then only for these so-defined fictitious fields (e,b),
(d,h) can we replace gravitation by an “equivalent
medium,” using

d=[8/(\/g00)]'e+(¥‘b, h=3we+(\/goo)K'b (4)

as “constitutive relations” and writing Maxwell’s equa-
tions in curvilinear coordinates {x?} with V, as the
differential operator and (p,(/g00)J) as the source.
Although their difference is very simple, we must not
confuse® these fictitious fields (3) and their constitutive
relations (4) with their real physical counterparts.
Except in the few calculations that field amplitudes do
not occur, such as in the eikonal equation of geometric
optics,® wrongly identifying these fictitious fields with
the real fields leads to incorrect results and misleading
concepts.

B. Debye Potentials in Spherical Gravitation

Generally, we have to put the field equations in scalar
form before solving them. For many E.M. problems in
sourceless regions, the Debye potentials provide such a
powerful means of doing this.!

Now, for an angularly homogeneous simple medium!
with e=e(7,1)0.;, K=[u(r,) ]76:;, @=%=0 in spherical
gravitation (e.g., a radial distribution of an isotropic
stellar plasma), such potentials can still be found. First,
in the standard Schwarzschild coordinates {t,,6,¢} with
metric of ds?=(1—2M/r)d?— (1—2M /r)"'dr*—12dQ?
for external gravitation, (1) become

2MN\~'2 9B
xB-—(1--)

7 al

-2 ]

# V. Fock, The Theory of Space Time and Gravitation (Pergamon,
New York, 1964), 2nd ed., p. 221.

10 See, e.g., Van De Hulst, Light Scattering by Small Particles
(Wiley, New York, 1957). Also, F. E. Borgnis and C. H. Papas,
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2MN\"129
VXH =J+(1+ *)
4 at

+ ; %{[<1~ ¥>1/2—1}H>a} . (5b)

Here, for practical purposes we have written (5) in
terms of the conventional flat 3-space V operators using
the above {r,0,¢} as usual spherical coordinates. Also,
the local charge-conservation law from (5b) reads

9 2MN\YV2
e
at r

(e 2or-2"])- o

Then, with a familiar field decomposition® into electric
and magnetic waves having no radial magnetic and
electric field, respectively, after lengthy calculation
from (5) we find

1 2MN\12 2M\ V2
2= {(=7) v (=) e
€ 4 7

1/26

2
-VX[VX(rv)]——(l—— ——> —VX(u), (7a)
7 at

J
=— VU X(r7)
(1—2M /)2 o1

2 o -22) o)

‘VX[VX(@u)], (7b)

where the modified electric and magnetic Debye po-
tentials » and # satisfy

a7/ ad
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<v> 1 AN 1
VZ —_—
w/ 1=2M/r| 9/ 9 riy 9
u——(e—u) [——— —ru
aI\ at u or

dsz1 0
e_(_ *m)
2M| Jr\er or

7 a/1 9
A
Or \ur or
in Handbuch der Physik, edited by S. Fliigge (Springer, Berlin,
1958), Vol. 16, p. 285.
1 For radially stratified simple medium in flat space, see R.
Latham, Can. J. Phys. 46, 1463 (1968).

2 M. Born and E. Wolf, Principles of Optics (Pergamon, New
York, 1970), 4th ed., p. 634.
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and U=unit dyadic and e,=unit radial vector. The
boundary conditions® at any radial discontinuity of u, €
are just the continuity of v, (1/€)(9/dr)rv, u, and

w(d/or)ru.
We notice from (8) that even for the vacuum u=1,
e=1, the modified Debye potentials obey

[V“"a':;—mg%]"

and not the generalized wave equation ¥i#,=0. Sepa-
rating variables as usual by writing

y=e"“[R(r)/r]00)2(¢),

with ®,,=etm$ @, =P ;m(cosh), where m= — || to ||
and /=integer, we get the radial equation

@ 2M\I(1+1)
——R+[w2—<1——> ]R=0, (10)

dr*? r 72

LV

v Or\y dr

where dr*= (1—2M /r)~'dr or r*=r+2M In(r/2M —1)
+-const introduces r=r(r*) as a function of the new
variable 7*. Thus, the scattering of a vector E.M. wave
by a Schwarzschild gravitational field!* behaves differ-
ently from that of a scalar wave obeying ¥i#,,=0 whose
radial part!® satisfies (10) with an additional term
—(1—2M/r)2M /r® in the square bracket.

III. HIGH-FREQUENCY PROPAGATION IN
WEAK SPHERICAL GRAVITATION

A. Approximate Equations

Now, consider an E.M. wave in vacuum and of the
form E(x,)=f(x)e'®)~1 where f, ® are real func-
tions, traveling in a star’s external spherical gravity
where M /r<1.% For high-frequency propagation, we
have

| VA |
£

vz | vf|

sy T (11)
If]

1
and -<K|V®|,
r

- which physically means that L(f)>>L(®) and r>>L(®),
where L(f), L(®) are, respectively, the typical distances
over which f, ® change significantly. Then for this wave
and to the order M /7, (S) directly gives the amplitude-

13 Ref. 8, Sec. 6B.

4T. C. Mo and C. H. Papas, Caltech Antenna Lab. report
(unpublished). ‘

15 Ref. 6, Sec. IT A.

16 For example, Mo/ro~2.5X107% Mo/Rp~1078, where
Mo, ro, and Rg are the mass and radius of the sun, and the
sun-earth distance, respectively. So even near the solar surface
r~re, the condition M /r<1 is still satisfied. Except near the
gravitational radius of very compact stars, such as a neutron star,
the condition M /r<«1 is always satisfied. Also, for the high-
frequency E.M. propagation in a simple medium under uniform
acceleration or in “uniform” gravity, see T. C. Mo, Radio Sci.
(to be published). :
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propagation equation

Mp2f®
V- Vi) (V)= _[ v<1>+<1>,,,f+z<r>.,f,,] 12)
rL 7 ’

and the well-known? geometrical-optics eikonal equation

2M f OP\? 2M
e 2 (1420,
r

r \Or

(13)

To get the gravitational influence on the field ampli-
tude, we simply insert into (12) the 3-dimensional phase
information obtained from (13) and integrate along a
ray path. Also, the presence of a simple material medium
with very slowly changing u and e adds only a trivial
factor pe to the right-hand side of (13) and can be
excluded.

B. Amplitude Propagation

The mathematics involved here is simplified if we
introduce the harmonic coordinates!” {, 7'=r—M, 0, ¢}
in which (12) and (13) become

M od
Ve - VEi+L(V2P)f = —I:Zf‘”V’@-—f——;I , (12
ar

7’2

(V'®)2=(1+4M /7 )w*=n’w?. 13"
We notice that from standard geometrical optics,'® (13")
leads to the typical bending-ray paths 7'sinf = —2M7'/a’
+a’(142M/a’) and the phase velocity (1+4+4M /7)~1/2
along the ray. This immediately gives the familiar light
deflection! 80=4M/a’ and the radar traveling-time
delay.? Here 7'=a/, §=%= is the point of closest ap-
proach, where dr’/d§=0. Also, the gravitational red
shift is revealed by writing the proper frequency from
the factor e~

Now, the first-order M /#" perturbation solution of
(13”) for a z’-propagating unperturbed incident plane
wave is

S=w[242M In(r'+2")+2Mg(x',y)].
Imposing the boundary condition that ® at 3'=—

represents a z’-propagating incident plane wave, we de-
termine g(x’,y") and get

oM 2M (Y +2')
v’q>=w[ez:<1+ —/)—ep'—————] ,  (15)

’ T'p'

(14)

v29=0, (16)
where p’ and e are the polar radius and its direction in
the («',y) plane. Equation (15) implies bending-ray
paths {P: 7' sin(0-+2M/b")=—2M7r'/b'+b'} along

17 Ref. 9, pp. 193 and 215.

18 M. Klein, Electromagnetic Theory and Geometric Oplics
(Interscience, New York, 1965), pp. 64—74. Also see L. Landau and
E. Lifshitz, Mechanics (Pergamon, New York, 1960), Chap. 1.



3 ELECTROMAGNETIC FIELD AND WAVE PROPAGATION. ..

which the field amplitudes are to be found. Here {¥'},
being the impact parameters of {P}, have the values of
incidence heights p’ at 2’=—c as in Fig. 1. Equation
(16) shows that the field lines of V’®, which are identi-
fied as the rays, are conserved in the first-order gravi-
tational bending.

Inserting (15) and (16) into (12’) for a particular path
P in the 2z’ plane, we get the equation of f along P:

d ; M
dr' (" HAM =012
x 2’ 2’
Ke2(s0% +r02) -5 ], an
1,/ / r/

r

where the path length do’=-nr'(n%'2—b'2)71/2 is used,
and 4, — correspond to the two parts of the ray path
after and before the point of closest approach, which
occurs now at #’'=a'=b0'—2M. To order M/r' we
can use the unperturbed straight path {Po: p’=?’, 2’
= (r2—0'9)1/?} to integrate (17) and get the first-
order gravitational influence on amplitude propagation.
We emphasize that the so-obtained results are valid only
for M/r<1 and only give a qualitative description
when M /r" approaches 1.

(1) Radial propagation, 8’=0. Equation (17) directly
gives

f= (fw(x)eM/r” fw(y)eM/r’, fw(z)e—-M/r') , (18)

where f,, is the amplitude at #’=c. For the incident
plane wave being considered f,¥=0, and the trans-
verse field f(® increases (decreases) from f,(? at
P=o0 (fo at ¥'=a') as f,PeMIr (f,OgMla+M/r")
when the wave propagates radially toward (away from)
the star.

(2) Nonradial propagation, &’£0. For a chosen P
with given d’=a’+2M, the results are most suitably
expressed in the correspondingly rotated coordinates
{x*, y*=1y’, 2*} which are obtained by rotating the co-
ordinates {#’,y",2’} about the y’ axis through an angle
—2M/a’ (Fig. 1). In this {x*y*32*}, with its corre-
sponding P described by x*= —2M7"/a’+a’ (14+2M /d’),
(17) gives

F@® = £, (@Mgatr) (19a)
f = £, @Meatr) (19b)
&= 2Mz*/a'r’) f (19¢)

M M 2M? 2M:2 a
a(f)= — — — +[— —_ ]n<1+ ——>:| (20)
7 a a'r a’? 7’

1,7

and [/, f,,¥" are the field amplitudes at ' =a’. The
square-bracketed quantity in (20) is written only to
show that near »’~r,=a’?/2M, where P is bent to meet
the z* axis and near which the straight-line P, integra-
tion starts breaking down. the first-order effect becomes
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Fic. 1. High-frequency amplitude propagation in spherical gravity
(The barred quantities are denoted by an asterisk in Sec. III B.)

as small as the second-order effect and thus both become
negligible beyond 7,’.

From (19) the f® is coupled only to f&* by just the
right amount such that the total field on the x*z* plane
is bent through the angle 86=2M2z*/a’r" and is always
kept perpendicular to P. Also to order M/’ both
transverse fields, f#" in the y* direction and f¢*) on the
x*z* plane, are influenced equally. Thus the state of
transverse polarization along propagation path is not
affected by spherical gravity.

C. Concluding Remarks

Above we have investigated high-frequency plane-
wave propagation. For a real transmitting antenna
located in a gravitational field, we infer that a similar
factor eM/"" of gravitational perturbation modifies its
high-frequency radiation field. Also because such an
amplitude effect is not cumulative over the whole path
p, as bending is, only receivers and transmitters at
different radii can detect it. The maximum of this effect
is8f==fo (M/d’) for a link from 7'=a’ to ' >7/.

To measure such a small effect one needs in the first
place highly sensitive receivers and transmitters. Also,
for the round-trip amplitude effect not to cancel under
the active-radar-transponding method,' we could make
the spacecraft near closest approach to a star 7'=q’
transpond a signal inversely proportional to its received
value. Then the earth station would receive twice the
gravitational correction é f,/ f,=2M/a’ to the amplitude
or6P,/P,=4M/a’ to the power. For example, the 210-ft
antenna at Goldstone, Calif., can intercept P,~ 10~18P,
from such a transponder with power P beam width
~0.5° at ~1 AU from earth and ~1 solar radius from
the sun; then é6P,/P,~107% or 6P,~10~%4P, is the re-
ceived power correction due to gravitation. It requires
more than six-digits receiving-power precision at —240
db from the transponding power. This order of accuracy
is not within the present capacity of the existing NASA

¥V, C. Clarke, Jr., Jet Propulsion Lab. Report No. 605-504,
1970 (unpublished).
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Deep Space Instrumentation Facility.? Nor can the
passive radio-astronomical observations measure to such
accuracy.” But for an E.M. signal originating at

% Deep Space Instrumentation Facility, Jet Propulsion Lab.
System specification, Code No. 23835, Spec. No. DOW-1389-DTL,
Rev. A, 1970 (unpublished).

2 Typical signal-strength measurement is about to two-digit
accuracy [A. T. Moffet (private communication)].
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M/r<0.1 or nearer to a compact star, such a change of
signal strength should be observable on earth. In
principle, this effect may provide another test of
classical electromagnetic theory and general relativity,
or may be used to single out the particular amplitude
correction caused by gravitation.
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Electron Scattering from a Standing Light Wave
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The transition probability for electron scattering in the Kapitza-Dirac experiment is calculated using
nonrelativistic theory as a function of the time of flight ¢ of the electron through the light beam, and as a
function of the intensity. It is found that for intensities up to approximately 107 W/cm? the probability
equals sin?aof, where ao is proportional to the intensity. At intensities of the order of 10° W/cm?, the de-
pendence of the probability on the time is more complicated but it also oscillates between zero and nearly
unity as the time increases. Both first- and second-order Bragg reflections are considered as well as condi-

tions off the Bragg maximum.

I. INTRODUCTION

N 1933 Kapitza and Dirac! predicted that electrons
of well-defined momentum could be reflected from

a standing light wave provided that A, =N\ cos®, where
)\, is the de Broglie wavelength, A\ is the radiation
wavelength, and & is the angle of incidence. They called
this a first-order Bragg condition, the lattice spacing
being i\. The probability per electron that reflection
would take place was shown to be proportional to the
square of the light intensity. At the time an experiment
was impractical, given the intensity of available sources,
but recently several attempts have been made to
demonstrate this effect using Q-switched lasers as a light
source.? Electrons scattered by the light beam have been
observed but the dependence of the probability of
scattering on the angle of incidence and on the intensity
of the light has not yet been determined experimentally.
The formula for the transition probability given by
Kapitza and Dirac,! derived using the theory of
stimulated processes, is not valid at intensities used
in current experiments, for it would predict probabilities
in excess of unity. It is therefore essential to reexamine

the theory of this scattering problem. The first extensive:

published investigation is that of Fedorov.? The Schrod-

1 P. L. Kapitza and P. A. M. Dirac, Proc. Cambr. Phil. Soc. 29,
297 (1933).

2 L. S. Bartell, R. R. Roskos, and H. Bradford Thompson, Phys.
Rev. 166, 1494 (1968); L. S. Bartell, Phys. Letters 27A, 236
(1968) ; H.-Chr. Pfeiffer, ibid. 26A, 362 (1968) ; H. Schwarz, Ann.
Physik 204, 276 (1967); Y. Takeda and I. Matsui, J. Phys. Soc.
Japan 25, 1202 (1968).

3 M. V. Fedorov, Zh. Eksperim. i Teor. Fiz. 52, 1434 (1967)
[Sov. Phys. JETP 25, 952 (1967)].

inger equation, used to describe the electron, is cast
into the form of a Mathieu equation by neglecting
the time dependence of the standing light wave, treated
as a classical field. Solutions are found, however, only
in the case of either very low intensity, or of very high
intensity, and predictions are not made in the intensity
range used in recent experiments. Ezawa and Namai-
zawa? have also investigated solutions to the Mathieu
equation. Schoenebeck® uses a modified first-order
perturbation method to obtain a solution to the
problem.

In this article a somewhat different approach is
taken. The nonrelativistic Green function for an
electron in a standing-wave field is calculated using
perturbation theory. By neglecting the rapidly time-
varying part of the electron-field interaction, it is
possible to sum the perturbation series completely and
obtain exact scattering matrix elements between states
of definite electron momenta. This permits the transition
probability to be evaluated for practically arbitrary
intensities and interaction times. It is possible in
addition to examine the transition probability for
electron momenta not satisfying the Bragg condition,
and to calculate the probability of higher-order Bragg
reflections.

II. THEORETICAL BACKGROUND
A. Preliminary Remarks
The procedure adopted in this article is to calculate
the scattering amplitude via the nonrelativistic Green

4H.) Ezawa and H. Namaizawa, J. Phys. Soc. Japan 26, 458
(1969).
5 H. Schoenebeck, Phys. Letters 27A, 286 (1968).



