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m=p polarization is approximately the negative of the
~+-p polarization' ). Since there does not seem to be
mirror symmetry in Z~-p polarization, ' we would not
expect the BZ predictions to be as well satisfied for E
reactions as for m. reactions. This observation is not in
conQict with the data, 3 but greater accuracy is required
in the E experiments to test it.

~ M. Borghini et al. , Phys. Letters 21, 1141 (1966); 248, 77
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We discuss the mass spectrum in a very general chiral SU(3) &&SU(3) model of pseudoscalar and scalar
mesons. The case of an exactly symmetric Lagrangian and spontaneous breakdown is covered, as well as the
more realistic case when there is also some intrinsic symmetry breaking in the Lagrangian. Our treatment
is facilitated by the derivation of a mass formula which holds for all situations. In the realistic case the
structure of the theory forces the mass of the ninth pseudoscalar meson to come out right and leaves us with
the freedom to choose the masses of all scalar mesons (except the ~) as high as we like. The structure of the
intrinsic symmetry breaking term is predicted. We also include some discussion of the baryons in this model
and estimate the corrections to the Cabibbo theory of semileptonic hyperon decay.

I. INTRODUCTION

A T the present time it seems likely that the structure
of strong-interaction physics is related to a

broken SU(3)XSU(3) chiral symmetry group 'The.
discussion of symmetry breaking inevitably involves
one with a fairly complicated nonlinear system, so it is
advisable to study a relatively simple model in detail.
This is done in the present paper for the SU(3) "0"
model of mesons, from the "spontaneous-break. down"

point of view. '
Although there have been a number of interesting

previous papers, we believe that the subject is far from
exhausted. Generally, the previous work has been
concerned either with special forms of interactions, ' with
discussions of nonlinear realizations of the chiral group, 4

or with generalizations' to gauge Geld theories. Here we

develop a simple method for calculating the mass spec-
trum for all cases of interest. This lets us easily obtain
the preceding results as well as interesting new ones,
both for the situation when the Lagrangian is exactly

*Work supported by the U. S. Atomic Energy Commission.
' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).' Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
~ M. Levy, Nuovo Cimento 52A, 23 (1967); P. de Mottoni and

E. Fabri, ibid. 54A, 42 (1968); G. Cicogna, F. Strocchi, and R. V.
Caffarelli, Phys. Rev. D 1, 1197 (1970); G. Cicogna, ibid. 1, 1786
(1970).

4 W. A. Bardeen and B.W. Lee, Phys. Rev. 177, 2389 (1969).
5 S. Gasiorowicz and D. A. GeBen, Rev. Mod. Phys. 41, 531

(1969).This review article contains a large bibliography.

chiral symmetric and when there is some symmetry
breaking added. The former case represents a complete
spontaneous breakdown of symmetry and gives some
zero-mass bosons, ' a thorough discussion of the resulting
spectrum is presented. The latter case gives a more
realistic mass spectrum, and we find that the mass of
the ninth pseudoscalar meson is well predicted.

Taking the symmetric part of the interaction to be
the most general nonderivative one possible, we use
fields transforming as linear realizations of the chiral

group. It mill be noted that one advantage which has
been claimed for nonlinear realizations~that of sup-

pressing information about hard-to-observe particles—
actually occurs also for the mass spectrum when linear
realizations are used. %e do not include gauge fields,
in order to avoid more complication of an already
complicated system; this addition may be desirable.

(It should be noted, though, that certain predictions of
chiral theories, such as the meson-nucleon scattering
lengths, seem to be independent~ of the presence of

gauge fields in the theory. )
In Sec. II the formalism for computing the meson

mass spectrum is discussed. Isotopic spin invariance

is not assumed at first, and in the following paper the

' J. Goldstone, Nuovo Cimento 19, 154 (1961);J. Goldstone,
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962); S. A.
Bludman and A. Klein, ibid. 131, 2364 (1963).

7 J. Schechter and Y. Ueda, Phys. Rev. 188, 2184 (1969).
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same formulas will be used to discuss the case when
electromagnetic perturbations are present.

The most interesting case is when a simple symmetry-
breaking term is included (Sec. 5). The system is suilici-
ently restrictive to give us a prediction for the ninth
pseudoscalar meson mass in terms of a parameter 8',
whose range is fairly well known from the study of weak
interactions. It is found that the model gives a good
value for this mass when 8' is anywhere in a physically
reasonable region, and an absurd value when 8' is
anywhere else. Thus the 0. model seems to conspire with
nature to make this mass come out right. In common
with otlier authors 8 ~~ we old that the symmetry-
breaking part of the interaction is much closer to an
SU(2)XSU(2) invariant than to an SU(3) invariant.
Our discussion is general in the sense that symmetry
breaking is aHowed both in the "vacuum" (spontaneous
breakdown) and in the interaction itself.

We have investigated the situation both for the
U(3)XU(3) and SU(3)XSU(3) groups. If the sym-
Iilc'tly breaking 1s of silllplc folill, 'tllc SU(3)XSU(3)
case seems to be preferred (see the Appendix).

In Sec. VI a brief discussion of symmetry breaking in
the denvative coupbng part of the efI'ective meson-
baryon Lagrangian is given. This enables us to get an
idea of the corrections to be expected in the Cabibbo
theory, "of semileptonic decays. The corrections may
easily be as large as 30% for the strangeness-changing
modes.

II. GENERAL FORMALISM

The basic objects for our discussion are 18 spin-0
6elds,

M.~, M-.~

where all indices take on the values I, 2, and 3. These
fields transform according to the (3,3*) and {3*,3)
representations of the chiral SU(3)+SU(3) or U(3)
XU(3) groups. Explicitly, under a unitary transforma-
tion in the "left-handed" three-dimensional space of the
form

x, -+A 'xo, A '(A, o)*=8 ',

M '~A ~M ' M-'~ (do~)*M-

Under the "right-handed" transformation

yo~B,'ys, B-,'(B )*=8-
the 6elds transform as

Thus the fields may be decomposed as

M.'= S.'+g.', Pa)

where S,o is a scalar nonet and g, o is a pseudoscalar
nonet. These have the Hermiticity properties

The charge-conjugation operation gives also

o~p&e S o~ S&
I

Sometimes it is convenient to use matrix notation and
not explicitly distinguish upper and lower or barred
and unbarred indices. In this case we make the replace-
ments

M, '~ (M),o, M,'~ (Mt) o.

We shall investigate the theory corresponding to the
following Lagrangian density:

Z= ——', »(8„Ma~Mt) —Vo —Vss, (11)

where the matrix notation of (10) was used. Vo will be
taken as the most general charge-conjugation- and
parity-conserving chiral invariant that can be made out
of M and M . On the other hand, Vqg will be considered
to be a symmetry-brea, king term of simple form.

The solutions of the theory corresponding to (11)can
exhibit symmetry breaking even when Vs~=0. This
situation is known as spontaneous breakdown and can
be most conveniently explained, following Goldstone
by taking (11) to be a dussicu/ Lagrangian. Then, as
usual, we imagine all of space to be divided up into
infinitesimal cubes, and the value of the field in each
cube represents the amplitude of a (coupled) harmonic
oscillator in that cube. The problem of finding the
"free" Lagrangian is then the same as the problem of
small-oscillation theory. Specifically, we must introduce
"normal" coordinates corresponding to oscillations
around the "equilibrium" point. '4 This equilibrium
point is determined by imposing erst the extremum
condition

The Hermitlcity property ls dered as

(3II,')t= Mbe.

The operation of parity reversal results in the inter-
change

M.'(x, t) ~ M-.",—x,t) .

(&V/BM ')o= (BV/8M ,')o 0-——(12)

and second by requiring the extremum to be a minimum
rather than a maximum. In (12), V= Vo+Vss, and

'3 A reviewer of the theory is provided by G. S. Guralnik, C. R.
Hagen, and T. W. 3. Kibble, in Advances in Particle Physics,
edited by R. L. Cool and R. E. Marshak (Interscience, Ne~
York, 1968), Vol. 2.

~4 This is designated ground state or ~vacuum in the corre-,
sponding quantized theory.

M, ' —+ (Bs')*M,', M,-'-+ B,'M . (4)-
SS. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224

(1968).
9M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968); see also P. Auvil and N. Deshpande, ibid. 183, 1463
(1969).

'0S. Okubo and V. S, Mathur, Phys. Rev. Letters 23, 1412
(1969).

» R. Dashen, Phys. Rev. 183, 1245 (1969).
j2 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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I4=o,b, o"f'M';Mf-bMo'+o b'ogoM, 'MbIM, '
—=6(detMt+ detM) .{~.'&o=o,

(S.'&o= {M.'&o= {M;b&o,

and the normal coordinates are P, b and

(13a)
Under the transformation of Eq. (1), for example,

I4-b 6(detA* detMt+detA detM) .

the notation ( ), means that the enclosed object is may form.
taken at the equilibrium point. If parity is conserved,
we have

(17)

Sb S—b (S b)

As in small-oscillation theory, we must expand (11) in

terms of the normal coordinates. Depending on the
location of the equilibrium point, the theory will only
retain a portion of the original symmetry. There will

also be zero-mass {Goldstone) particles if Vss ——0. Mak-
ing the expansion of (11) in normal coordinates gives

Z = ——', Tr(cj„y8„y)—-', Tr(o7„Sod„5)

$2Vl. P y by@
G, b, c,d Blp~ Clog o

O'V
+ S,bS," +(interaction terms). (14)

BS~ 85g 0

The coefficients of the bilinear nonderivative terms in

(14) are, after suitable diagonalization, the squared
masses of the appropriate particles. The condition that
the equilibrium point be a stable one (minimum of V)
means that these squared masses should be positive.
In our subsequent discussion we shall consider (14)
rather than (11) as the theory to be quantized.

To proceed further, it is useful to study brieQy the
invariants which can be formed froni M and M~. These
two can be combined to make a singlet, M, bM b

=Tr(MM"), and an octet in (for example) the left-
handed space,

3f a3fpb ~&M„c3I

As is vrell known, " from the octet two independent

U(3) invariants can be constructed, i.e., 8,beb' and
8 blab'5, ~. Thus, altogether we have three independent

U(3) X U(3) invariants. In matrix notation these may
be chosen as

Ig ——Tr(MMt),

I2 Tr(MMtMMt), ——
Io——Tr(MMtMMtMMt) .

If the symmetry of Vo is reduced from U(3) X U(3)
to SU(3)XSU(3), there is one more independent in-

variant. In SU(3)XSU(3) the transformation matrices
of (1) and (3) are restricted by the additional condition

(16)

This has the consequence that the three-dime. sional
Levi-Civita symbol is an invariant tensor, so that we

"See, e.g., S. Coleman, in IIjgh Erlergy I'bye s used E/emenIary
j'agjjcles I'International Atorojc I'„ngrgy Agency, Vienna, I965).

where we have defined

V;—= (8Vo/BI;) o. (20)

With the parity-conserving solution of (13), the coeK-
cients in (19) are explicitly

=3 5' b'0,

BI4 BI4
3oa;sfo . (S d& (S b&

BM,' BM-b

Thus I4 is invariant when (16) holds. If detAN1, it is
easy to see that neither I4 nor any analytic function of
I4 is invariant under (1). Since Ig, Io, and Io are all

invariant, I4 or any analytic function of I4 is inde-
pendent of Iq, Io, and Io. We thus see a,iso that I, (say)
cannot be written as a function of I~, I2, and I4.

It is also possible in the SU(3) XSU{3) case to form
the invariant

I„.= 6f(detMt —detM) .
I; changes sign under parity reversal, so Vo must be a
function of (I;)'. However, (Ib)' is not an independent
invariant but is related to the others by

(I;)'= 24(I~)' —72I)Io+48Io —(I4)'. (18)

Equation (18) is derived by setting Q=MMt in the
following formula, "which holds when Q is a diagonali-
zable 3X3 matrix:

Q"-(»Q)Q'--:L»Q' —(T Q)'jQ —detQ=0.

Thus, a convenient choice of invariants for discussing
SU(3)XSU(3) is Iq, Io, Io, and Ib. By neglecting Io, we
will automatically be dealing with U{3)X U(3).

Now let us rewrite (12) with Vo considered to be a
function of Ij, I2, I3, and I4.'
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Considered as matrices in a 3&&3 space labeled by
indices u and 6, all the above objects are Hermitian and
commute with each and. so may be simultaneously
diagonalized. ' Thus we take our "equilibrium" point to
satisfy

(M'. ')o= (M-. ')o= (S.b) o =n.b.b,

where the Q are three real constants.
If (BVss/BM, ')p and (BVss/BM,-a)p can also be

simultaneously diagonalized with these others, then the
choice (21) is sufficient as a solution of (19). We shall
assume this to be the case,

Using (21) gives immediately

(BIi/BM, b) p
= Ba'n,

(BI2/BM. ')2= 2bb n.o,

(BI2/BM, ') o 38a n.——',
(BIb/BM. ')p= 6ba f.,

n, [V2+2V2n, 2+3Van, ']+6f Va= —(BVss/BM, )p

((a= 1, 2, 3) . (22)

[We have assumed (BVss/BM )o=(BVss/BM-')o, so
that the second set of equations which might be formed
from (19) just duplicates the first set.j

Next we compute the coe%cients in (14) which give
the pseudoscalar masses, as follows:

$2V O'Vp c) Vp+-
8@ ~8@," p B.V,~8M;" BM;~8M,~

$2V $2V

83f '8M, ~ BM;~8M;" p

Substituting in the relations

O'Vp 8I; 8I;

BM,"BM," ', ~ BI;BI; 8M ~ BM,.~

O'I,
+Q - ———,etc.

BM,'BM, ~ BJ;

~Vp

where f,=(n,n,n,)/n if n, ~0. If n, =0 we must first
cancel Q, in the denominator against one of Q~, Q2, and
na in the numerator. Substituting these into (19) gives
rise to only three nontrivial equations:

Note that the coefficients of (B'Vp/BI;BI, )o vanish.
This does not occur in the case of the scalar masses,
which are computed similarly to be

3 3

+6ninpna Vi4 —+—+2V24 —+—

and

/na na
+3V„( —+— (26)

Qg Q~

V, ,= V,;= (B'Vp/BI;BI;)o.

[Note that n,n,na/nbn, occurring in (24)-(26) is a con-
venient shorthand notation. In the case when one of the
Q's in the denominat, or goes to zero, we define the expres-
sion so that particular Q is erst canceled oR against an
n in the numerator. $

Equations (24) and (25), which contain all the infor-
mation about the mass spectrum of the system, are
crucial for the work that follows. The V s and Q, 's which
appea. r in (24) and (25) are not unrestricted parameters,
but must satisfy the extremum conditions (22).

The final results, taking account of (21), are

O'V

by@ d

2~d Bb [Vi+2V2(na +na nanb)

+3V2(na +na nb +nb na na 'nb na) j
Q]Q2Q3 8 VSB

12V4(5aa6dc Bda8aa) + (24)
QgQg 0p ~Op." p

O'V

85 ~85," p

= 26d 5b [Vi+2V2(na +nb +nanb)

+3Va(n. '+n. 'nb'+nb'+n. 'nb+noon. )]
QyQ2Q3 8 VSIt,

+12«(Ba 4' (id (ia') — +
Q&Qd ~~.'a~," p

+48a'bd'F. „(25)
whel e

I'„.= Viin. n, +2V22(n.n, p+n~. o)+4V22n. an. p

+6 V22 (n, 'n, '+n, 'n, ') +9Voon, 'n, '

QyQgQ3 QyQgQ3

+3Vio(n.n,.'+n, 'n, )+36 V44
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So far we have not assumed that the system is neces-
sa,rily isotopic-spin invariant. In this case we would
have

Qj =-0!9=6 (28)

and (22) collapses into two equations. If these two equa-
tions are independent, it is convenient to construct their
sum and difference:

(u.Wn 3)[Vr+ 2 V3(n.3+o'3'+neo'3)

+3V3(n.'+nb'+~0, '~a'~r3e'~ 3+~b'o.)
%6V4orQ3Q3/Ga&bj= (~VBB/c~a )0

&{8Vss/BiV3')3 (ahab) . (22')

in (29) may not be the physical ones but are related
to thc physical ones by

3-+=m+„/Z, E'+.=E+„/Zx, etc. , (35)

where Z, Z~, etc., are some constants and the subscript
p stands for physical. In this case (34) gets modified to

W=2(F /F. )(Z./Z )-1. (34)
Since (Z /Zlr) is model dependent, we shall not take

8' to be fjLxed a,t 1.56 but, as an initial guess, shall con-
sider the range W= 1 [exact SU(3)j to roughly W=2
to be a sensible one.

III. VECTOR AND AXIAL-VECTOR CURRENTS

( ~
(29)

(V„).'= f(n. o3)&,—S.'+3(4:~,4.' ~A:4.')
+3(S;B„S,' B„S;5—,') . (30)

[For SU(3)XSU(3) we must deal instead with the
16 traceless objects: (P„)a 38a (+I ) c and (Vp) a

—P.3(V„)..$
The matrix elements which are "known" from the

Cabibbo theory plus experiment are

(2V.)'"{0
I (F.) ~'I ~'(V))=3F-V. ,

(31)
(2vo)"'{oI (F.)~'I &'(v))—=3Fxc'

The pion decay constant IF I
is numerically 1.01 in 3'

mass units and the ratio IFx/F I
is conventionally

taken to be 1.28, but there is some uncertainty associ-
ated with this determination.

If Q, ' in (29) is taken to represent the physical pseudo-

scalar particles, we have immediately

o1+&3 y
FK &1+&3~ (32)

It is convenient, in the isotopic spin symmetry limit,
to introduce4 a parameter 8", which characterizes the
breaking of SU(3) symmetry:

W= n3/u. (33)

In the SU(3) limit, W=+1. We have, using (32),

W= 2F /F rr—1, (34)

which results in W~1.56 (if Fa&F,)0).
In a more general framework, the pseudoscalar fields

7VC make the assumption that the vector and axial-
vector currents computed from (11) according to the
Noether prescription take pa,rt in the usual Cabibbo
theory of semileptonic decays. This gives us, by appeal-
ing to experimental information, some idea of the im-

portant parameters o. . The material in this section is,
of course, well known.

The 18 pseudovector and vector currents whose

integrated time components are the generators of
U(3) X U(3) are, respectively,

& ).'= ( .+ )~.e.'-(S. ~.S.'+~.'~,S. )

If Vss=0, the Lagrangian (11) is exactly U(3)X U(3)
or SU(3)XSU(3) invariant and all the vector and axial-
vector currents formally satisfy

~.(V.)'= ~.P'.).'= o.
However, as explained in Sec. II, the physical states

may not exhibit the full symmetry. Now all information
on the masses of the one-particle states is contained in
(24) and (25). Thus, in our formalism, it is very easy
to see what the one-particle spectrum looks like, and
to infer the corresponding symmetry. In all cases {as
expected by the Goldstone theorem), there are zero-
mass particles which are apparently not observed in
nature.

The mass spectrum corresponding to different types
of spontaneous breakdown, under the assumption of
isotopic spin invariance, 0.~ =n2= e, is listed" in
Table I. Our notation for the mesons is (7r,E,g,g') for'
the pseudoscalar nonet, a,nd (e,~,a,o.') for the corre-
sponding scalar nonet. The squared mass of m+ meson,
for example, is identified with {O'V/Bppgp3')3. The
results in Table I were read off from (24) and (25) with
the aid of (22) and (22'). The objects in brackets on the
left-hand sides of (22) and (22') appear together in (24)
and (25), making the job very simple. Since the right-
hand sides of (22) and (22') are zero in this case, and the
bra, ckets on the left-hand sides are multiplied by o.
and n &o.b, wc can only make a definite statcmcnt
about the value of the object in the brackets when the
appropriate one of o., and o,,+o,b is nonzero. This
ord~eary case is called case I, and gives a spectrum
which is characteristic of isotopic spin invariance. The
other cases correspond to e and e Web being zero in
various combinations. Ke only remark tha, t ca,se 2,
a=o3, gives an SU(3) spectrum; case 4, u=0, n3/0
gives an SU(2) XSU(2) spectrum'"; and case 5, n= —u3,
gives a chimeral SU(3) spectrum, in the language of
Mathur and Okubo. "Case 6, of course, corresponds to
no spontaneous breakdown of symmetry.

"The zero entries (Goldstone bosons) in Table I have been
given by Bardeen and Lee (Ref. 4).

"Note that examples of chiral SV(2) multiplets are (i) scalar
isosinglet, (ii) pseudoscalar isotriplet plus scalar isosinglet, and
(iii) scalar isotriplet plus pseudoscalar isosinglet.
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TABLE I. One-particle spectrum for the various spontaneous breakdown situations given in terms of V; of (20) and I';; of (26). The
P;; should be evaluated separately for each case. The quantity &=Sn'(V2+30.'V3). Since there is symmetry breaking, q' and q" and &2

and a ' are mixtlres of the usual objects; which one deserves a prime is just a matter of convention. Thus 0P and o& ~ are given by
6(o'—n") VI+ (6/n, ) (a'+2np') V4+4Fn+ 2Fp;+([4Fgg —2Fpp+6(H —op4) Vp+(6/op) (3n' 2n—pP) V4$'+32(Fgp+3oV, )'}»' and ~ps and
&, 2 are given by 2amV, +9@V,+4P»+2P»~t (4J»—2P»+~V, +I5~4V,)~+32(P»)mal~.

+Squared
IRSS

1. a&0, +as',
(a3 WO)

2. a =a3WO

3. a&0;a3=0 0
4. a =0;a3&0 2(V1+6a3V4)

5. a = —a3/0

2V1

0
2 (VI —6a3V4}

—12a3$2+(a2/a32)] V4 12(a2 as2)

XI a4V3+(2 jas) V4$
-36aV4 $ —24a V4

2 V1.

0

36a V4

g ]2 g 1 2

$ —24a V4 $+12aV4

+12Fll
0'3 era'2

2(V1+6aaV4) 8aPV2+24a34V3
+4F33

(—12a V4

+12E12
2V2, 2V&

As written, Ta.ble I describes the situation when the
Lagrangian is SU(3)XSU(3) symmetric. To get the
results for the U(3)XU(3) case we should set V4= V4;
=0

V. REALISTIC SITUATION

As we saw in Sec. IV, the assumption VS~=0 and
spontaneous breakdown leads to unobserved zero-mass
particles. Hence, some explicit intrinsic breaking must
be included to construct a realistic theory.

I.et us work in the limit of exact isotopic spin sym-
metry, and choose the most general VBB which is linear
in M and JI/It, namely,

we shall consider the SU(3) XSU(3) case here. In other
words, Vp will be assumed to depend on I4 as well as
Ig, I2, and I3.

From (36) and (21) we have

(8Vss/8M&') p (8V——sa/Mfss) p
—gp,

——
(8Vas/8/Vt ps) p

—(g+gp), ——
(8'Vsa/8~. 'M;")=0, etc.

Using these in (22), (22'), and (24) gives the squared
pion and kaon masses

x'=2gp, /'e,

Vsa = —
g (~ '+~-') —g(34's'+ (36)

At the present time we shall not attempt to justify such
a choice, except to note that it is about the simplest
possible one and ha, s been used by many authors. In
the limit g=o the Lagrangian is SU(3) [or U(3)j sym-
metric while in the limit gp= 0 it is SU(2) XSU(2) sym-
meI;nc. Recent work' "has tended to indicate the sur-

prising fact that ~g~&)~gp(, but we shall not be required
to make any assumption on this matter.

Before going further, we should specify whether Vp

is to be considered U(3)X U(3) symmetric or SU(3)
XSU(3) symmetric. In the Appendix it is shown that,
wtth (36), the U(3) X U(3) case does not lead to a real-
istic mass spectrum. " Some other forms of Vs~ were
investigated and also found to be unsatisfa, ctory. Hence

2go g/go
K

n 8'—1
(4O)

Next we consider the neutral nonstrange pseudoscalar
rnesons. From (24), the matrix whose (ab) element is
(8'V/8$, 8ppp)p (no sum) turns out to be

(We are adopting a notation where each particle symbol
also stands for its mass. ) From (22), (22'), a,nd (25) we
And for the corresponding scalar particles

e'= 2gp/n+4[V—t+4Vsn'+9 Vpn'],

v

2gp/n —12V4np —12V4o.3
—12V4Q

12V4np —2gp/n —12V4np —12V4n
—]2 V4n —12Vgn (2/n, ) (gp+g —6V4n')

(41)

The three roots of the secular equa, tion of (41) are s-',

g' and g". This leads to the following two equations
fol g and g

"This has been noted by Gasiorowics and Geifen (Ref. 5).

2gp 2 12V4n~'+~"= +—(g.+g) ———(2''+1),
e n H/'

go 4gp
(nn')'= —24« —+2(g+gp) +—(g+g,).

TV n'W

(42)
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We can also compute the masses of the scalar isosinglets
0 and 0' by using (25), but these involve the unknown
quantities F„of (26). The mass of the scalar isovector
given in (39) also involves undetermined objects. Thus
we are free to take these scalar particles to have any
masses whatsoever. The particles whose masses are
constrained are the pseudoscalar nonet and the ~. From.
a practical point of view this is a fortunate situation.

Useful predictions may be extracted from the set of

equations (37), (38), (40), and (42). We shall take as

input the masses of the neutral m. , neutral E, and g
mesons. We shall use a system of units where the neutral

~'(g/go)
IC

[~V—1
(44)

Finally, the squared mass of the ninth pseudoscalar in
terms of the input masses and 8" is

pion mass is unity. As output we shall calculate the
g' mass, the a mass, and the quantity g/go as a function
of the basic parameter W of Eq. (33). g/go is simply

g/go
——(K/m) '(1+IV) —2. (43)

Then the squared ~ mass is

Equation (45) is plotted in Fig. 1. There is a very
broad minimum around 8'= 2.3, and we see that quite
reasonable values for q" emerge when 8' is anywhere in
the range 1.5—3. Values of 8' less than 0.75 or greater
than 3.58 are clearly ruled out. The remarkable fact is
that the a. model seems to militate for an g' mass in the
right region when the value of 8' is what we might
expect from the theory of weak interactions (see Sec.

l00-.

qw 2

EXPERIMENTAL
VALUE

2W'K'(q'-—K')+2W(K' —~') (g' —2K')+sr'(q' —m') —2(K' —~')'
(45)

2W'(g' —IP) —2W(K' —~') +(q' —m')

III). Exact agreement for g" (g", ~~=50.4) is obtained
at 8'= 1.7I and 3.00.

g/g, is plotted in Fig. 2 and. we notice that it is very
lalgc fol thc lntclcstlng range of 8 ~ Thus Vag ls much
closer to an SU(2)&(SU(2) rather than an SU(3) in-
variant, as has been pointed out by Gell-Mann, Oakes,
and Renner. ' These authors worked in the limit where
W=1 )SU(3) invariance for the spontaneous break-
down situationj. We see from Fig. 2 that larger and
more realistic values of t/V bring us even closer to the
SU(2)XSU(2) limit. Actually, for the precise value
IV= 1 the set of Eqs. (22) is no longer consistent unless
g= 0.

Thc squared mass of thc tc ls plotted ln Flg. 3. Slncc
this particle has not been decisively established, we
can not say too much. Note that I».

" tends to in6nity as
8' approaches 1 from above. For 8'= 1.7 the ~ mass is

~ I 950 MeV.
I 2

90-

I'&G. i. q'2 (in units of wo') as a function of w.
70—

60-

30-

20- 20-

0 I

I I.5
I I

2.5
0

I

FIG. 2. g/go as a function of lV. FIG. 3. ~2 Kin units of ~P) as a function of W'.
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Finally, ve must form a conclusion about the reli-
ability of our predictions. Since the tendency for the g'

Mass to COMc out correctly with rcasonablc H/ is so
striking, we believe that this model possesses many of
the features of the real physical situation. However,
since the addition of other particles in the theory will

probably have some effect, we should regard the num-
bers we get as a guide, rather than de6nitive.

VI. BARYONS

It is of some interest to construct an effective Lagran-
gain to describe the meson-baryon interactions. The
most characteristic feature of the meson-baryon inter-
actions in the 0- model is tha, t, because of the spontan-
eous breakdown condition (21), the baryon mass term
arises automatically, leading to relations of the Gold-
berger-Treiman type.

For the baryon octet we shall adopt a notation such
that, in the y~ diagonal representation,

Decay

I~PA
Z ~kiev
Z+ ~ h.e+p

Z ~ Z0ey

M 0ep

A —+ Pep

~xQ ~ g+ep

Hadronic matrix element

cose{ y+ (1—4acP) ping

«» L
—(4/V'6) '(a+&)vv j

«» [—(4/v'6) '(a+&)vv~3

K2 cose (y+I 1+2n'(b —u) gyp')
—«» [v+(1+4 '&)vvsj
I'1/gS} sine (I —3+ &(1—S")24'2~—b) j&

+L-3+- (1+@)(2.-~)jest )
—sing (t 1+o.'b(1 —f4'}2jy

+I 1+~2~(1++)q»,~

(1/V'6) sine 1[3+n'(1—W)'(2b —a)gv
+[3+~'(1+~')'(2&—a)3vvs)

—'N SIng (I 1—O.~g(1—g )~jy
~t 1—~2g(1yg )2j»,~

sin& ([1—a'a (1—W)'jv
+L1—~'a (1+~')'3vvs)

TABLE II. Cabibbo matrix elements with symmetry breaking.
y and y~ are Dirac matrices.

(46) (21) givesgT s — g =s(R s L, s)
g b

The above two-component notation is sometimes con-
venient, since the barred and unbarred tensor indices
are explicitly displayed. . The kinetic part of the free-
baryon Lagrangian is

%„),=s&, v„&,'t1 —o(~„—~,) j
iÃ„'v„N—,'[1+b(n, n,)']+.—

9'.).'= &&~'v.vs»'. 'L1 —~(~.+o.) 'j
&&.'v.—vs&~'I 1+&(~.+~.)'j+ (49)

Tr(l,a„a„l.+—Ra„a„Z)= Tr(Ã7„a„~V)—. (47)

We may consider both derivative and nonderivative
meson-baryon interactions. The nonderivative ones
contribute to the nucleon mass terms. It is necessary to
include derivative terms if we want the axial-vector
currents, computed from our Lagrangian according to
Noether's theorem, to be identihed as participants in
the weak semileptonic interactions. Without derivative
coupling, only the term (47) would contribute to the
axial-vector current, and it would give an "F-type"
current, which seems to be contradicted by experiment.
We adopt the following as the simplest chiral-invariant
derivative-type meson-nucleon interaction:

,Tr[ga„(Mg„Mt)1+Ra„(Mt a„M)Z]
—g Tr[ja„L(MB„Mt)+Ra„R(MtB„M)j

= —-', a TrLg(1 —vs)v„(MB„Mt)X
+Sr(1+v.)v„(M a„M)/t j-

&»%(1 v,,)v-„iV(M~„M-

+&(1+vs)vs/t/(Mt~. M)j (48)

where a and b are two real constants.
Computing the vector and axial-vector currents from

(47) and (48) in the usual way" and taking account of

't) %e are following Ref. 7 and also J. Schechter, Y. Ueda, and
G. Vsntnri, Phys. Rev. 1/'T, 2311 (1969).

The three dots in (49) indicate that we have left out
trilinear and quadrilinear terms In te.rms of (49), the
Cabibbo semileptonic Lagrangian is

~-= -(GW~)WL(~.).+«.)"j-.~
+P(P„)s'+ (V„)s'j sine)+H. c. , (50)

where E„ is the lepton current, 6 is the Fermi constant,
and 8 is the Cabibbo angle. Now we are in a position
to write the effective couplings, including the effects of
symmetry breaking for decays of interest. These are
given in Table II, as functions of the parameter 8 and
the two quantities a and b. From measurements of neu-
tron P decay, we may determine a since

gg = 1—4QQ~1.2, (»)
where n=-', (pion mass units) from (32). g~ is the usual
"axial-vector renormalization" constant. The quantity
b may be determined by measurement of any one other
semileptonic mode (Table I shows that Z+ -& Ae+i are
interesting candidates).

In the limit of no 5U(3) symmetry breaking, we have
IF=1.Then the vector current in (49) is pure F type
and we regain the usual Cabibbo theory. In this case
one finds b —1.32 in addition to u —0.20 from (51).
Reference to Table II shows that the hadron part of
the A —+ pei matrix element (for example) is

—v sin 8 (1.22+0.85v, )
for 8"=1.To get some idea of the kind of corrections
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APPENDIX

Here we consider the V(3) X U(3) case. Vo is no longer
allowed to depend on I4, so we must set V4 ——0. Thus
Lwhen Vss is given by (36)$ (41) becomes the diagonal
matrix

2gp/n
0
0

0 0
2go/n 0

2(go+a)/~
(A1)

The diagonal entries in (A1) a,re the m, rj, and g'

masses. Evidently the x and one of the isoscalars are
degenerate in clear contradiction to nature. The same
unfortunate conclusion holds if VsB is modified to
include any combination of the following terms:

that may be expected in a more realistic case, let us still
use b —1.32 but take 8'= 1.7. Then this becomes

—y sine (1.18+0.54'~) .

The above treatment is of course crude; form factors
have been neglected and (48) was a,ssumed to be the
only derivative-type interaction term. Nevertheless, the
moral is clear; a reasonably large (30%%u~) correction to
the axial-vector part of the matrix element may be
expected.

Still to be discussed are the nonderivative meson-
baryon couplings; we postpone this to the following

paper. Here we just remark that it is possible for all the
different octet baryon masses to arise by the sponta-
neous breakdown mechanism from a chiral-invariant
meson-baryon interaction, but that this requirement by
itself is too weak to give us any additional information.

and try

T-a —(T 5)t (A3)

V» = —kgo'(&. '+ &.-') —2Y(2'~'+ &3') (A4)

Using (A4), the squared pion and kaon masses come out
to be

z'= 2gp'H/,

&'= L2/(1+ W)3(2ao'+a'), (AS)

while the squared masses of m., g, and g' are the roots of
the secular equation of

go'(1+W)+C' go'+g' fo' 1
ro'+g' a'(1+W)+a' ao' (A6)

gp gp' 2gp'/W

The system (AS) and (AS) is more restrictive than the
corresponding set (37), (38), and (41); it does not yield
as convincing a solution. Specifrcally, the analog of (45)
is here

~2 ~2)2
W'+2W'—(x'-—g' —q")+4

i
=0. (A7)

(nn')' en'&

This gives 8'= &0.35 or +0.21, none of which is con-
sistent with the usual theory of weak interactions.

(Mg'M, '+My'M, '), (M, '+M )Ig,
(M3E+MjP)Ij, (M;M ~Mb'+M M, 'Mr, '), (A2)

(M& M.'M -p+M3'M. 'Mr, ') .
It appears more promising to try for VqB a form that

looks something like I4. Define the "dual" objects

b —
~ ~b f&~-m~ n

0
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Electromagnetic Perturbation of the Pseugosca]ar-Mass Spectrum+
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Using the formalism developed in the preceding paper, we investigate electromagnetic perturbations in a
rather general chiral SUt'3) XSU(3) model of mesons. The meson and octet baryon mass shifts can be
successfu]ly correlated, and it is found that the electromagnetic breaking term in the Lagrangian may be of
the same order of magnitude as the chiral-symmetry-breaking term. We also discuss the speculation that
all strong symmetry breaking may be of electromagnetic and weak origin.

I. INTRODUCTION
" 'N the preceding paper' (hereafter designated I) we
~ - dealt with symmetry breaking in a very general
chiral SU(3) XSU (3) model of spin-0 mesons. A mass

* Work supported by the U. S. Atomic Energy Commission.
' J. Schechter and Y; Ueda, preceding paper, Phys. Rev. D 3,

168 (197i).

formula was derived which was true when the Lagrangian
contained any chiral-invariant nonderivative part and
some additional specific symmetry-breaking part. It
was found that the resulting mass spectrum seemed in
agreement with nature. For example, there was a
striking tendency for the mass of the ninth pseudoscalar
meson to come out right when a certain parameter lV


