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The conventional formulation of quantum electrodynamics in which the system develops from one space-
like hyperplane to the next is here replaced by one in which the development proceeds over null hyperplanes.
For detailed study a quantized electromagnetic field A& is chosen to interact with a quantized spin-0 particle
Geld C in an unquantized electromagnetic Geld Ae ti' as background. If the latter is chosen to be a laser Geld,
the C-A, q& interaction permits exact closed-form solutions (Volkov) and allows the construction of wave
packets which cannot be done in the usual formulation. The perturbation solution for the S matrix is there-
fore conveniently based on the Furry picture. The null-plane formulation has various advantages. In par-
ticular, the gauge problem which causes difFiculties in the usual theory is absent in the null-plane gauge
chosen here. Since there are only two dynamically independent components of A, I', the commutation rela-
tions, Geld equations, gauge conditions, and vacuum deGnition are all mutually consistent. A natural null-
plane gauge is used. Similarities and differences between this and the conventional theory are pointed out.
As an application the Compton scattering of a charged particle with a laser beam is shown to lead to an
intensity-dependent frequency shift. The controversy on this issue is settled here without divergent phase
factors, because our. wave-packet description permits a clean separation of the particle beam from the laser.

I. INTRODUCTION AND SUMMARY

' 'N the present paper, quantum electrodynamics wiH

~ - be studied in terms of a special coordinate system in
Minkowski space, characterized by two families of null

pla, nes, I=const and a=const. The physical system is
then regarded as developing from one null plane to the
next, i.e., from I=NO to u=N~. The null coordinate I
wiH therefore play a role similar to time, giving one of
the two null-plane families a preferred status.

One may weH inquire into the reasons for such an odd
and physicaHy seemingly meaningless description where

spacelike planes are replaced by null planes, the time
coordinate is replaced by a null coordinate, and initial
conditions would have to be given on a null plane,
Surprisingly enough there are three quite diferent
motivations, each one being by itself su%ciently im-

portant to warrant such a treatment.

(1) One motivation for studying null-plane ield
theory arose during the period when one of us (R.A. N. )
was engaged in describing the scattering of electrons by
a laser beam. ' Such a beam, when described as a finite-

length wave train with plane-wave front, appears in

Minkowski space as coherent electromagnetic radiation
bounded by two nuH planes. This suggests null coordi-

nates as the natural coordinate system. It then emerges

that the difhculties previously encountered in this
problem disappear, as we shall explain below. This work
remained unpublished until now.

(2) Meanwhile papers began to appear' ' which

indicated that the indnite-momentum limit needed in
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current-algebra techniques is very conveniently ob-
tained by the use of null coordinates in Feynman
diagrams Rnd otllcl' cxplcsslolls. (Tllc narvc 1116Illtc-
momentum limit obtained by a Lorentz transforination
with infinite velocity —thereby formally changing a
spacelike plane into a null plane —does not exist. ) The
nu11 coordinates lead naturally to null planes which are
therefore sometimes referred to as the "in6nite-
momentum frame. " Current-algebra calcula, tions thus
become not only more rigorous but also much simpler. '

(3) From the point of view of general quantum 6eld
theory and its 5 matrix, there is interest in a nuH-plane
formulation simply as an alternative to the more cus-
tomary theory, with the implicit hope that some of
the usual difhculties might be ameliorated. As we
shaH see, this hope is richly rewarded in quantum
electrodynamics.

With these three motivations in mind, we want to
concentrate primarily on (1) and (3) in view of the
various papers already published in connection with
(2). To be sure, null-surface coordinates are not new to
Geld theory since general relativists have discovered
their usefulness some time ago, especiaHy the use of
null-cone coordinates in the context of gravitational
radiation. ' But there exist some essential diR'erences

between null cones and null planes which make the
latter much more interesting for our purpose.

Rc'tllrlllllg to ltc111 (1), wc llotc thRt tllc discovery of
the laser has aroused considerable interest in the
possibility of intensity-dependent effects in quantum
electrodynamics. Sengupta Grst predicted that in the
Compton scattering of an electron by a strong external
radiation field the emerging photon would have a fre-
quency shift which depends on the intensity of the
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external field. Various authors have corroborated this
prediction, ' "while others have contested it." "

In a very illuminating paper Kibble" resolved this
discrepancy. He showed that it is essential to have a
free electron before and after its interaction with the
laser beam. This is not the case in the latter papers. " "
In contradistinction, the intensity-dependent frequency
shift in Compton scattering is obtained in calculations
such as Ref. 8 where the laser beam is represented by a
wave train of /nits length.

Unfortunately, these calculations are not entirely
satisfactory and do not resolve the discrepancy beyond
objections. The reason is as follows. Let the laser beam
be a finite wave train moving in the positive s direction.
Then the incident and the outgoing electron wave must
have an upper and a lower bound in s (for fixed x and y),
in order that the electron will be outside the laser beam
before a finite time to and after a 6nite time t~. Thus, the
electrons must be described by a wave packet which is
compact in s. This is easy to do for the region outside
the laser beam, but then requires a difhcult matching
to the solution inside the laser beam, unless one can
construct a wave-packet solution in the s direction
which is valid both inside and oltside the laser beam.
Neither the matching nor the complete wave-packet
solution has ever been given. In fact, in the usual
coordinate system a closed-form wave-packet solution
inside the laser beam does not seem possible.

The null-plane coordinates resolve this difficulty.
Compactness in s is equivalent to compactness in f+s
for fixed t —s, and this can easily be done also for the
solutions inside the laser beam as will be shown. The
wave-packet description can thus be carried consistently
from before to after the collision.

%hile this resolves completely the separation of the
electron from the laser beam by insuring a finite
interaction time when looked at in the t-s plane, this
is not so in the t-x or t-y plane when the laser beam
and the electron have infinite wave fronts, unless these
wave fronts are parallel, i.e., the electron moves in the
(negative) s direction only (head-on collision). In all
other cases the wave fronts of the laser beam and the
electron would intersect at all finite times if one only
goes far enough out in the x and/or y direction. Thus,
compactness in x and y is in general also necessary if one
wants a finite interaction time.

The complete wave-packet description in x, y, and
t+s, both inside and outside the laser beam, will be
given in Sec. III. In this way the important stipulation
by K.ibble is clearly and fully realized. The description
in which the electron is separated from the laser beam

s L. S. Brown and T. W. B.Kibble, Phys. Rev. 133,A705 (1964l.' I. I. Goldman, Phys. Letters 8, 103 (1964).
'o A. I. Nikishov and V. I. Ritus, Zh. Kksperim. i Teor. Fiz.

46, 776 (1964) fSoviet Phys. JKTP 19, 529 (1964)g.
~~ J. H. Eberly and H. R. Reiss, Phys. Rev. 145, 1035 (1966)."Z. Fried and J. H. Eberly, Phys. Rev. 136, B871 (1964)."P. Stehle and P. G. DeBaryshe, Phys. Rev. 152, 1135 (1966)."O.Von Roos, Phys. Rev. 150, 1112 (1966)."T.W. Kibble, Phys. Rev. 138, B740 (1965).

only asymptotically' can be obtained from this wave-
packet formulation in a suitable limit.

In this way a mathematically clean calculation can
be carried out. Otherwise divergent phase factors arise. '
The difference between our work and previous work can
be summarized mathematically by saying that our wave
functions are 1.~ functions while previous work used
plane waves which are not in a Hilbert space.

The results of our calculations confirm the intensity-
dependent frequency shift as computed by Brown and
Kibble. ' This will be shown in Sec. VIII.

This useful application indicates the importance of
the general formulation of null-plane field theory. The
general case involves quantized charged particles and
photons in interaction with one another and with an
external field. A reasonable idealization of the laser field
permits an exact closed-form solution of the charged—
particle 6eld in the presence of the laser 6eld."Section
II is devoted to this solution for the plane-wave case
and Sec. III for the wave-packet case. The associated
Green functions are given in Sec. IV.

The general formulation of null-plane quantum elec-
trodynamics is begun in Sec. U. The preliminary work.
for it was done in an earlier publication. '~ There, the
Cauchy initial-value problem on null planes was studied
both classically and in the quantum case for spin-0 and
spin-~ fieMs. Here, this approach is applied to the
interacting system of a spin-0 field C, the electromag-
netic fieM F„„,and the external field F„„'.The infini-
tesimal generators of translation along the spatial and
null directions are constructed formally in the Heisen-
berg picture and appropriate commutation relations for
the 6elds are postulated which were previously derived
from the noninteracting case. These formal generators
in the Heisenberg picture and the associated Geld
equations receive a mell-defined meaning by a trans-
formation from the Furry picture (Sec. VI).

That picture is characterized by the 6eld equations
in which the quantized electromagnetic 6eld is not
coupled to the rest of the system and for which we have
found exact solutions in Secs. II—IV. In this picture,
normal ordering is meaningful and the generators are
well defined. The transformation to the Heisenberg
picture can then be carried out in a perturbation ex-
pansion analogous to standard methods. It is charac-
terized by the null translation operator of the inter-
action in the Furry picture I'„p&'& which plays the role
of the usual interaction Hamiltonian in that picture.

The formal solution for this transformation yields
the Dyson form of the 5 matrix. This involves an
operator ordering by the null coordinate u (rather than
the time coordinate) but is in many ways analogous to
the usual case.

The apparent disadvantage of null-plane coordinates
seems to be the unphysical initial condition on a null
plane which corresponds to the specification of the

~6 D. M. Volkov, Z. Physik 94, 250 (1935).
'7 R. A. Neville and F.Rohrlich, Nuovo Cimento 1A, 625 (1971).
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plane-wave front of an electromagnetic wave for all
times. This disadvantage disappears when one takes
the initial null plane I=NO to No~ —~, as is the case
in the 5-matrix description.

The advantages of the null-plane formulation are
enormous. The most important of these is perhaps the
gauge problem. This problem takes on major propor-
tions in the usual formulation of quantum electro-
dynamics in terms of spacelike planes, leading to such
unfortunate artifices as indefinite-metric Hilbert spaces,
complicated limiting procedures, or other devices. At
the same time, there is little or no physics in these
artifices.

The null-plane formulation eliminates the gauge
problem in a most elegant and unexpected way. It leads
to a natural choice of gauge which we call the nil/-p/ane

gauge (Sec. VII). In this gauge one of the four inhomo-

geneous Maxwell equations does not occur explicitly
but is indirectly ensured to be satisfied. Another one of
these four equations contains no time derivative and
therefore plays the role of a constraint. This leaves only
two dynamically independent equations and, corre-
spondingly, only two dynamically independent com-

ponents of the potential A&. As an irreducible repre-
sentation of spin 1 and mass 0 of the Poincare group,
the free photon is known to have only two independent
components. It is therefore most satisfactory to have
the same situation also in the interacting case if one
works in the null-plane formulation.

If one chooses the two transverse components A~ and

A2 as the dynamically independent components, then
the null-plane gauge A, =O states physically that the
Coulomb potential and the longitudinal one are equal,
and that the constraint equation expresses the Coulomb

potential in terms of A~, A2, and the "static" source

(i.e., the current density component that plays the role

of the charge density on a null plane). In this way it
becomes intuitively understandable why the null-plane

gauge leads to no contradictions between the com-

mutation relations, the gauge condition, the Geld

equations, and the definition of the vacuum.

Near the conclusion of our work we became aware of
a recent report by Kogut and Soper" which deals with

a closely related subject and is in many respects similar

to our work. However, their work differs from ours in

several essential ways. First, we deal with spin-0 charged

particles while they are treating spin-~ particles. Second,

they use the "infinite-momentum gauge,
" which is

equivalent to our null-plane gauge, but they do not pay
attention to the fourth Maxwell equation, which does
not, occur explicitly, and they do not show the con-

sistency of that gauge with the definition of the vacuum.

We also differ in the treatment of the Green functions

and in the external Geld which is not considered in Ref.
3.8, where no application to laser physics is made. Last
but not least, we paid, attention to the need for a careful

"J.B.Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).

treatment of various operators (in particular p„~&'&)
without which the derivation of the Geld equations from
the commutation relations would not be unambiguous.

Our work also shows that quantum field theory in the
null-plane formulation is not just Feynman-Dyson
theory with a particular choice of coordinates, as seems
to be implied in Ref. 4. It suffices to point to the very
different treatment of the gauge problem in the two
instances to establish this fact. But if one satisfies
the constraint equation (6.9) in each order of the
perturbation expansion, the Feynman-Dyson tech-
niques can be taken over with little change.

Finally, to avoid any misunderstanding, we note that
our null-plane formulation of quantum electrodynamics
will not lead to any predictions different from those
obtained in the conventional spacelike-surface formula-
tion. But we feel that the formulation here proposed
does have distinctive advantages, as explained above.

II. PLANE-WAVE SOLUTIONS

Exact solutions p(x,p) to the equation (we use the
Minkowski metric with signature +2)

([8 ieA—'( )5x' m'}—p(x p) =0 (2.1)

can be found in closed form provided the c-number field
A„' satisfies certain conditions. One particular set of
conditions on A „' which allows a solution is the
following:

(i) It describes a free radiation fmld, i.e., 8 BA„8=0;
(ii) it satisfies (for convenience) the Lorentz gauge

condition 8 A'=0'
(iii) it propagates in a single direction given by the

null vector n&= (1,0,0,1)/K2;
(iv) it depends on only the single null parameter

u= —n x=(t—xa)/K2.

These conditions are sufhcient; in addition we shall
assume that A„' is real and transverse, and nonzero only
for a finite range of I, i.e.,

A„'(u) =A„'*(I), A„'(u) =(O,Ai'(u), A2'(u), 0),

A„'(I)=0 for (I])(No[.

Physically, this means that the external field is a finite-
length, plane-wave-fronted pulse; this work is thereby
differentiated. from certain preceding treatments" "in
which the external Geld is an inGnitely long plane-
wave train.

The external Geld so deGned&will be used as the
prototype of a laser beam, and we shall refer to it as the
laser Geld. That a laser Geld can be described classically
in excellent approximation has been known for some
time. '5 "'0

'9 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 8274
(1965).

» I.. M. I rantz, Phys. Rev. 139, 31326 (1965).
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As ls evident fI'olrl Flg. i, thc gcoIQctI'y of thc 6eld

suggests tile 111tiodllct1011 of allo'thcl Iiull paraillctci
e"=—m x=(t+xa)/v2 where ml' is the null vector
tel'—= (1, 0, 0, —1)/V2. With these definitions of n&

and m& and the notation ns A=——A„N 3—= —A„
A=(AI, A2) of Ref. 17, the product of two four-vectors
becomes

3 8=A 3—A„B„—A„B„. (2 2)

x' p =x 'p —Spy —Npg, )

and hence, the momentum components p„and p, are the
variables canonically conjugate to I and e, respectively.

Wc also Dote that thc lndlccs Q Rnd '0 dcDotc ln-
variants and not components so that there is no distinc-
tion between their use as subscripts or superscripts. Of
particular importance shall be the quantities 8 = —m 8

B/—BN and B.= nB=— B/Bv-
In this notation, Eq. (2.1) becomes

ff;,"p(x,p)=r 8' 2ieA—, 8—e'Ae'

m' —2B.—B,]y(*,p) =o
& (2 4)

where Q=(B/Bgi, B/Bgg) snd. p is R label to bc spccilcd
below.

Examination of Fig. 1 yields an important property
of thc solutions to this equation. SIDcc 3p dcpcQds only
on I, the system possesses translational invariance in
the three coordinates x~, x~, and. e. This impHcs con-
servation of the conjugate momentum components pi,
p» and p» respectively. On the other hand, the system
ls Qot lnvRI'1RDt undcl tlRD51Rtlons ln $, x3, Rnd I, Rnd

consequently the momentum components p', p3, and
p„are not conserved. This observation, although simple,
is crucial to the development of the following formalism.

The plane-wave solutions to (2.4), with the initial
coDditloD

y(~,p) I.« .,='" 'I-"+. 0, =(2 5)

are essentially the spin-0 counterparts of the Volkov
solutions'6

pro. I. Null-plane geometry and the laser Geld.

mass shell" (i.m. s.)

p(x,p) =cxpLip x ip„v-
—'ip~(N —Ni) —sp~rlejI I.m.g, ) (2.9)

where"

i ms means (I—I) '

and where tllc colTcct 1Ilitial condition (2.5) llas been
incorporated into (2.9). Although it is conventional to
implement the m.s. condition (2.8) by imposing on the
p' component the condition p'=+(p'+p12+m')Ii' it
is possible to specify instead any one of a number of
components, for example, p„=(p'+m')/(2p. ). This
frccdoIQ ls not Rvailablc in the 1DtcI'Rctlng cRsc. FroIQ
the previous discussion of translation invariance, it is
seen that, of the four components p„, pi, p2, and p„
only p„should depend on N. Therefore (2.10) is solved.
foi' p~:

y(x,p)=expiI p x—p, e

" (Lp —eA'(n) j'+~'}de

%is

(2.a)

f (~,p) =e* (2.7)

m.s. e means p'+m'=0, po=eI poI, (2.8)

solutions (2.6) can be thought of as being on the
positive- or negative-energy part of a new "interacting

with p„r=(p2+m')/(2p, ). Note that p. can never
vanish for finite p. The solutio»s Indcpendcn«f the
parameter I;.

In the same way as the free plane-wave solutions
f(x,p) are considered to be on the mass sheH (m.s.),

This value foi' p„ iiiscl'tcd 1nto (2.9) yields the Voiirov
solution (2.6).

Since lt %'ill bc Qcccssary 1Rtcl to scpRI'Rtc thc solu-
tions into posltlvc" RDd ncgRtlvc-cDclgy solutlonsq lt ls
of interest to consider whether this can be accomplished
by specifying the value of p„. From (2.11) with the
delnitions of n~ and ep, one finds that p' is given by

p (1+p./p. )
(2.12)

~~ Equation (2.10) for all I is of course equivalent to
(p —eA')~+m~=0, but. if one wishes to solve (2.4) by a plane
wave with a suitable mass-sheH restriction, then the average
(2.10) must be used as the argument of the 8 function. Compare
Eqs. (B.j,) and (3.2) below.
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Since the term p„/p„ is positive definite for real A, )', p
and p„always have the same sign. It then follows from
(2.11) that p' and p„ likewise have the same sign for all
u. Moreover, the conservation. of p„ implies that a
positive- (negative-) energy solution remains a positive-
(negative-) energy solution throughout its development
with respect to u. A separation of solutions (2.6) into
two sets, according to the sign of the energy, is possible
and is made explicit by writing

)t, (x,p) =[2(2')'] "'

coordinates eliminates this difhculty. At the same time,
(3.2) is chosen to preserve the initial condition (2.5).
That the i.m.s. condition must be incorporated by im-
posing the condition (2.11) on p„(rather than on p' as
is conventional in the free case) has already been seen.
This requires that we rewrite the i.m. s. 6 function as

=(2ip. l) ' Z 0(ep )

)(exp ie p x—

Here we have added a suitable normalization. Ke use
the notation

(p,p, l

—p. i), *=—(x,",~),

"L(P—eA')'+m']dpi

2IP. I

Here 8 is the step function (8= 1 and 0 for positive and
negative arguments). Integrating (3.2) over p and
separating into positive- and negative-energy solutions,
one obtains

p x=p x—Ip„li), (2.14)

(2.15)
where

q."(n)—={Lp
—«~'(n)] '+~9/(2

I P. I),

&-(P)4.(x,p)d'P

2IP I

(3 4)

+1 for positive-energy solutions

—1 for negative-energy solutions.

III. WAVE-PACKET SOLUTIONS

(2.16)

f (x) =(2~)- '
g (P)S(p +~)e".d4P (31)

In the construction of a complete orthonormal set of
wave packets of Uolkov solutions, we follow a method
analogous to that employed in the free case. Free wave-

packet solutions are formed by an integration over
momentum four-space of the plane wave e'" * (p" as
yet unspecified), with a momentum-space factor g(p)
restricted to the mass shell

(&-(p),4.(p))

&-*(P)&e.(P)d'p
=8 e, e =&1. (3.5)

2IP I

They satisfy the completeness relation

2 &-(P)&-*(0')=
I p. l~ (P P'), =~1 —(36)

d P dp&dp2dp» ~ (P)=~ (ep4ep2)elP I) 7i (eP)

The momentum space functions h, (p), being func-
tions of the three conserved momentum components

(pi,p~, l p, l), are now chosen to form an orthonormal
basis in an I.2 space with invariant measure d'p/2

I p„l

Volkov wave packets are formed similarly by replacing
the m. s. condition by i.m. s. condition (2.10):

)t (x) =v2(2m. )-"' d'p h.(pip2)p„)

with )13(p—p') —= fI2(p —p')8(l p„l —
I p, 'I). We note that

this method results in Volkov wave packets which fall
off fast enough as x~, x~, and v approach in6nity, whereas
the conventional construction for free solutions gives
packets that do so as x~, x2, and x3 approach in6nity.

As a consequence of (3.5) and (3.6), the Volkov wave-
packet solutions )f), are orthonormal with respect to
the inner product on the null plane u= const,

&(expfip x iP„T) iP„—(u u—;) iP~ —u,].—(3.2) (~ ( ) ~,( )); dg-~ (x)~ ~ ( )

The shape factor h~(p»p2, p,) can depend only on pi, p„
and p. because the system is translation invariant only
in the directions x&, x2, and v, conjugate to these
variables, and not in u which is conjugate to p„. Since
we do not have translation invariance in x3 and x, the
choice of the usual variables would permit construction
of a wave packet only in pi and p2 which is insuflicient
to produce a 6nite intersection time. The use of null

=eh„8 p, (3.7)

where d'x=dx&dx2d~, 8,=8,—8,. They satisfy the
completeness relation

P y.,(x)y.,*(x')= —iea, (x,x'; A') . (3.8a)

The distribution b, ,(x,x'; A') projects on the space of
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A(x,x'; A')8;yp;(x')d'x'=yp;(x) (3..9)

The integrand in (3.9) is the ii component of the
divergence-free four-vector

A(x,x', A') rI„'yp;(x')
2i pA—„'(u')A(x,x'; A ')Pp, (x') . (3.10)

The resultant integral in (3.9) is formally identical to
the corresponding expression for the free case I Eq. (3.7)
of Ref. 17j. Because the wave packets P, satisfy the
asymptotic limit limp„{x)=0, Iel ~~, we have by
Theorem 2 of Ref. 17 that the specification of P, on
the I=No surface yields, via (3.9), a unique solution to
the differential equation (2.4).

In the plane-wave limit, i.e., when P, becomes a
Volkov plane wave,

h"(P) ~ I P. I ba(P —P-),
4-(x) ~4 (*,P-)

the inner product (3.7) of two solutions becomes

(y.,(x),yp, (x))~ i d'x—y,*(x,P.)a„y,.(x,pp)

(3.11)

= ~."IP..I& (P.-Pp), (3.»)
which is a time-independent expression of the orthog-
onality of the Volkov solutions with respect to the
conserved momentum components Pi, P2, and p, .

IV. GREEN FUNCTIONS

The Green functions are classi6ed as homogeneous or
inhomogeneous depending on which of the Eqs. (4.1)
or (4.2) they satisfy:

E "Air(x x' A') —0

X..~*a (x,x';A ) =0,
(4.1a)

(4.1b)

X,"A,(x,x'; A ) = —84(x—x'), (4.»)
Z., &*A,(x,x', A ) = —S4(x—x') . (4.2b)

The Klein-Gordon operator with coupling to the laser
field is defmed by (2.4), and E "*is the complex con-
jugate of E ~. There are Green. functions of this type
corresponding to all the usual free Green functions,
specided in this case by their initial values on the e=N
null hyperplane.

solutions g,}.It follows that

A{xx' A') =A+(x x' A')+M(x x' A') (3.8b)

is the identity "operator" on the complete space of
positive- and negative-energy solutions, i.e., by (3.7)
and (3.8)

A(x,x', A )ayp (x')

By virtue of their definitions in (3.8), A, (x,x'; A') are
homogeneous Green functions. The completeness rela-
tions (3.6) and (3.8) coupled with the explicit expres-
sions of Q„(x) and $,(x,p) yield representations of
A, (x,x', A ') that can be conveniently written, by means
of q„'& defined in (2.15), as follows:

A, (x,x'; A') =k(2m) ' 8(ep.)

Xexp i~ P (x—x')— V-"(v)A (4.3)
— 2IP. I

Considered as functions of A„', the A, (x,x'; A') satisfy
the boundary conditions

h, {x,x', A')
I g p ——A, (x—x'). (44)

This is a direct result of the initial condition (2.5)
imposed on the plane-wave solutions.

In analogy to the free case, one can represent
h, (x,x'; A') both as integrals over the i.m. s. b function
and as contour integrals in the complex p„plane:

A, (x,x";A') =ie(2w) 'd-4P e(eP, )p'"'&* "'

&bl (I—I')-'

and

~ (x*'A ) =(2~)-4 d~P dp„."&*-"&

( q
—i

yl (m —I')- {LP—pA (g)]2+m }d~ I
. (4.6)

)

Aii*(x,x'; A') =kg(x', x; A'), (4.9)
» J. M. Jauch and R. Rohrlich, Theory of I'bofors ued E/ectrols

I'Addison-%esley, Reading, Mass. , 1959), 2nd printing, Appen~
dlX j..

The contours C, are formally identical to those of the
free Green functions" with P' replaced by P,. Indeed,
any of the Green functions b, r(x,x'; A'), homogeneous
or inhomogeneous, can be obtained simply by replacing
the contour C, in the integral (4.6) by the contour Cr in
complex P space, Cr being formally the same as the
contour in P' space that gives the free Green function"
Ar(x —x'). As a result of the identically related contours,
these Green functions Az(x, x';A') satisfy the same
linear relationships among themselves as do the free
Green functions, the only modi6cation being the re-
placement of x' by N. They do not, however, retain all
the symmetry and reality properties of the free Green
functions. They do satisfy

A,*(x,x';A)= —A, (x',x;A) (~=~), (4.7)

A*(x x' A ') = —A(x' x A')
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A,*(x,x'; A ) =~,(x',x; A ),
A„*(x,x', A ) =~»(x', x; A ) .

(4 1o)

(4.11)

~e want to point outi that a solution Ar(x, x', A')
to (4.1) or (4.2) combined with the condition
gr(x, x', A') =Jr(x—x') for A ' ~ 0 results in a unique
Ar(x, x'; A') coinciding with that given by the contour
integral over Ci.

In practice we need the u=u' values of A(x,x', A')
and 8„5(x,x'; A'). As is clear from expressions (4.3),
these are the same as for the free case"

A(x, x'; A ')
~
„=„=tie(t —v') Bt(x—x'), (4.12a)

B,l},(x,x'; A') i.=. = —-,'8 (x—x'), (4.12b)

where e(e) =1 (—1) for e)0((0) .
Since the derivative B„normal to the null plane I=I' is
within that plane, (4.12) constitutes one initial condi-
tion, not two. This is another manifestation of the fact
that only P, need be specified on the initial-value null
plane for uniqueness. "

The initial values given in (4.12) enable one to demon-
strate that the inhomogeneous Green functions, ex-
pressed formally in terms of 6+(x,x'; A ') and
itt (x,x'; A') by the free-case relations with x' replaced
by I, do indeed satisfy (4.2). For example, let us verify
this for Aiit=8(N —I')i1+—8(N' —u)6,
E."ittiit(x x' A') = 28„8—(N u') B—.l},+(x,x'; A ')

+28„8(N'—u)8„6 (x,x'; A')
=28(N —u')B.h( , xxA').

Combined with (4.12b), one finds the desired result

E,"lt ig(x,x'; A') = —Bt(x—x'). (4.13)

Similarly, A&it(x, x', A') satisfies (4.2b).

V. HEISENBERG PICTURE

In Secs. II—IV we restricted the discussions to charged
particles in a laser field without the (quantized) radia-
tion field of these charges. The generalization necessary
to include the radiation Geld requires suitable field
equations and commutation relations. In order to derive
the former, we start with the usual heuristic classical
situation.

The gauge-invariant Lagrangian density is

(D„C)*D~C m'C—*C ,'F„„F~",— (5.1)——

and
8"F,„=8;F;„B„—F,„B—„F„„=—J„, (5.5)

J—„=i—e(4*8„4)+ie(4 ~8„4)m„

+i e(C.*B„C)n„+2e'(A„+A„')4 *4 .

The index j (or k) takes on the values 1 and 2 only, and
the summation convention is assumed also for it. The
homogeneous Maxwell equations are identically satis-
fmd because of (5.3).

Now these field equations are hyperbolic differential
equations of the form

28 B.f=lf. (5.6)

In a previous publication" we discussed in some detail
the considerable simplifications which arise when the
linear differential operator L is independent of 8„.Now
(5.4) can be rewritten as (A"'=A+A'),

—((Bt mt)+2ie(A t tB yA totB Atot. 8)
+ie(B„A„"'+8 „A„'" BA—tot)

+g (2A totA tot Att.oA t)pity

This shows that L for this equation can be made inde-
pendent of 8„ if one chooses A.~'=0 or, since A, '=0
holds anyway for our external field,

A, =O. (5.7)

This choice is always possible by working in a suitable
gauge: Given A„' in an arbitrary gauge, the transforma-
tion A„' ~ A„=A„'+B„h. can be so chosen that
A, = —n A =0. In view of the importance of this choice
of gauge in connection with null-plane coordinates —and
for lack of a better name —we shall call the gauge
characterized by (5.7) the NNl/ plane gauge. I-n Sec. VII
we shall see that it has most interesting properties in the
quantized case. This gauge was also used by Kogut and
Soper '8

When the null-plane gauge is used in the Lagrangian
(5.1), the resulting field equations are (5.4) and (5.5)
with various terms missing. Noting the properties of our
external field A„' we find

8„(B„A„—i} A) = —J . (5.10)

28~8.4'=(i}' m')4'+—2ie[A„B, (A+A'—) i}j@
+ie(B„A„—i} A)4 —e'(A+A')'@ (5 g)

(28„8.—i}')A;—8;(B„A„—i} A) =y, , (5.9)

with
D„=8„ie(A„+A—„'),—

F„„=—B„A„—B„A„.

(5.2)

(5.3)

Here we deGned

J—= —ieC*l}4—2e'(A+A') 4*4
and

J.=——iel}*8„C}.

(5.11)

(5.12)

(D„D„+D„D„)4=(D'—m')4 (5.4)

In the standard way based on Xoether's theorem, on
derives the Geld equations, and from translation in-
variance the canonical energy tensor. The field equa-
tions written in null coordinates are

We observe that there are only three Maxwell equations,
the one corresponding to (5.5) with }t=u is absent.
Correspondingly, there are only three components to the
current, J~, J~, and J„.There is no component J„ in
Maxwell s equations. This is consistent with (5.6); ull
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field equations are of that form with I. independent
of 8~.

Now Eq. (5.10) contains no B„at all (our "time
derivative") so that this is a constraint equation imposed
on the Gelds on the initial surface. Consequently only
two of the three component Ag, A2, and A„are dy-
naInlcally lndcpcDdcnt«%c shall choose Al Rnd kg Rs

in Ref. 18, but shall leave this matter to the next section.
%c now turn to the momentum four-vector as deter-

mined in null coordinates from the canonical energy
tensor which in turn is derived from the Lagrangian
(5.1) in the null-plane gauge. We find first

2'„„= (D„4)—*B„C B„C*D—„C F„B.A——g„,Z. (5.13)

This tensor is not symmetric. %bile symmetrization is
clearly possible by well-known techniques, it is this
nonsymmetric canonical tensor which yields the correct
6eld equations. "

The momentum I'„can now be given as an integral of
T„„over the null plane I=const,

(5.14)

The momenta I'; are then seen to be

d'S B„C*B,C B,C*B,C

+B.A B;Aj (j=1, 2) (5.15)

and the third momentum in the u =const hyperplane is

d'$$2B.C*B.C+B,A B.A]. (5.16)

But the most interesting momentum is the one which is
in the I direction Rnd which corresponds to the Hamil-
tonlan ln the spacellke-plane formulation

d'xn"T m

d'$$8C* ilC+m'C*C+i (Ac+A') (C*QC )

—ice„(C*B„C)+e'(A+A')'C*C

+-', (Fi2)'——,'(B.A )'+B.A aA„]. (5.1'7)

It is conveniently split into a radiation-free part. E„&')
and a radiation-interaction part P„&'~.The latter can be

'3 G. %'entzel, Qguntges Theory of Fields (InteIscience, Neve
York, 1949).

written in terms of the current components (5.12):

F„"i= d'x ieA (C~aC)+e'A (A+2A')C*C

+rigJy ——
. e(v —'U )J„dv

8

The last term arises from —2(B,A„)~ upon substitution
of the constraint equation (5.10) as integrated in
Appendix B.

Before we proceed to the quantized version of the
classical theory developed here, an important mathe-
matical comment must be made. The Lagrangian den-
sity, the current density, the momentum density, and
other densities of the theory which are to be integrated
ovcl three-dlmcnsloI1al hypcrplancs will yield dlvcI'gcIlt
integrals, in general, This is-physically obvious when one
considers the emitted radiation Geld which does not
vanish asymptotically along a null cone so that inte-
gration over the variable v cannot converge. It is
necessary to consider these classical expressions as
distribution densities which are mathematically rnean-
ingful when integrated (formally) over suitable test
functions. Thus, the integrand of F„ in (5.17), for
example, should contain a factor 0(x) which is 1 over a
very large but Gnite region of the I=const hyperplanc
and then goes to zero smoothly such that there exists a
bound M for which 0(x) =0 for (xi2+x22+v')'I'&M
This "cuto6" can later be taken to the limit 0.=1 for
all x, and such a limit will have to be proven to exist.
These considerations are in fact necessary in what
follows so thRt, Rrnblgultlcs Rre cllInlnRtcd. IIl thc
quantized theory these ambiguities are related to
vacuum divergences and Haag's theorem.

Quantum electrodynamics is now obtained, from the
above considerations in the time-honored way of regard-
ing thc 6clds A p Rnd O' Rs opclRtols ln R HllbcI't space
and by requiring the field equations (5.8)—(5.10) to hold
for them. Of course, this does not give a mathematically
well-de6ned result, even when thc 6elds are treated as
operator-valued distributions, because products such as
A,CrC are not defined (Wick ordering does not exist for
interacting fields). We shall return to this point below.

Lct us at 6rst ignore this problem and treat A„and 4
as operators, so that the P„will also be operators. One
must then add to the 6eld equations suitable commuta-
tion relations. Since the dynamics consists in the de-
velopment of the system O6 a given null plane I=const,
these commutation relations must be speci6ed on such
a plane. As long as these do not involve derivations with
respect to the "time" variable u, they are formally
those of the free Gelds.

The free-6eld commutation relations for 4 on a null
plane were derived three years Rgo' by one of us and
were extended, by us more recently to other fields. "
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They are

LC'( ) c'( )j-=- =o (5.19)

[C(x)Pt(x')]„=„=—-',ie(o —o')82(x —x'). (5.20)

Similarly, one has for the components A& and A2 of the
electromagnetic potential

[A;(x),A i(x')]„= ~

= —~iib;&e(o —v') bi(x —x') (j, k = 1, 2) . (5.21)

As we shall see below, commutation relations involving
A„cannot be specihed but must be derived. Thus, only
the commutation relation between A; and C must be
given, and since we are dealing with free-field analogs,
we must have

[A,(x), C (x') j„=„=0. (5.22)

If A; (j=1,2), C, and their adjoints are the only
independent dynamical variables, the above list of
commutation relations is complete. The operator is then
obtained from (5.10) as we shall see.

The quantized form of the previously developed
classical theory (apart from the mathematical questions
to which we shall return later) now takes on the follow-

ing structure.
On a Gxed initial null plane the independent fields

A~, A2, 4 and their adjoints are related by the com-
mutation relations (5.19)—(5.22) which have been giveri.
The operator A„ is derived with (5.10). The unitary
generator of space-time translations (in null coordi-
nates) U(x) satisfies

i B„U=I'„U (5.23)

with P„given by the operators (5.15)—(5.17). In
particular, the null translation generator E„determines
the dynamics as it develops oR the null plane I=const.
Ke have the relation

picture; rather, they are those which take full account
of the external field but ignore the interaction between
the quantized. fields. In our case they are Eq. (2.1),
which was solved exactly in closed form in Secs. II and
III, and the free-field equations for the two dynamically
independent components a~ and a2'.

2i}„i}„&f&= [Qi—ni~ —2icA, . j}—o A,2]P,

(2i}„c}„f}—')a =0 (j=1 2).

(6 1)

(6 2)

Equations (6.2) are formally the Maxwell equations in
the I orentz gauge which is, however, modified in the
Furry picture to (6.8) below. (See also Appendix A.)

To these equations are added the free-field commuta-
tions (5.19)—(5.22) on a n=const plane but with the
Heisenberg fields A, 4 replaced by the Furry Gelds a, p.
The remaining I dependence is in the state vectors and
is characterized by the unitary operators V(u) which
transform between the two pictures:

y(x) = V(N) l (x) V—'(u), (6.3)

a(x) = V(N)A(x) V-'(u) . (6.4)

We note that V(u) is indeed unitary since it contains
the cutoff function o.( )xwhich we discussed in Sec. V,
and we shall exhibit it explicitly. Ke can simply specify
V(u) and then verify explicitly that it leads to the
correct equations in the Heisenberg picture. But it is
fairly obvious that it is just P„i'i of (5.18) transformed
to the Furry picture. The essential point here is that
this operator contains no I deri~atioes Otherw. ise that
transformation would lead to an integral equation for
I'„I;&'~, a matter that was discussed in our previous
paper. "Thus we have

P &'&(I)—= V(N)P "&(I)V '(I)

C (x) = V(x) C (0)U-'(x)

and the Grst derivative

(5.24) o(x)g'x: gaea (y}i}i')+e'a (a+2A~)gtg

a„C(x)=i[C(x),P„]. (5.25)

VI. FURRY PICTURE

The Furry picture for a system involving both
quantized and external 6elds is characterized by the
field equations satisGed by the quantized fields. These
are not the free-Geld equations as in the interaction

Analogous relations hold. for A„.
By means of these equations and the given commuta-

tion relations, one must be able to derive the Geld
equations (5.8)—(5.10). That this is indeed the case is
the outcome of a somewhat lengthy and tedious calcu-
lation which we have performed in detail. We shall not
present it here, but instead. we shall establish the rela-
tions between the above Heisenberg picture and. the
Furry picture in the next section. This will lead to
equivalent results.

e2-
+— e(o o') (it

't c—}„'y)dw'

8

—iea„(P"Vc}.g): . (6.5)

The ill-defined. expression (5.18) has now been ma, de
precise by the explicit appearance of o(x) and by the
well-dehned. normal ordering of the 6elds. The latter
shows that, taking (6.5) as the starting point, the
Heisenberg operator (5.18) is derived in a mathemati-
cally much more meaningful way than could be obtained
within the Heisenberg picture. Of course, this is an
implicit definition, since V(N) itself is given by

i B„V(u)=P„p"'(u)—V(u) . (6.6)

An initial condition such as V(0)=1 or V(—Oo)=1
makes V(N) unique. We choose the latter.
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e(v —v') j„(u,x,v') dv'. (6.9)

The next integration can, however, also be given and is
conveniently expressed as

a„(x)= —-', e(v v')dv'a (—v') iI a(u x v')

e(v' —v")j„(u,x,v")dv" . (6.10)

The additive integration "constants" must be chosen
consistently as is discussed in Appendix B.The relevant
commutation relations involving a„ then follow as

By means of P„p&'& the u derivatives of the fields are
determined. For example,

8„$= VB„CV ' i[—&,P„p"'j. (6.7)

We next turn to the derived operator a„.It is specified
by a defining equation in the initial null plane. Since
this defining equation in the Heisenberg picture, Kq.
(5.10), is independent of 8, the corresponding equation
in the Furry picture must be

8„(a a 8—,a„)=j,—= ie—:&t8,&: . (6.8)

This seems rather surprising in view of the impression
that in this picture the quantized electromagnetic field
is free. But only the dynamically independent com-
ponents, A ~ and A2 in our choice, can be expected to be
free. Since the Maxwell equation (5.10) is independent
of B„and is therefore an "initial constraint, " a trans-
formation to a different picture cannot change this
constraint, i.e., cannot uncouple the dependent com-
ponent A „. Thus, in null-plane quantum electro-
dynamics not all components of A„can be decoupled
from the matter field by a change of the picture. Since
clearly only relative values of a„can be of physical
significance, only the first integral of (6.8) must be
determined. From Appendix B we find

with P„P&'& given by (6.5). The symbol U+ stands for
(positive) u-ordering in complete analogy to the usual
time-ordering. This analogy continues through the Wick
theorems to a perturbation expansion in the quantized-
field coupling in terms of Feynman diagrams in the
Furry picture. The corresponding propagators were
given in Sec. IV.

For pi.actical calculations the S matrix looks very
much like the usual one, but it is cast in null coordi-
nates, because the integrand of E„p&'), after all, can
be written

:ical'(yta„y)+e'a (al'+2A8~)yt(f) '(8—a-i')' (6 14)

and is only restricted by a, =A, '=2„'=0. In the
Lorentz gauge the last term in (6.14) wouM vanish, but
in the null-plane gauge this term is of order e' by (6.9).
Since it is not clear how a consistent calculation can be
done in the Lorentz gauge when null coordinates are
used, the assertion' that one can carry out the Feynman-
Dyson theory by simply changing the S matrix to null
coordinates seems without foundation.

As far as I-ordering is concerned, we do note that for
timelike x—x', one has 8(u —u') =8(t—t'). This is, of
course, the reason for the similarity in the Green
functions between the present formulation and the usual
one as discussed in Sec. IV.

For the evaluation of S-matrix elements, we shall
need the quantized version of the wave-packet decom-
position (3.4). We shall distinguish the annihilation
part Qi i(x) and the creation part pi+'(x) of the Furry-
picture field operator Q(x). They correspond, respec-
tively, to the positive-energy part p+(x) and the
negative-energy part & (x) of the classical plane-wave
solution (2.13) or |t +(x) and P (x) of the classical
wave-packet solution (3.4). Thus we have

e(*)=~&-'( )+&&'&( ),
4' '(*)=2 a-4-+(x),

[8, (xa),a(x') j„=„=——,'ie(v —v') 88,(x—x'), (6.11) 4 "'(x)=2 &.'4 --(x), (6.17)

[8„a8,'y'j „=„=——,'e83(x —x')y(x')
+-', ee(v v') h~(x —x') 8 „'y—(x) . (6.12)

where the creation and annihilation operators satisfy the
usual commutation relations

It is now a matter of straightforward computation to
verify that the field equations (6.1)—(6.3), by means of
the transformations (6.3)—(6.6) and the indicated com-
mutation relations, yield the Heisenberg field equations
(5.8)—(5.10). The commutation relations, of course,
remain form invariant. This computation is carried out
in Appendix C.

One can now proceed to the evaluation of the scatter-
ing matrix in the spirit of Feynman-Dyson quantum
electrodynamics. Leaving aside an improved treatment
of ultraviolet or infrared divergences, one has the formal
expression

[., P'j=8-P, [b.,f 'j=8.P, (6»)
[a-,ap)=[a-, &pj =[a-Pp"j=[&-Ppl=o (6.»)

It then follows from the completeness relations (3.8a)
and from (3.8b) that

[~(*),~'(")3=22 ([ -~-.( ), P'~P.*(*')l

+[I.t~. (.),I P~P *("))&
=2 ~.,( )~..*(")-Z ~. ( )~.-*(*')

S=V(~) = U+ exp i P„p&'&—(u)du
iA(x, x'; A )— (6.20)

(6 13)
When we restrict the commutation relation to the null
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L ~iA& 3 ~i&~~e~ L &u~ e&l (6.23)

The operators c; commute with all a, b and their
adjoints. Finally,

is again a consequence of the completeness relations of
the classical wave-packet solutions of the free Maxwell

equations,

P u, (x)u, (x') = —ieD, (x—x') (6.25)

and
D(x —x') =D (x—x')+D (x—x') . (6.26)

The restriction of (6.24) to the null plane u=m' yields

[u;(x),ui, (x'))„=„=—-'ib;~e(v —w') 82(x —x') (6.27)

in agreement with (5.21) and (6.4).
In practice we use the plane-wave expansion of the

field operators u, (x) in terms of null coordinates

u, (x) = (4n) 'I' P [u(k, X)e,(k,X)

)&exp(ik x—i)k„~l)+ut(k, X)e,*(k,X)

)&exp( ik x+i—
] k„)N)]d'k/) k„[ (6.28)

with the commutation relations for the creation and
annihilation operators ut(k, X) and u(k, X) as

[u(k, ),),u&(k', ) ')]=
( k„)Sg), S,(k —k'),

[u(k,X),u(k', X')]=0,

and the completeness relation for the unit polarization
vectors e, (k,X),

P e, (k,X)e;.*(k,X) =5,,'. (6.30)

This expansion for u, (x) yielded (6.24).

VII. NULL-PLANE GAUGE

In the usual formulation of quantum electrodynamics

(with respect to space1ike planes), the gauge problem

plays a large and annoying role. The potentials and the

plane u=N', we find

[Q(x),Pt(x')]„=„=—-', ie(e —v') 52(x —x') (6.21)

in agreement with (5.20) and (6.3). This follows from
(4.12a).

Completely analogous relations can be written down
for the free electromagnetic fields u; (j= 1, 2).These are,
of course, well known and are therefore given here only
very brieAy for the sake of completeness and notation:

u;(x) =Q [c;u ~&(x)+c u &(x)], (6.22)

associated gauge freedom, which were originally intro-
duced into classical electrodynamics in order to simplify
the mathematics of the Maxwell equations, become a
major part of the complications of the theory. The
consistency between the commutation relations among
the potentials, the I orentz or Coulomb gauge condition,
and the requirement of a vacuum state, is usually
achieved only by means of rather far-fetched methods
such as the Bleuler-Gupta indefinite-metric technique,
the finite-mass photon, or the separate treatment of the
Coulomb interaction as a direct interaction following
Fermi's original work.

In the null-plane formulation of quantum electro-
dynamics the situation is radically different. One is led
to a particular gauge, the null-plane gauge, charac-
terized by A, =O. In this gauge, one of the Maxwell
equations, (5.10), permits us to express one of the
remaining components in terms of the other two on the
initial null surface, as discussed in Sec.VI. Consequently
there are only two dynamically independent com-
ponents of A„. If these are chosen to be Ay and A ~, one
obtains A„ in the Heisenberg picture by means of the
boundary condition (6.9) in terms of Ai, A2, and C

exactly as in the Furry picture (6.10). Since only the
commutation relations involving A ~ and A2 are specified
on the initial null surface, those involving A„are derived
and cannot lead to any convict between the gauge
choice and these relations.

A comparison of the null-plane gauge with the
Coulomb gauge used in the usual formulation is instruc-
tive. In the latter, one of the Maxwell equations
V'A'= —j' also becomes a constraint permitting the
elimination of A' in terms of j'; the gauge condition
V A =0 then permits the reduction to only A& and A2

as independent fields as in the null-plane gauge. Thus
there is considerable similarity between these gauges.

This similarity fails as far as covariance is concerned.
Since we treat rm& and nl' as four-vectors [see Fqs. (2.2)
ff], A. is an invariant. One must therefore compare the
null-plane gauge to the coiiuriunt Coulomb gauge (see,
e.g., Ref. 22). We also note that (three-dimensional)

rotation invariance alone suAices to establish that the
theory is independent of the choice of the null vectors
m&, nI' which, in particular, makes the S matrix in-

variant. Rotation invariance can be made manifest by
defining the null directions as follows: Let u be an arbi-
trary unit vector in 3-space and define n"=(1,u)/K2
and mI'=(1, —u)/v2. Then A, and. A„are manifestly
rotation invariant. Our choice u =0, where k is the unit
vector along the s axis, was made for convenience.

To be sure, manifest Poincare invariance is not a
necessary requirement on a relativistic theory. It suAices

that the Poincare algebra is satisfied, which is indeed

the case."
The theory is, however, manifestly gauge invariant

only under the restricted class of gauge transformations

A„~A„+BQ, where A is independent of v.
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The definition of the vacuum in the Furry (or inter-
action) picture offers no difficulties: The conditions

y&-&)0) =0, a, &-&)O) =0 (j= 1, 2), (7.1)

where the superscript (—) indicates the annihilation
part of the operator, imply via (6.10) that the vacuum
will also satisfy

(7.2)a &
—&io)=0.

For this purpose, we define

j.&+&(x)—=—,'ie: [yt(x) a,y&+&(x)

+yt&+&(x)&I y(x)] (7 3)

so that the creation and annihilation parts of a„become

a &+&(x)= —-', e(v v')—dvo (v') i} a&+&(u, x,v')

c(v' —v")j„'+&(u,x,v") dv". (7.4)

Equation (7.2) is then an obvious consequence.
Furthermore, the commutation relations are con-

sistent with the definition of the vacuum. For example,

([a,(x),a;(x')])0——2i Im(a;&-&(x) a;&+&(x'))0

is clearly consistent with

[a;(x))a;(x')]~=„=——,'ie(v —v') &&z(x —x') .
Thus we see that the null-plane gauge is very simple

. and is not beset by the difhculties encountered in
various gauges of the spacelike-plane formulation of
quantum electrodynamics.

Finally, one may wonder whether the use of a fixed
gauge did not cost us something. Did we not lose gauge
invariance, and did we not lose one of the four inhomo-
geneous Maxwell equations in the set (5.9), (5.10)? The
answer to this question is as follows.

The Lagrangian (5.1) in the null-plane gauge is still
invariant under gauge transformations of the first kind,
i.e., C + e' C with o; a constant. As a result there still
exists a conserved current J„with components J and J,
given by (5.11) and (5.12), and J„ is now known ex-
plicitly as

C(u,x) =0. (7 8)

The use of the null-plane gauge thus requires (7.8) as
a condition which ensures the full Maxwell theory.

Now in the distant past, A„and C become free fields.
Therefore the current, being associated with particles of
finite mass, will correspond to timelike world lines and
will be bounded on spacelike planes. Thus it will have
no support in the null direction e —+—~. Similarly, we
can easily avoid choosing our physical system so that
incident photons come from ~= —~ in a I=const
plane. Thus, it is physically evident that the matrix
elements of the left-hand side of (7.7) vanish in the
v =—av limit. Hence, (7.8) must hold.

VIII. COMPTON SCATTERING

The lowest-order matrix element to contribute to
Compton scattering is

where

R&'&—= (n+, O'X', in
~

S&'&
~ P+; in), (8.1)

S&'& = —z P &'&(u)du (8.2)

This matrix element represents the absorption of one or
more photons out of the pulse with the resultant emis-
sion of one photon into the state ~k'&'; in). Note that in
the absence of the external field this matrix element
vanishes.

Since only terms linear in a&(x) contribute to 2&'. &'&,

we write out explicitly the effective part of S('& using
(6.5),

The first equality is a consequence of B„B„PI""=—0, the
second one follows from the three Maxwell equations
(5.9) and (5.10), and the last one is &I„J"=0.Equa-
tion (7.6) is the v derivative of the "missing" equation.
Thus, the invariance of the Lagrangian under gauge
transformations of the first kind. ensures that the
missing equation be satisfied if and only if there is no
integration function from (7.6),

(2&&„&I„a—') A „8—„(a.A. fl—A) J—„=C(u,x) (7.7)

with

J„=—i eC*B„C—2e'A „C*C. (7 5)
S.H&'& =e d4x:(a(x) [yt(x) a&t(x)

Now in the usual Maxwell theory, current conserva-
tion is a consequence of the field equations (5.5); the
left-hand side becomes an identity upon taking the
divergence. The "missing" Maxwell equation, the one
with p=l, is now restored since current conservation is
already ensured for our matter field:

e(v —v') I a(u, x,v')dv'. (8.4)

2ieA'( —)yu'(x)y( )]xa„( )qVx(—) xy&(&)}x:. (8.3)

The component a„ is given by (6.10) in terms of a; and
j,. To first order, we replace a„by

8,(&I;F;„B„F,„)= 8„(—B;F;, &&,F„,—)—
+&Ik(&&gjk ~eF uk &&P uk)

ByJ~ ~

Using expansions (6.15)—(6.17) for the field operator
p(x) and expressions (3.4) for the wave packets g +(x),

(7.6) combined with the plane-wave expansion (6.28) for the
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electromagnetic field, we 6nd

e d P

(~~)"' 2IP'I

d p

2IP I

xl k. *(p')k, (p)~ (p —p' —k')

du fi[q —2eA'(u)] e*(kY))

Xexpi (Ik.'I+ I p."I —
I p.'l)u

components p~, pp, and p„. If A„'=0 in (8.5), the
integration over u yields a fourth 5 function 5(lk 'I
+ I

p„'ll —
I p„ I), which ensures that R"' vanishes

whenever a photon is scattered, since Ik„'I+I p„'fl
—Ip„rl )0 whenever Ik„'I)0 and Ik'I)0.

If a„~"included the additional term n(u, x) as in (A14)
and (86), which does not depend on p, it would yield in
expression (8.5) a term multiplied. by the 5 function
6(l p„l —

I p, 'I). Physically this is a process in which
either no photon is scattered, or it is scattered in the nI"

direction, k'& =co'n". As these photons are scattered into
the direction of the external pulse, we shall not consider
them to be distinguished from the pulse in this
approximation.

In order to perform the u integration in (8.5), we
make the following explicit choice for A„'(u):

where

i=-:(Ip'I ' —lp I
'),

K=-:(p'/lP'I p/IP. -I),

q=(p+p'+I '(I p. l+ IP'I)/Ik 'I),

(8.6a)

(8 6b) with

(8.6c)

A'(u) =
0, lul )up

A'= (l,i)A'

Re[A'e-'-j,
I ul (u,

(8.7a)

(8.7b)

p-'=(p'+~')/(2p'), k.'=1 "/(2k. ') (86d)

The 8 function bp(p —p' —k') appearing in (8.5) is a
statement of the conservation of the three momentum

and ~=lkll. We thus have a circularly polarized
monochromatic plane wave with a square-pulse shape.
Inserting expression (8.7) into (8.5) and performing the
integration, we obtain

z(»=
2M dpdp

, k.+*(p')ke+(P)~.(p —P-k')e'"
(4 )"' 4lp Ilp'I

»n[(lk. 'I+ I p-"I —
I
p-'I+e't A ' —&~)upj

X Ip+e'"~ E ~.
lk-'I+IP "I IP 'I+"tA —'—r~

(8.8)

where

d 2eA'
M, =e '"&p q e"(k',X') —rpp$

' cos&p++iuPj ' sinpp+ —J,
CO

(8.9)

Ip ——q e*(k',Y) cos[(lk-'I+ IP-'I I p-'l)u+ p oldu—, (8.10)

y p e'A, 'u, t
——2eA, co 'f~—sincoup,

-
~'"=-&~+i&p, &=I&I,

ppq= —2eA, &u '$p cosMup,

f cosy+ ———( e*(k',X'), $ sing+ ———bep*(k', X')+jpei*(k', Y),

(8.11a)

(8.11b)

(8.11c)

and J„is the Sessel function of the first kind of order r.
The Io term arises from integration over the regions
outside the pulse and is unimportant for our considera-
tions. (Note that Ip ~ 0 for up —+ pp and limlp for up —+ 0
does not contribute for noninfinite values of A', since

I
k„' I+ I p.'r I

—
I pJ I

&0.) The term (sinxup)/x in (8.8)
with

&=—lk-'I+IP-"I —IP-'I r~+"A'f —(8 12)

has a maximum value No at

(8.13)

and. as IXI increases, (sinXup)/X oscillates with ampli-
tude decreasing as 1/Ix . Since Ip, —p, 'I = Ik„'I )0,
we have 1 &0, and with k„' I+ I

p„'f —p„r I &0, there-
fore, only values of r~&1 will give a maximum of
(sinxup)/X and consequently a, maximum of R&'&.
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In the limit No —&oo, i.e., for an infinite plane-wave by the electromagnetic part of (5.13) from which the
train, momenta follow:

sinXNO
(8.14) P;= B„a B,ao(x)d'x, (A4)

and
i e d'pd'p'

lim g.(:"=- p m„B(x)
4lp. lip. 'I =i

P„= B.a B„ao(x)d'x, (A5)

X[k.+*(P')ko+(P)Bz(P+P'-k')»m o""+""]. (8.»)
tz0-woo

P„= [-,'(f„)'——,'(B„a„)'+B„aBa„]o(x)d'x. (A6)

The phase factor lim„, „e'&0+'&I is inessential for the
calculation of the cross section. The important factor in
(8.15) is the second Dirac B function. Interpreting the
rth term in the summation to represent the absorption
of r photons from the pulse with the resultant emission
of one photon (k„',X'), it must be concluded. that the
frequency of this scattered photon is shifted by an
amount depending on the intensity of the pulse. To
make this clear, we write out explicitly the values of
k„' required by the presence of the four momentum-
space B functions in (8.15):

&=1 P) (8.16a)

APPENDIX A: FREE ELECTROMAGNETIC FIELD

The I.agrangian of the free electromagnetic held in
null coordinates and in the null-plane gauge is

Z= —-', (Fi,)'+B a B„a—B„a Ba + ', (B„a„)' (A1-)

from which follow the classical Maxwell equations. They
take on the form

kz' =pzr pz'r+rkz-
', e'A—,'-k')k k')/)k. pk p'( ) (8.16b)

ko'=pf pfo'+rk —z~e'A 'k')k —k')/(k pk p'[ (8.16c)

with

pf' ——(p„+p„)/&2, pzr (p„p.)/V—2—. (8—.16d)

At the same time it is clear that even before taking
the limit No~~, the same values for k„' as given in
(8.16) are required in order to give E&'& its maximum
value. Therefore, the intensity-dependent frequency
shift is present also in the case of a hnite-length pulse,
and this frequency shift is the same as that predicted by
Brown and Kibble' for an infinitely long plane-wave
train.

These were used in Eqs. (5.15)—(5.17).The function o (x)
following (5.18) is written explicitly. So much for the
classical theory.

The quantized theory starts with (A4) to (A6) as
normal-ordered. operators whose commutation relations
follow from (6.27) for a given null plane zz=zz'. In order
to derive the Maxwell equations for the quantized fields
c,, one must start with

B„a,=i[a,,P„], (A7)

2B B„a,=2i o(x')d'x'

and we see that commutation relations with the derived
field a„are needed. These are derived from the con-
straint (A3) which is given as part of the initial data
[while (A2) is not given]; we find

[B.a„,a,']„„=B„B [a,a,']„„.
',iB.e—(z-& z&') B;—b, (x x'), —(A8)

where the prime on the held indicates primed argu-
ments. Since B„=—B/B„, this yields

[B„a„,a,']
= —gze(z& —

z& )B~Bz(x—x )+f(zz, x—x ) . (A9)

The additional function f which could be operator
valued must be independent of e, and if it is a c-number
must depend on x—x' only, because of translation in-
variance. Translation invariance in v then implies

[a„,B„'a ]„=„
',ie(z& z&') B-,Bz(x—x') f(zz—, x—x—') . (A10)

In order to obtain further information on f we compute
(A2) explicitly from (A7) and the commutation relations

(2B B„—B')a, =B,(B.a„—B a) (A2)
X:(fiz'[B.a;,f,z'] B.'a„'[B„a,,—B„'a„']

+[B.a;,B.'a'] B'a„'+B,'a' [B.a;, B'a„']}:.
B„(B„a„—8 a) =0. (A3)

The last equation is a constraint from which we can
determine a„ in terms of the a, (j=1, 2), which we take
to be the primary dynamically independent 6elds. This
classical theory also has a canonical energy tensor given

In the last term, an integration by parts can bring 8„'
into the commutator, while the integrated part vanishes
due to o (x).Thus, all commutators involving a„contain
two o derivatives so that f in (A9) or (A10) does not
contribute. The second and third terms cancel, and
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after taking the limit 0 ~ 1, we are left with

2a„a„a;=ai,fI„+B,a a= a'a;. (A11)

Consistency with Maxwell's equations (A2) and (A3)
thus requires that B,a„—8 a is independent of both x
and v. Its commutator with a;(x') must then be inde-
pendent of x —x'and v —v. Thus f can depend only on u.

An immediate consequence of this result is that one
cannot choose arbitrarily a„=0 for some e such as
v ~—ao. f(u) in (A10) cannot be chosen to satisfy such
a requirement. The most convenient choice for f is f=0.
This implies that B„a„—8 a commutes with the a, on
the null plane. But since the a, are complete (irre-
ducible), '4 this means that B„a„—8 a is a multiple of
the identity operator. One is then free to choose
B,a —8 a=0. This means that the null-plane gauge
a.=0 and the Lorentz gauge B„a&=0 coexist, a matter
which is very convenient. We shall therefore make this
choice.

A further integration of (A10) with f=0 yields

[a,ag]„„'=~~'ilv v
t Bib2(x x). (A12)

An additive term has again been chosen to vanish.
The potential a„can now be computed explicitly

relative to some reference value at v=vo (which is not
completely arbitrary, from what was said above); one
has the formal integral

Thereby we want to choose the integration constants
such that for j,=O one obtains the results of Ap-
pendix A.

An immediate integral of (6.8) is formally

Btia~ 8 'R —
2
1 e(v —v') j„(u,x,v')dv'= fi(u, x). (81)

8 A, =i[A;,P„], (84)

using P in (5.17). This calculation, which is quite
analogous to that'of the free case, yields

Since fi could be an operator and could depend on j„,
we cannot at this point choose fi=0 Th. e commutators
of cj.a with a, and with B,pt are on the null plane

[8ga„,Q/ j„=„l= —-', zs(v —v') 8;8,(x—x')

+ig(u, x —x') (82)
from (A9), and

[a„a„,(j„'yt{x')]„.= ;'e53(-x x')—yt
+-', ee(v —v') S,(x—x') a„'yt(x')+i&(u, x,x') (83)

from (6.8) and (6.21).
When these commutation relations are transformed

to the Heisenberg picture (fields in capital letters), they
enable us to derive the Maxwell equations (5.9) from the
Heisenberg equation of motion

a„(x)=a„(u,x,vo) =—
VO

(2a.cj,—il')A;=J+-', a; e(v v')J„—(uxv')dv'+C(u, x),

Of course, only relative values of a„have Physical where C contains the commutator of p with A;. Con-
significance. An alternative to (A13) which does not
involve reference to a point eo is, formally,

a.(x) = —-', e(v —v') il a(u x v')s(v')dv'

+n(u, x) . (A14)

8 (B.A„BA)—= ,'8, e(v-—v') J.(u, x,v')dv'

+C(u, x) (85)
or

F'~ = o (x)d'x[-', (fi2)'+-'(il a)'] (A15)

The additive term n(u, x) is arbitrary. These integrals
are made mathematically meaningful with a test func-
tion o(v) which is 1 over a large but finite domain.

We conclude this appendix with the observation that
the expression for F, (A6), can be simplified in view of
the Lorentz gauge B„a„=i} a and the factor 0, which
permits integration by parts and eliminates all con-
tributions from surface terms. One 6nds

8;Fi(u,x) =C(u,x).

Thus, if Ii ~ is a multiple of the identity operator so that
G=H=O and C=O, we must have Fq independent of x.
The simplest consistent choice is clearly F&=0 which
mates (85) consistent in view of (81). This choice
requires that the left-hand side of (81) commute with
the complete set A~, A2, and C on the null plane, which
is indeed satished.

Returning to the Furry picture, we can integrate
(81) formally with fi ——0:

APPENDIX B' SOLUTION OF THE
CONSTRAINT EQUATION

In this appendix we want to prove that (6.10) is a
consistent solution of the constraint equation (6.8).

a.(x) = ——,
' e(v —v')a(v')dv' a a(u, x,v')

e(v' —v")j„(u,x,v")dv" +a(u, x). (86)

& J. R. Klauder, H. Leutwyler, and L. Streit, Nuovo pimento
66A, 536 (1970). This reduces to (A14) for j„=0.If n is a c number, (82)
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and (83) integrate to (A12) and to

[a,B.'y") =. = ——,'e82(x —x') e(v —v')yt(x')

+ e(v —v")e(v"—v')o. (v")dv" 8„'yt(x') . (37)

APPENDIX C: TRANSFORMATION TO
HEISENBERG PICTURE

We want to prove that the transformation (6.3),
(6.4), and (6.6) with P„z &'& given by (6.5) will lead. from
the Furry-picture Geld equations (6.1), (6.2), and (6.8)
to the Heisenberg Geld equations (5.8)—(5.10).The com-
mutation relations and the constraint (6.8) are given on
the initial null surface. They remain invariant.

Now,

2i[B„y,P„pi'&]

=2i 0(x')O'S': iea. ([B,y,y't]iI'y')

When the V .V ' operation is brought to the right-
hand side, one has

(D' —m')C —D„B.C —8„(D C) =0 (C3)

in agreement with (5.8). This is the Heisenberg-picture
field equation for C. The normal ordering in (C2) gives a
more precise meaning to (C3).

The derivation of the Maxwell equations in the
Heisenberg picture proceeds along similar lines. We
have 6rst

Various terms in (C1) now combine in view of (6.9), and
with (6.7) and (6.1) one finds

V28„8,C'V '=28„8„y+2i[B.yIP„P&"]
= (8' m—' 2—ieA, 8 e—'A, ')y

2—ie:a By:+2ie:a„B„y:
—e'.a (a+2A, )y:+ie:(B„a„—8 a)y:

=:{[8 ie—(a+A,)]' m—'}y:
+ie:a„B„y:+ie:8.(a„y): . (C2)

I B.y—, .'](y"B.y') '-.'([-B,y,y']B.'y')

+e'a' (a'+2A, ')[B„y,y"]y'

i e(vl vill) llld III e( I II)d

2i[8„a;,P„r i'&]

= 2i d'x'. {ie[B„a,,a')(y't 8'y' 2ie(a—'+A, )y'ty')

+LB.a,a.']j'}:
X[B.y, j„(u',x',v")]

=2iX-,'i: {iea ay+iea (ay) iea.B.—y
ieB„(a—„y)+e'a (a+2A, )y}:. (C1)

In the 6rst equation, the second and the last term inside
the curly brackets cancel because by (6.9) and (5.22)
the last term is

adv'( —-,') e(v' v"')dv"':—j„"'[B„y,B„'a„']:

=2i ,'ij; ,'iB—;—e(v———v')j„(l,x,v')dv'

Again, the constraint equation (6.9) is necessary, and
we obtain

V28„8„A,V '=28 B„a+j;+8,(B„a„'8a). —

The Maxwell equations in the Furry picture (6.1) make
the right-hand side independent of 8„:

V28„8„A,V '= '8'aI+j, +8,(B„a„Ba). —

rrdv' [B.y,a.')j .":..

d„l.[8 y a l)iB I e(vI v«I~& l«dv«l When the V operators are brought to the right-hand
side, we find the desired equations (5.9). Again these
are more precisely given as transformed Furry-picture
equations than can be specified in the context of the
Heisenberg picture.


