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gravitational theories. Three of these gauge choices
have been used in obtaining isotropic spatial coordi-
nates. Consider the fourth gauge transformation of the
time coordinate:

x"=x'+g—P m;~r —r;),
Bx' '

where f is the arbitrary gauge parameter. Under this
gauge transformation the Greek-letter parameters of
the metric given in Eqs. (1a)—(1c) transform as

with all other parameters unaltered.

A variety of observable physical effects have been
discussed in this paper. The coefficients of the various
effects are listed below:

Eq (2) 4~+(8/3)~' —6X—kV —Bn' —$,
Eq. (7) X+4p+3y —85,

Eq. (7) 85'+X—n'+2P —2,

Eq. (20) 2P+n' y —2,—

Eq. (20) 46+46' —2y —2,

Eq. (20) 2n' —X—y —86'.

All these collections of parameters are invariant
under the above gauge transformation.
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Invariance of the Brans-Bicke scalar-tensor theory of gravity under scale transformations of the second
kind is discussed. It is shown that the requirement of scale invariance of the second kind leads to the unique
value ——, of the adjustable parameter co in the Brans-Dicke theory. It is further shown that, in order to
obtain a consistent set of equations, matter must be coupled to the scalar-tensor field in such a way that
the whole theory can be transformed into the usual Einstein tensor theory. This is accomplished by per-
forming a space-time dependent scale change such that the transformed scalar field is everywhere a constant.

INTRODUCTION

'HE invariance of physical laws under a change of
units was 6rst discussed by Weyl. ' In addition to

the "metric" tensor g„„,Weyl introduced a further
geometrical object into the theory, a vector field g„.
This latter field served to characterize the change in
length of a vector as it is transported from the point x&

to the point x/'+dx/". Weyl associated the field ////„with
the vector potential of the electromagnetic field, hoping
thereby to obtain a "unified" theory of gravitation and
electromagnetism. The resultant theory was required to
be invariant both with respect to arbitrary coordinate
transformations and gauge or scale transformations.
Under the latter group of transformations g„„was
multiplied by an arbitrary space-time function while the
gradient of this function was added to p„.Since g„,and
p„transformed independently of each other, they did
not together constitute an irreducible object under the
combined coordinate-plus-gauge group. Furthermore,
the total invariance group was just the direct product of
the coordinate group and the gauge group. Conse-
quently, Weyl's theory failed on two counts from being

' H. Weyl, Sitzber. Kgl. Preuss. Akad. Wiss. , 495 (1918);Math.
Z. 2, 384 (1918); Ann. Phys. (Leipzig) 59, 101 (1919); Phys.
Z. 21, 649 (1920).

a unified theory. The chief draw back to Weyl's theory,
however, was that it lead to fourth-order differential
equations for the g„„.

Although Weyl's theory has by and large been dis-
carded, the idea of scale invariance has continued to
play a role in physical thinking. Quite recently there has
been renewed interest in scale invariance as an asymp-
totic symmetry in high-energy physics. 2 We will not be
directly concerned here with this aspect of the theory
but rather with its implications for the Brans-Dicke
scalar-tensor theory of gravity. ' Our main conclusion
will be that the requirement of scale invariance of the
second kind, i.e., invariance under arbitrary space-time
dependent scale changes, leads to a form of the Srans-
Dicke theory that is completely equivalent to the
Einstein theory. Conversely, we show that the Einstein
theory can be put in a form that is invariant under scale
changes of the second kind.

BRANS-DICKE THEORY AND
SCALE INVARIANCE

The equations of motion of matter and the gravi-
tational field of the Brans-Dicke theory can be derived

' See, for example, C. G. Callan, S. Coleman, and R. Jackiw,
Ann. Phys. (N. Y.) (to be published).

g C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
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from a variational principle with an action given by4

where R is the curvature scalar formed from g„„andal is
an adjustable dimensionless constant. For convenience
we use here a scalar function which is the square root of
Dicke's scalar function. Dicke takes L appearing in Kq.
(1) to be the usual covariant Lagrangian density for
whatever matter is present. Thus, for a system of
massive particles moving along trajectories xl'= z,&(r,),I would be given by

where z&= dz;&/d—r;, and r; is an arbitrary monotonically
increasing path parameter along the ith particle tra-
jectory (not necessarily the proper time, as assumed by
Dicke. ) It is unnecessary to fix the path parameters
further since in the form given L is invariant under an
arbitrary change in path parameter.

Let us now consider the Brans-Dicke theory in the
absence of matter. Since there are no dimensional
parameters appearing in the action the resulting equa-
tions of motion should be invariant under a scale change.
Indeed, if we make the substitutions

f
gf V

~ g uV=~CI »

of X which they were going to use in carrying out the
tlRIlsfol'lllatloll (3).

Under a space-time dependent scale change Eq. (4c)
is no longer valid. Rather we have

X=X(E'+3C]' 1nX —sX 'X,„X,„g'"), (5)
where

,-L(v'( —g'))g'""~ 'lt..j."v'( —g')

Also,

g""4,~&..=~'g'""&',A', .+&g""~,A', &'

+-,'g'~9, „x,„g". (7}
Therefore,

(&( g)) (~4—' 4~g""&—.A. )
= (v'( —g')) (~V'—4~g'"V,.4', )—(~+a)

X(V'(—g'))g""&-'»,0"—(4~+6)(V'(—g'))
&&g""~-'~,.~'..~'+3L(v'(-g')) "~-'~ ~"j . (g)

We see from this result that the action given by Eq. (1)
(with 1.=0) is invariant under a scale change of the
second kind only if

M= —
g ~ (9)

since the last term on the right-hand side of Eq. (8) is a
complete divergence, and so does not contribute when 8
ls varied to obtain the equations of motion.

COUPLING TO MATTER

with X a constant, we 6nd that the action given by Eq.
(1) 18 unchanged ill forII1. Tllls fol'111 lnva11ance follows
from the fact that under the scale change (3)

(4a)

(4b)
(El ——s'R) P =0, (10)

If we attempt to couple the scalar-tensor 6eld to
matter in the way suggested by Dicke, a difhculty
arises when ~= —2. Deser' has pointed out that in this
case the trace of the matter stress-energy tensor must
vanish if the equations of motion are to be self-con-
sistent. I'he equation of motion gotten by varying P in

the action 5 is

(4c)
while varying g„„yields

While the matter-free Brans-Dicke action is invariant
under a constant scale transformation, it is not in

general invariant under a position-dependent scale
change. In a later paper Dicke' argues that "the
equations of motion of matter must be invariant under
a general coordinate-dependent transformation of units. "
Such an invariance we call scale invariance of the second
kind. %e do not intend here to enter into a detailed
3ustification for such an invariance since probably no
such justification can be given. Aside from the argu-
ments presented by Dicke, we merely note that two
observers separated by a spacelike interval would have
no way of informing each other of the particular value

4 In our equations a subscript comma followed by a subscript
denotes ordinary differentiation, a subscript. semicolon followed
by a subscript denotes covariant differentiation, the signature of
the metric is (—,+,+,+1, and the Einstein summation conven-
tion is used throughout.

G..=6~-'LI'"(~)+&..(v)j, (»)
where T„„(g)is the stress-energy tensor associated with

the matter variables q. It is gotten in the usual way by
varying the matter part of the action with respect
tOgl V ~

2 bS~
T~"(q)=—

where

(13)

Normally the stress-energy tensor associated with the p
field would be gotten in the same way. However, since

' R. H. Dicke, Phys. Rev. 125, 2163 (1962).' S. Deser, Ann. Phys. (¹Y.) 59, 248 (1970).



there is no "free" gravitational action we take T„„($)as
given by Eq. (11),namely,

Tp&(4) 4 A & 2'"g ~ A &+6 (gp&+ Dp")4 x (14)

It is perhaps interesting to note that in the Rat-space
111111tg„„~g„„=diag(—1, +1,+1,+1))T„„(f)I'eclllces

to

one has an invariance with respect to a group whose
elements are speci&ed by one or more space-time func-
tions, the equations of motion will satisfy a number of
"Bianchi"-type identities equal to the number of func-
tions that appear in the group. Thus in the present case,
in addition to the four Bianchi identities associated with
the general coordinate invariance we have an additional
identity associated with the scale invariancc.

RELATION TO GENERAL RELATIVITY

which is just the stress-energy tensor adopted for a
scalar field by Callen, Coleman, and Jackiw. '

If we now take the trace of Eq. (11),we obtain

Use of Eq. (10) then yields the result that

T~„(q)=0.
While Eq. (18) holds for the electromagnetic 6eld, it
does not hold in generaL Thus, for I given by Eq. (2)
we have

T&"(q) =Q ns;c2 -tl'(x —z;)dr;, (19)
(g z.pz.e) lf 2

and its trace is clearly not zero.
To get around this difhculty, Dcser suggests that one

add an invariance breaking term —2'p2J'(g( —g))@2d4x
to the action, in which case Eq. (18) gets replaced by

(20)

If we wish to preserve scale invariance, we must proceed
differently. We can obtain a consistent set of equations
rf wc replace g~z 1n thc matter act1on everywhere by
g„g since this product is scale invariant. In this case
Eq. (10) is replaced by

and is thus just the trace of Eq. (11).
It is not surprising that there is an algebraic identity

between the equations of motion for p and g„„in the
present case since replacing g„„byg„„p2in the matter
action lead to a total action that is still scale invariant.
Thus, in expression (2) for the matter Lagrangian,
g;I' and g; are scale invariant while m; is a dimensionless
numerical constant. It is a general rule that whenever

With g„greplacing g„„in the matter action and with
we have a scale-invariant theory. We are,

therefore, free to impose a scale condition analogous to
the coordinate conditions permitted by a coordinate-
invariant theory. In particular we will impose the
condition

If then we take this constant equal to G '~', where G is
the gravitational constant, the action (1) reduces to
that for the Einstein equations. Furthermore, the
dimensionless constant m; appearing in the matter
action (2) gets replaced by the constant

(23)

which (in units where the velocity of light and Planck's
coIlstR11t Rle dllllellsloIlless) Ilas tile dlnlellsloIls of R

reciprocal length. Thus the gravitational constant acts
as a scale for all dimensional equalities. Kc note GnaHy
that we can include a scale-invariant term n(Q( g))&4—
in the Brans-Dicke action which reduces to a cosmo-
logical term (nG 2)(g( g)) w—ith the above choice of
scale.

CONCLUSIONS

We see that the requirement of scale invariancc of the
second kind leads to a version of the Brans-Dickie theory
that is equivalent to the usual Einstein theory. Of
course, one could always drop the requirement of scale
invariance of the second kind. But then it would no
longer be possible to transform the Brans-Dicke theory
to a form in which the usual Einstein equations hold and
the scalar B.eld appears as a "matter 6eld, "since to do so
requires a position-dependent scale transformation.
Thus the Brans-Dicke theory with e~ —~3 must be
considered as an inequivalent alternate description of
the gravitational interaction of matter.


