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Dispersion Calculation of Isoscalar 3~ and XZ Electromagnetic Form Factors*
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Using dispersion theory and the assumption that the three-pion cut is well represented by the pm cut, the
I=O, J= 1 px and EX scattering amplitudes are calculated from a matrix integral equation, using only
right-hand cuts, in an effective-range —type approximation. Subtraction constants are determined by the
experimental masses and widths of the isoscalar vector resonances. There are no ghosts (spurious first-sheet

poles) in the model. The per and EX isoscalar form factors are calculated and compared to the available e+e

colliding-beam data near the ~ and p masses. The isoscalar charge radii are also computed. The agreement of
the model with the experimental values is satisfactory. An estimate F (p —+ z y)~40 keV is obtained (the
decay has not yet been observed).

I. INTRODUCTION

'HE burgeoning number of electron-positron col-
liding-beam experiments has lately spurred

intense experimental and theoretical interest in form
factors of low-mass particles (low compared to the
nucleon). Historically, the nucleon form factors have
generated the most interest' because they were easiest
to measure. The investigation of lower-mass form factors
is of interest from the standpoint of nucleon form factors
as well, for those investigated so far are the ones of
most importance in a dispersion calculation of nucleon
form factors (i.e., the lowest-mass intermediate states).

It is the purpose of this work to investigate the form

factors of the pz transition and the E from the disper-
sion viewpoint. These form factors are important for
the calculation of the isoscalar nucleon form factor. In
the approximation considered here, the two form factors
are coupled. The work. presented may be useful in itself;
however, it should perhaps be regarded as the first

stage in a program to study isoscalar form factors
completely. Various possible improvements might be
incorporated in the future.

In Sec. II, the relevant amplitudes and form factors
are obtained. Section III describes the determination
of subtraction constants. The problem of possible

ghosts is discussed in Sec. IV. Results are obtained and

discussed in Sec. V, and the work summarized in Sec.
VI.

II. DETERMINATION OF SCATTERING
AMPLITUDES AND FORM FACTORS

In order to utilize the considerable intuition developed
over the last decades on the two-body problem, and

because of the difficulties inherent in three-body calcu-

lations, it is essential to approximate the three-pion

states by ones in which two particles "stand in" for
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~ One compendium of the older data is R. Hofstadter, Nuclear
and Nucleon Structure (Benjamin, New York, 1963). More recent
data appear, for example, in Richard Wilson, Phys. Today 22,
No. 1, 47 (1969).
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the three particles which are physically there. It seems

a reasonable first approximation to insert for e final-

state pions

[(rs —i)-pion resonance]+ (pion) .

This final state must be symmetrized or antisym-
metrized as the particular case requires.

The three-pion state will be represented by a p

resonance plus a pion. As a consequence, the analytic
structure of the amplitude is changed. Originally, a
three-pion intermediate state implied that there was a
cut in the complex plane, running from 9m ' to infinity2

in the variable t, the mass-squared of the virtual photon.
When the physics is changed to make the photon—

three-pion vertex into a photon —p-meson —pion ver-

tex, the new form factor has a cut which begins at
t=(m, ,+m )'. This requires the &v particle, which ap-

pears as a resonance in the physical process, to instead
become a bound-state pole. ' This may not be such a
violent approximation scheme, even though some in-

formation of the three-pion system is undoubtedly
lost. Much simplicity is gained by this approach-
and hopefully insight into the more complicated version

of the problem as well. There are, moreover, several

reasons to believe that this is in some ways not such a
drastic step.

(i) One expects the complex pn. cut to dominate the

discontinuity across the three-pion cut for small t.

(ii) The Gell-Mann —Sharp —Wagner (GMSW) model

of ~ decay, 4 seems to describe the physics of the decay
successfully.

(iii) Schwarz's' derivation of the GMSW result

confers upon the model a greater validity than one

would have at first suspected.

(iv) The amplitude near threshold is suppressed by
a factor g (unless there is a resonant state).

(v) Higher angular momentum states will be unim-

2 All masses will henceforth be given in terms of pion masses

(unless explicitly stated otherwise); 9&n '=9.
3The pole presents the usual difficulties in the definition of

resonance height, for example.
4M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.

Letters 8, 261 (1962).
' J. H. Schwarz, Phys. Rev. 1/5, 1852 (1968).
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portant for small t because of the threshold suppression
factor. States of higher angular momentum are possible
because the three particles are free to combine in any
way so that the vector sum of their angular momenta is
1 (the spin of the photon is 1).

Another approximation made is the total neglect of
left-hand cuts in the partial-wave amplitudes. These
cuts are generated by "driving forces" in the crossed
channds, and are an integral part of the solution of such
a problem when calculated via the X/D method, ' for
example. Instead of doing a dynamical calculation along
such lines, we shall use a couple'd-channel CRective-
rangc approxiIH ation. Thc theory to bc discussed ln
this paper is an effective-range theory. The two sub-
traction constants (subtraction constant matrices here)
correspond to matrix generalizations of scattering
length and CQective range. v

For the case of spinless particles, the threshold be-
havior follows easily from the asymptotic properties
of the Q~'s and the use of the Froissart-Gribov formula.
The f-channel kinematic singularities of the d„„are
explicitly removed in the form of factors" (n& ~N'~):

P(1+s}j(n+n') i2

In a manner similar to the spinless case the partial-wave
equation is written, and the analog of the Froissart-
Gribov procedure executed. It is interesting to investi-
gate the behavior as 7 approaches the threshold. Two
parts contribute to this behavior: the exp/icit kinematic
singularities in s, and the asymptotic behavior of the
function e„„~(the analog to the Qi) where" the nota-

tion of Collins and Squires~ is used (also see Huang").

~~(&) const f(q')(q')"'(q') "(q') '
=const (q')~—"f(q'),

where f(q') is 6nite at q'=0. In the case of the 1=1 mp

Scattering amplitude, both J and e are one. Hence the
factor containig. g J—e does not contribute.

The last consideration concerns knowledge of the
parities of all the objects. Namely, in this problem a
negative-parity object must be formed from two objects
of the same parity. These objects are therefore in a
state of odd angular momentum (l) 1). Thus f(q') is
6nally given by

f(q') =q"=q'

(using the simplest assumption for f). This recovers the
same answer that would have been obtained for spinless
particles with 7=1.

Consider the various J= j. partial-wave amplitudes
dered

Ap „p (M' ~M)—=f»(M', 0; M,o),
Ap ling(M-+0)=—f»(M, O; 0,0),
Axe p (O~M)= f2'(0,0; M,o),

YVith these dehnitions, analytically continued elastic
unitarity can be written

dhsc f»(M, O; M', 0)/2~ =p,.(i)8(&—m,.')Q f»*(M,O; M",0)f»{M",0; M', 0)

+px(t)8(t 4m'') f»*(—M,O; 0,0)flag(0, 0; M', 0),
discf»(M, O; 0,0)/2i=p„(/)8(t —m„')P f»*(M,O; M",0)f,s(M",0; 0,0)

+prr(t)8(i 4mJr') f»~(M, O—; 0,0)F2, (2.1)
discf2~(0, 0; M,o)/2i=p, (i)8(t—4m, ')p f.„~(0,0; M",0)f»(M",0 M,o)

+px(/)8(f —4m'') fgn*fgg(0, 0; M,o),
discf„/2'=p, .(i)8(~—~,.)p f„'(O,O; M",0)f„(M",0; O,O}+, (&}8(~ 4~ }f„*f„.

Here m, =m, +m, p, (/) and px(/) are kinematic
factors to be dehned below, and higher-mass inter-
mediate states are neglected. The equations are coupled
because, in the approximation of the 3x cut by a ~ cut,

' This approximation eliminates several problems. The existence
of the left-hand cut complicates the analysis of the asymptotic
behavior at the pseudothreshold. Also missing are problems
brought on by overlapping right and left cuts which arise when a
crossed particle can have low mass (here the pion) and the
particle is considered in the narrow-resonance approximation.' The familiar meanings of scattering length and effective range
do not necessarily correspond to those which would be expected
in the one-channel problem. For example, in the multichannel
case with several diferent thresholds, it is not clear about which
threshold the expansion is made.

the threshold is at 42.8 (in units of m ') whereas the
two-E threshold is at 51.6. The thresholds are too close
to allow the EK threshold to be called "far away. "On
the basis of subsequent calculations, we estimate that
the contribution from higher states is less than 1.5%.

8 Ling-Lie %ang, Phys. Rev. 142, 1187 (1966);T. L. Trueman,
ibid. 1"l3, 1684 (1968);J. Franklin, ibid. 1'70, 1606 (1968),

P. D. S. Collins and E. J. Squires, Eegge I'oles irI, Eurfick
Physics (Springer, New York, 1968).

'OE. J. Squires, Comp/ex ANgN4r 3IIomerIINrN and EarticteIhysics (Benjamin, New York, 1964)."K. Huang, in Theories of Strong Interaction at High Energies,
Brookhaven Summer School in Elementary Particle Physics, 1.969
(unpublished).
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A similar equation may be written for the form factor.
The form factor is here a four-entry coulmn vector.

It can be shown (see, e.g. , Goidberger and Watson, "
Appendix E) that for the p~ scattering amplitude the
partial-wave amplitude

l J,e„n ) can be written in
terms of

l
JLS) amplitudes:

)2L+1 'i'
(1,0; 3f,0

l
SN, )

r. , s (27+1
X(L,S; o,~, l

J~,) l
JLS).

ImOR(t) =OR*(t)R(t)OR(/),

ImF (&) =OR*(&)R(t)F(&),

where E.(/) is the diagonal matrix:

(2.2)

(2.3)

Using the standard definitions, and defining eigenstates
of parity

l
Jm, ni,)+= (1/%2)(l Je,iii,)&

l
J m, —iii,)—),

it is found that the only object with J~=1 is the
amplitude

l
J=1, L=1, S=l) .

Using the restrictions of parity and time-reversal invari-
ance on the partial-wave amplitudes, this particular
linear combination decouples in the unitarity equation.
The px state is therefore described by only one ampli-
tude (three a priori), which automatically is seen to
have the correct threshold behavior.

The coupled matrix equations have thus been reduced
from 4X4 to 2X2. Define OR(t) to be the matrix of
amplitudes, and F(t) to be the two-entry form-factor
column vector. Then (2.1) and its analog form factors
may be written

where c~ and c~ are arbitrary at present, but will be
fixed later. Since F(t) has no left-hand cuts, Eq. (2.4)
clearly assumes that OR(t) has none either. Otherwise,
the integral equation for F(t) is no longer trivial.

Equation (2.2) may be rewritten

ImOR —'(t) = R(t),— (2.5)

where E(t) is defined above and OR '(t) is the matrix
inverse of OR(t). This is the matrix analog of the well-

known one-channel result. The solution to Eq. (2.5)
follows from standard dispersion theory (making the
appropriate number of subtractions)

1
OR '(&)-=— ImOR '(t')

dt'- (2.6)

where it is assumed that 5K has no left-hand cuts. At
this point, there is some difficulty with subtractions (to
be dealt with later) and ghosts. By ghosts is meant: The
dispersion integral for OR '(i) is not precisely the same
as that for OR(t). Possible zeros of OR '(t) become pos-
sible poles in OR(t). Thus, a zero on the first sheet of the
complex t plane not ruled out by Eqs. (2.5) and (2.6)
is (possibly) translated into an impermissible pole in

OR(t). In the one-channel calculation, the justification
for ignoring ghosts is the Omnes function. " '4 Detailed
arguments must be deferred until the solution of Eq.
(2.6) (assuming meanwhile that there are no problems
with ghosts) is established. p(t) can be written p(/)
=q2i+i//gt. It is clear that two subtractions are neces-

sary in Eq. (2.6) in order that the integrals converge.
This is reasonable —the theory is better for low energy
than high because more and more cuts come in to con-
tribute to the phase shifts. Equation (2.6) has thus
become

p,.(i)SLt —(m„+1)']
R(t) =

0

0

px(t) 8(t 4m'')1—
F.(t')

OR-'(i) =a+bt — d—t' , --(2.7)
(~,+ii ~ i'2(t' —t)

(mp+1)

OR*(i')R(t')F(t')
dt'———

t' —t

(making the appropriate number of subtractions) is

given by

(2.4)

"M. Goldberger and K. M. Watson, Co'tlision Theory (Wiley,
New York, 1965).

with
p"(~) ={L~—(~.+1)']L~—(~.—1)'])"'/@'

[t 4mx']'~'. —
px(~) = —=~+'p.

1
—,

8+i kerr'

and m, is taken to be real (in line with the preceding
approximations).

If it is supposed that OR(i) has no left-hand cuts, a
solution of

where a and b are 2X2 matrices. It must be emphasized

again that Eq. (2.7) assumes that OR(t) has no left-hand
cuts. a and b contain a priori eight independent parame-
ters which must be determined from experiment: the

eight matrix elements a~~, . . . , b~&. Time-reversal invari-

ance requires the scattering matrix to be symmetric and
reduces this number to six unknown constants. This
was proved in the multichannel case by Bjorken and
Nauenberg. '5 (If the X/D equations are used, these

considerations do not of course imply that either X or
K) is symmetric. ) More detail is given in Pilkuhn. "

In the notation adopted here,

OR(/) = LOR(~)]transpose (2.8)

3 R. Omnes, Nuovo Cimento 8, 316 (1958).
'4 M. Jacob and G. F. Chew, Strong Interaction Physics

(Benjamin, New York, 1964)."J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250
(1961).

'6H. Pilkuhn, The Interactions of IIadrons (North-Holland,
Amsterdam, 1967), Chap. 3.
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or, in terms of the unknown matrices u and b, a12= u21,

b»=b». Consequently, there are but six unknowns:
~11) +12) +22) b11) b12) b22.

The integrals involved in Eq. (2.'7) are relatively
straightforward (although tedious) to do. The solutions
are

DR 'n(t) =au+birt+A(t)

This makes possible a major hypothesis: That, so far
as is possible, P occurs only in the EE channel. This is
reasonable in view of the data at hand. For, suppose
all three-pion events detected are two-body xp decays
followed by p decaying to two pions. Letting P denote
Lorentz-invariant phase space,

dP„,/d0=q, .(t)/16m'gt.

ip (t)8[t (m+1)2] (29a) Similarly, in the case of the EE channel

9R '2.(t) =a22+b22t+k(t) ipse(—t) 8(t 4m'—'),

with
(m ' —1)'

A(t) =E„.(t)+ — —lnm, '
16~t2

(2.9b) dPx g/dQ=2qxg(t)/16m'V t,

Pxg/P p 0.025—— (3.1)

where q~17 is computed using the average kaon mass.
Evaluated at the p mass, the ratio of available phase-
space volumes is

(m ' —1)[m ' —1+$(m '+1) lnm ']
whereas, from above, a computation implies

)

rate(P ~EE)/rate(P ~ pm. ) =4.53. (3.2)
p, ~(t) [t—(m —1)']"'+[t—(m +1)']"'

E„„(t)= —ln
T [t—(m —1)']'~'—[t—(m +1)']'t'

and
px(t) gt+[t 4m'']"'—

k(t) =—ln
Qt [t 4m'']—"'—

A(t)
t-+0

5[(mp')' —1]+3[(mp')'+1] lnm '

16m(m '—1)

k(t)
t-+0

III. DETERMINATION OF SUBTRACTION
CONSTANTS

The fact that the physical three-pion cut begins at
9 (units of m '), but that in the approximation con-
sidered here, where three pions are represented by the
mp combination the cut begins at 42, means that the
physical resonance at the ~ mass-squared becomes a
bound-state pole in this formalism. The present ex-
perimental data (world-averaged) found in Rosenfeld
et at. 'r give the following branching ratios of co and P
decays:

Although A(t) may appear to diverge as t —+0, it can
be shown that

If it can seem reasonable that there are no dynamical
eRects, then Eqs. (3.1) and (3.2) should more or less
agree. In fact,

(actual result)/(naive-phase-space result)) 150.

This makes it highly unlikely that effects of three-body
phase space can adequately account for this ratio;
there is probably a dynamical reason for the sup-
pression. It is most significant that the decay of p into
p~ does not occur, considering the adequate phase
space available.

ln the quark model, the SU(3) singlet and octet
isosinglet are mixed. lf tan'8&=-,', then p is completely
constituted of strange quarks and ro is made up only of
nonstrange quarks. Expressing pw and EK in quark
terms, px is completely made of nonstrange quarks and
EK has both strange and nonstrange parts. This for-
bids the decay @~ pm but allows both cv —+ KE
(forbidden kinematically) and P~EE. The small
experimental rate for P —& pm is taken to indicate a
small deviation of 8v from tan '1/K2.

Other data determining the parameters are the masses
and residues of the poles or resonances which are in the
equations. To this end, the matrix of amplitudes must
be more closely studied.

The solution BR '(t) was found. We are, however,
interested in the matrix of amplitudes

co ~EK)
cu —+ three pions,

p ~ three pions (and n.p),

y ~ EK,

kinematically forbidden

87&4%%uo

18.1~4.9%%

81.9~4.0%%uo.

OR(t) =adjointÃL '(t)/detOR '(t). (3.3)

A pole occurs when det5R '(t)=0; alternatively, a
resonance occurs for Re detOR '(t) =0. If there is a pole
or resonance at t=mg2, then

"N. Barash-Schmidt, A. Barbaro-Galtieri, C. Bricman, S. B.
Derenzo, L. R. Price, A. Rittenberg, M. Roos, A. H. Rosenfeld,
P. Soding, and C. G. Wohl, Rev. Mod. Phys. 42, 87 (1970).

Re detOR '(t) ~„'~=0.

The residues are determined by expansion about the
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resonance position. One finds

OR(t) =adjointOR '(t)/detOR '(t) '=(adjointOR '(t)/Re detOR '(t)+iIm detOR '(t)) i~u'

adjointOR '(t)

—(nthh' —t)[d Re detOR '(t)/dt] i „„~+ +i Im detOR '(t) ~=„„2

(adjointOR '(t)/[ —d Re detOR '(t)/Ch]) i

ash' —t+ +if Im detOR '(t)/[ —d Re detOR '(t)/Ch]) i „.~'

We expect that, to order I'ir/mg, the matrix of residues
is given by

Re adjOR-'(t)
G=

[—d Re detOR '(t)/Ch] „um
(3.4)

The equations for the various residues calculated from
Eq. (3.4) can also be identified with experimental
quantities.

The matrix G is defined to be real. Small imaginary
parts have been neglected. G is expected to be real to
order I'/sst for two reasons. First, the oS-diagonal
elements are real because of time-reversal invariance,
and second, these residues correspond to inverse life-
times (which are real" ). We shall compute the size of
the imaginary part presently.

The third condition arises from the "normalization"
of the form factor. It is well known that, for small t,
the form factor can be thought of as the Fourier
transform of the charge distribution. ""Thus an ex-
periment in which there is no momentum transfer just
measures the zeroth moment, i.e., the charge.

The form factor is usually thought of in terms of
scattering from a virtual photon. The charge by which
the form factor is normalized is the charge carried
through by the external particle for a one-particle form
factor. For form factors of dissimilar particles, F(0)
is not really a charge, but can be determined in principle
by observing a decay such as p —+xp. Such channels
can be reached by analytic continuation in the four-
momenta of the particles involved.

Spin-zero form factors are written in terms of the
two available linearly independent vectors

(4kiok, o)'t'(kii Jy
i k2) = (ki+k~)i f+(ki —ks)ig.

For equal masses, g is zero by current conservation (the
E form-factor case). Since there is a single parity-
conserving antisymmetric matrix element for the decay
of a photon into three pseudoscalar mesons, there is
but a single 3sr form factor. Similarly (neglecting charge
labels) there is only one amplitude for y —+ pir, and thus
there is only one pz form factor.

The form factors are normalized by their values at

Goldberger and Watson, Ref. 12, Sec. 8.5; E. P. Wigner,
Phys. Rev. 98, 145 (1955); F. T. Smith, ibid. 118, 349 (1960).

'~ G. Barton, Dispersion Techniques irl, Field Theory (Benjamin,
New York, 1965).

'0 S. D. Drell and F. Zachariasen, FLectromugrIetic Structure of
Nucleons (Oxford U. P., London, 1965l.

t=0. It is trivial to evaluate in the EK case

Fir(t) =Frrs(h)+rsFlr "(h),

Fx+(h) =Fx'(h)+Fxr(h)
Ftr, (h) Frr s(h) Fire(h),—

so that

implies
Fx (0)=i, F (O)=O

x'(0) =Fx'(0) =-'

(3.5)

Recalling the discussion below (2.4), this means

t F,.(0)
F(t) =OR(t)OR '(0)i (3.6)

for the present case in which there are no left-hand cuts.
Had F(t) been defined as a row vector, Eq. (3.6) would

hold for the transpose.
It is not quite obvious (for constant N matrices) that

Eq. (3.6) involves only K). This must, however, be the
case because Ii can have no left-hand cuts. Notice that
by Eq. (2.8) OR(t)OR '(0) can be written (where the
subscript tr stands for the transpose)

OR(t)OR '(0) =[[OR '(0)]i,[OR(t)]i,]i,
= [OR-'(0)OR(t)]„
= [X)(0)X—

'OI, X) '(t)],
= [X)(0)n—'(t)]„
= [& '(t)]s.[&(0)]~'

The per case is slight1y different. The isovector form
factor is not considered because the three-pion isovector
form factor is zero by G parity. The px form factor can
be calculated from the width of the decay p —+x
+photon if it is known. Experimentally, a limit

iF„(0)i
(0.98&0.12

can be put on the form factor from the upper limit on the
branching ratio of that process (see the Rosenfeld
tables" ). In the Appendix the value of p7r transition
form factor at zero momentum transfer is given. For
the present, its value will be unspecified. Therefore,
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This involves only the S function. Moreover, it verifies
the expectation (nurtured by the one-channel case) that
F(t) is essentially S '(t).

The conditions on the solution are summarized in
Table I. Conditions I and II can be directly compared
to the results obtained in the one-dimensional case. by
Gell-Mann and Zachariasen21 using the /(//D approach
in a scalar-resonance-model field theory. It will easily

be seen that, in the one-channel problem, II reduces to
yzz-1 ———d ReOR—'(t)/dt! ~z

and I to
ReOR '(t)!„»2=0,

the same results as those of Ref. 21. The same remark. s
made above concerning the neglect of small imaginary
parts and so on, of course, continue to hold.

The solution to Eq. (3.6) now reads

a„+b„t+A(t) zp,.—(t)e[t (m, +—1)']
OR-'(t) =

a12+b12t

a12+b12t

p, +tz„t+. )t(t) zpp(t) p—(t zzpp'))—
(3 '/)

where k(t) and A(t) are the respective real parts of the
several amplitudes and the 0 functions are to remind us
that there are no imaginary parts until the indicated
energies squared (so that the symbols k, A may be
reserved to the real parts of the amplitudes). The
values of A(t) and k(t) in the various t regions are dis-

played in Table II and the B(t) of the table is given by

(mp' —1)' lnmp'
I{(t)=

16m t'

(m ' —1)[m ' —1+22(mp'+1) 111mp']

The form (3.1) for OR '(t) implies with

—y p
= [a»+b22m„+k(m„')]/d1(m„), (3.11)

—y~rrg = [att+bt1m„2+A (m„')]/d1(m„'), (3.12)

The right-hand side is very small, so the left-hand side
is as well. This is good, since, if the resonance is to occur
as far as possible in the EE channel, then a22+b22me2
+k(m&2) should be small. At t=m„' condition I is
simply

[a11+hz1m„'+ A (m„')][a22+ b22m„'/k(m„') ]
—(a12+b12m ')'=0 (3.1())

Two independent co coupling constants are deter-
mined:

on(&) =
!
( OR-122(t) —OR '12(t)

(—OR-'12(t) OR '11(t)

OR 11(t)OR 22(t) [OR 12(t)]

d1(m ) [b22+k (m )][all+bllm +A (m )]
—2b12(a12+b12m ')+[b11+A'(m ')]

X[a» jb»m. '+k(m. ')7.

Consider OR(t) first at t=me2. In view of the strong
hypothesis made above that the (t occurs only in the
EK channel (condition IV)—it follows that

a12+b12mtz (3.8)

TABLE I. Four conditions determing the
six subtraction constants.

Condition I: Re detsK '(t)
I

hz=0.

Re adjoint9R '(t)
Condition II: G =

—d Re det5R '(t)/dt ~~2

Condition III: F (0) normalized correctly.

Condition IV: p is decoupled from pm.

21M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).

Since m & (mp+1) and m &4m' both OR 11 and
OR '» are complex; condition I states [taking Eq.
(3.5) into account]

[all+bltm (+Atz(mzZ')][a22+b22mzZ +k(mz) )]
=prr(mz, 2)p,.(mg2) . (3.9)

TABLE II. Solutions k(t) and A (t) in various t regions.

t& (mp —1)'
A (t) =B(t) —{[(zzz p+1)'—t]z»[(mp —1)'—t]'»/8zpt'}

Xln [{[(mp+1)z—t]"'+[(z)zp—1)'—t]'"}/
{[(zzz +1)'—t]'"—[(zzz —1)'—t]'»})

(~,—1)'& t & (m, +1)',
A (t) =&(t)+(I (~ +1)2—Q'/2Lt —(mp —1)'$' /8~t }

X [2 tan-'{ [(zzzp+1) 2—t]/[t —(zzz 1)2]}»2 zp[

t & (~e,+1)2,
A (t) =&(t) +{rt —(z)z +1)']'»[t—(~ —1)']z»/8~1')

Xln[{[t—(mp —1)'] "+[t—(z)zp+1) ]"}/
{[1—(I —1)z]')2—[t—(zzz +1)z]z»} l.

0&t &4~K2,

k (Z) = [(4(tzxz —t)z»/8zpV't]{ 2 tan —
z[(4)zzzzz t)/Z]t» ~}

t )~ 4mK2,

k (1) = [(t—4)pzxz)z»/8zpv'1] In [{P»+[2—4)zzzzz]z»)/

( tl/2 Ct 4~K2)l/2} ]
with

(zip' —1)' 1nzzzpz (zzz ' —1)[zzzpz 1+-,'(Nzpz+—1) {nzzz 2]
B(t)=

16~t2 Set
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TABLE III. Five equations in 6ve unknowns to be solved.

Furthermore, from condition II, the decoupling of

p and pzr, and the smallness of a»+b»m&'+k(m&'),
one obtains the result

pair g =—[a„+b„mz,'+A (m~') 5/d2(mz, '), (3.13)

where Eq. (3.3) was used and du(m@') is given by

d2(mp') = [bit+A'(mp') 5[a22+bg2mg'+k(ma') 7
—d[p~(t) p.-(t)5/«I -,'+[&»+&'(mz') 5

X[aii+biim p'+A (mg') 5.

(The fact that zd ~EK is kinematically forbidden does
not imply that the coupling constant has any speci6c
value. ) The value of y„, is calculated by following
the Gell-Mann, Sharp, and Wagner4 calculation of
F(az —+ 3zr):

r(az —+3zr) =(3m./4m'')yp. p, I(m '),
where y, =m, 'I'(p ~ zrzr)/zI, ' and. I(m ') =0.105 iii units
m =1.Thus

4m„'r (zd —+ 3zr)
7 — —=11.84.

3m„yg(m. z)

[As an indication of the sensitivity of I to three-body
phase space, we note that if a pion mass m„=140 MeV
is used instead of m =138 MeV, y„,„, =12.44. See
Sec. V for the definition of I(m„').5

The pEK coupling constant is computed. from

TABLE IV. One-channel estimates and solutions
to @(e)=0.

bll
11.71—0.195
23.27—0.427

Physical
solution:

e

13.3I—0.220
23.77—0.436

&6.67

16.98—0.248
118.29—2.543

&27.32

@(e) =0.00/

8.30—0.089
2.62—0.047
0.0

fl (e) =Lell+mp'bll+3 (zep') gLa22+mp'b. :+k(mg') j
—p~(mp'}pp (zeq'),

fz(e) = t'azz+zn 'bzz+A (zn ')5[azz+nz„'bzz+k(zn '}]
—

a122 (1—m„'/m@')',

fz (e) = paz z+znzzbzz+A (znzz) ][bzz+k'(znzz) +yz tzzz ']
d[p—x(t)pl, (t)]/dtIznz, +[bzz+A'(nzzz)]

X [azz+nzzzbzz+k (znzz}],

f4(e) =Pa22+Nz„'b22+k(zrz„') lI bll+A'(zzz„')+~„~.-lj
2ul2 (1—w „'/mP')

+— +[bzz+k'(nz ')]
Xpazz+nz zbzz+A (m '}],

f;(e) =Lall+w„'bll+A (rz„')|Ib2g+k'(m„')+y~~g 'j
2u122(1 —zzz„'/mp')

+ — — +[bz —z+A '(nz„z) ]
Bzp

X t'azz+nz„'bzz+k(nz„')].

I"(y —+ ICE):

v~~~ =m~'I'(4 ~&&)/V ~~'= 3a~«'/4~

It might be noted that

detGI .z—=0

by definition [it is just Eq. (3.8)5. However, it will
be seen that

detGI ~z/0, Re detGI ~z=0,

because in the de6nition used here the very small
imaginary parts of G were neglected in the transition
from Eq. (3.4) to Eq. (3.9).

In order to determine the coEK coupling, additional
information is required (az -+ EK is kinematically
forbidden). It is natural to select another dynamical
model to obtain a pred1ctlon fo1 this ratio —the most
flexible model should be preferred. In SU(3) with az-P

mixing, one 6nds that

y /ya =tan'8v.

In the quark model discussed above, tan'8v=-,' (see,
e.g. , Kokkedee2z). In any case the value of this ratio is
uncertain up to factors m&'/m„'=2; we use

At: this juncture, there are six equations in the six
unknowns aii, . . . , bzz. Equation (2.8) is trivially used
to leave 6ve equations in five unknowns. These are
presented in Table III in terms of vectors

column(all/11&a»)b22ga12) p

f = column(fi, f2,f3,fz,f5),
where f; is defined in Table III. The solutions of these
equations should be real and may be found by finding
the solution to P(e) =f f=0 Altern. atively, the equa-
tions may be used to eliminate certain variables, which
reduces it to the problem of two equations in two un-
knowns (which is soluble graphically).

If the set of equations is to be solved simultaneously
in 6ve variables, it is useful to "have a handle" on the
size of a~~, b~1, a22, and b22. These are easily found in
analogy with the p~mx case"" which has already
been calculated, by considering the coupling y„~g to be
turned off adiabatically. The P meson is already shut
off from the pm channel, so in this limit the problem is
simply that of two uncoupled one-channel equations.
Solving

aii ——m„'[A'(m ')+y.p„'5—A (m„'),
bii ———[A'(m„')+y, '5,
a22 mz, 'Pk'(mq')+yarrir ——'5 k(m~'), —
b» = —[k'(m~')+&~~~='5.

22 J. J. J. Kokkedee, T/ze Quurk Model (Benjamin, New Vork,
1969)."J.H. Schwarz, Phys. Rev. 179, 1486 (1969).

24 G. J, Gounaris and J. J. Sakurai, Phys. Rev. Letters 21, 244
(1968).
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These values can be used as the starting point, from
which a certain solution results when the five equations
in five unknowns are solved. With general starting
places, one other solution and an almost-solution are
found. The solutions are indicated in Table IV.

The one-channel calculation leads to the values
listed immediately thereafter —the adiabaticity seems
well justified a posteriori, as the changes in a», . . . , b»
are (11jo. There is an additional (physical) criterion
for choosing this as the physical solution: The quantity

ass+my'+b»+k(me')

should be very small if the pm. channel is to be decoupled
from the g. For the leftmost column of solutions, this
quantity is —0.0133, while for the other solution it is
—20.18 and the determination is thus doubly un-
ambiguous. The sign ambiguity of ate (see Table III)
is unfortunately unavoidable at this stage (but will be
resolved later).

ThaLK V. The two p(e) =0 solutions of Table IV
when m =140 MeV.

bg2

CIg

Physical
solution II

12.52—0.208
17.92—0.339
5.36

Nonphysical
solution II

16,73—0.253
93.72—2.043
24.67

aii+m. 'bit+A(m„') =0,
ass+m 'bss+k(m„') =0, (3.14)

or

As a consistency check, the equations were also
reduced to two equations in two unknowns and solved
graphically. Then either

[a»+my'b»+A (m@')](a»+mq'b»+A (m„')+ (me' m„')A—'(m, „')
+(~. =/~;=){[k( .)-k( "))+( .—.)Lk'( .)+ .--- j))+(~. /~. ..).-( .)., ( .)=0,

[a,i+ms'b„+ A(ms') j{ati+-',(ms'+m„')bit+A(m. ')+-,'(mp' —m. ')A'(m. ')+-,'(mp' —m„')(y„kg/p„, .}
X[k (m )+'r Kg k'(me')—rsrrg '—5) &(m—e' m'—)[bit+A'(ms') j{a»+me'bit+A(m&')
+(ms' —m„')A'(m„')+(y„ling/y„, )[k(m„') —

k( m~')+( m~' m')—(k'( m„')+y„rrg') j)
+-'(me' m-') 4-xg—/v-. -)(d/«) L~.-(f)1 x(f)j I

-;=0.

(3.15)

The solutions are shown in Fig. 1. One of the points at
which Eq. (3.14) crosses the ellipse [given by the first
of Eqs. (3.15)j is the relative minimum of Table
IV. Physica. lly, this is not a true solution because it
1'cqullcs tllat, ais =0 (1.C., tllat flic cqllatloils ullcollplc ).
Inspection verifies that the solutions are those indicated
in Table IV.

Table V indicates the strong effect of electromagnetic
particle splittings. The numbers of Table IV were
calculated using average pion and kaon masses. The
masses used in Table V are the charged-particle masses.
This effect was noted by others; especially important
in the context of this work is the remark of Schwarz~

that it is more reasonable to use an average mass
because in the transition all three charge states are
emitted. At least it is one more indication that the
numbers presented here are only qualitative, for the
solutions are rather sensitive to small perturbations.

As a further check, the values of the preferred solu-
tion were recalculated using ratios y„/y& modified by
a factor of 2. The results of the calculation are presented
in Table VI.

In rega, rd to the assertions made just below Eq.
(2.4) with the physical solution chosen, the size of the
&pm coupling is computed:

vs~ /ve«=0 oo6,

and one finds for the PEK coupling that

ImG»/RCG»~0. 16=s,
while for the &pm coupling (which is not exactly zero
because of finite-width effects),

ImG11/ReGii =6.3.

TAnLz VI. ERect of changes in the ratio of y„/i ~ on the
physical solution to p (e) =0.

(v ice) i(v-is~) 8«3) =1
l-4 0—b ~

Fio. 1. Graphical solution to Eqs. (3.14) and (3.15).

2& The whole point of the calculation is that the channels are
coupled.

b11

bms

13.37—0.220
23.77—0.436
6.67

14.94—0.241
23.87—0.438
9.48

12.60—0.209
23.73—0.436
4.71
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Fro. 2. Contour of integration
for the determination of whether
or not there are ghosts.

with Cg the contribution of the circle of radius R. The
decomposition of Eq. (4.1) is the natural one to make
in view of Fig. 2. It is easily shown that Eq is an integer:

cVo ——— Ct ln—detect-'(t) .
2mi, g dh

Let detOR '(t) = V(t)e'~"' on the top of the cut. Then"

tp

This, however, is to be expected because ReGIy~o. It
appears that the assumptions made are u posteriori
reasonable.

IV. PROBLEM OF GHOSTS

00

+ Ch ln de—t3R-'(t)
gp dt

Qo

dt ln V(t—)e" t'&

2x'z f.p di

The problem of ghosts has been ignored since the cut
contribution to the integral depends on the values a~t,
. . . , aq2. Ghosts are sometimes found in one-channel
problems, "especially in the Frye-Warnock procedure'7
in which ghosts arise in the attempt to replace coupled-
channel equations by inelasticity functions as the cou-

pling strength increases.
As far as we know no such work has beeIl. doile in

the coupled-channel problem. In the present instance
a well-known formula from complex-variable theory"
giving the difference of the number of zeros and poles
contained within a contour is of considerable use:

~'()
it'ho Zo I'o =———— Cs—.

2rri o y(s)

27ri

00

Ch ln V(t)—e-*' &'&

lne2rt(t) — Lb(~) b(t )]
2x'z ]p

(4 2)

where m must be a function of the parameters which
will enter later into the proMem. One finds that m is
an integer by examining tan8(to) and tanb(oo):

Im detOR '(t)
tanb(~ ) = lim'""Re detDR —'(t)

Im detOR '(t)1 t d detOR '(t)/dt]
gg —— dt-—

detmZ-'(t)
(4.4)

Re det5R '(t) g,

It will subsequently be shown that this limit is zero.

and Similarly

ft=Zg —Pg ~

where Z~ is the number of zeros in C and I'q is the
number of po/es in C. In the present situation,

1 d denR '(t)/Ch
cog= =

2' o detOR '(t)

dh—ln detOri-'(t)
2+i dt

C detm-'(t)/dt
Ch

2wi on detDR '(t)

+— Ch ln detQR '(t), (4—.1)
cut

"M. 3ander, P. %'. Coulter, and G. L. Shaw, Phys. Rev.
Letters 14, 270 (1965); J. Finkelstein, Phys. Rev. 140, 3175
(1965); W, D. Heiss, Nuovo Cimento 52A, 1201 (1967).

'7 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963)."E.T. Whittaker and G. N. Watson, A Course of 3fodern
Analysis (Cambridge U. P., New York, 1963), 4th ed. , Chap. 6.

and Eqs. (4.3) and (4.4) together imply that

b(oo)-b(to) =7r(integer). (4.5)

8'(t) —=detm-'(t).

The asymptotic behavior in t may be found by straight-
forward (although tedious) expansion. Then for the
present case in which there are no left-hand cuts,

ReW(t) = (t/Srr)'L(lnt)'+br(lnt)+cr]
x t:I+o(h ')] («)

—ImW(t) = (t/8&)'L2(in&)+b, ]L1+0(t-r)],

bt ——Sm (b»+b») 1nm, ln—rrhJr' =—20 84, .
et = (8~)'9»b» —a'4 —(o»/rrh~')']

—Sm. Lbtt 1nmx'+b22 1nrrh, ]+Inn&, 1nmx'=79. 33,

and the numbers given use yg =138 Me+.

2'dB(t) jd$ is continuous but not diGerentiable at the EX and
pw thresholds.
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X„,=(2mi) ' W'(t)
cQ

cia W(t)

dt Ii(t)+m-' dt I,(t) . (4.7)

The integral over the contour is broken up as in Eq.
(4.1). The integral over the cut is further divided:

The integral for I2(t) is analogously deined in the
region t&4mx' using (4.9).

Fquation (4.6) defines W'(t)/W(t) for large t. First,
the assertion below (4.3) is verified:

Im detm —'(t)
tanb(~) =lim'""Re det5R '(t)

mp+1)

The cut integral is so divided because, for the region
(m p+1)'& t& 4m''

W(t) =La»+biit+A(t)]La»+b22t+k(t)]
—aiP(1 —t/m~')' —ip,.(t)Lag2+b»t+b(t)] (4.8)

vrL2(lnt)+bi]L1+O(t ')7=llm—
L(lnt) '+bi(lnt)+ci]L1+O(t-')]

= —2& lllTl —=0.'""ink
(4.10)

and~ ln thc 1"cglon /+458~ )

W(t) =La»+b»t+a {t)]la„+b»tabb(t)]
a12 (1 t/mp ) t{ppw(t)/a22+b22t+b(t)]

+pic(t)Laii+biit+~{t)]3. (4.9)

Furthermore, Ii(t) is defined by

I (t) =-g(t)/h(t),

g(t) La»+b2&t+&(t)]fp. -(t)Lb»+4'(t) 7
-p,.'(t)l: +b t+~(t)]3+ (1-t/ ~')

&«{2/ "),-(t)L".+b t+&(t)j
+(1-tlm. ')p,.(t)Lb»+b'(t)]+p, -'(t)(1 —t/m. ')

&&L"+b t+b(t) ]3,
h(t) =

l a»+brit+& (t) jl a»+b22t+&(t)]
—a»2(1 —t/mp')'+p, (t)La22+b»t+k(t)].

1 W'(t) 1
dh — —+ lim

2m i c~ W(t) ~-"2vri

2
Ec"id8 =2 (4—11)

Re"

The integral of I,(t) presents a dificult problem. One
can show that for large t (defining x=lnt), I2(t) is given
by

I (t) = —(2~/t)l'(x)+E(x)O(t '), (4.12)

In order to compute W'(t)/W(t), a Phragmen-I. indelof
theorem (see, e.g. , Titchmarsh" or Kanazawa and
Sugawara") is necessary: If some function of t is
bounded by a power of

l tl as t ~~, then it has the
same behavior in any direction in the complex plane.
In consequence, (4.6) implies

W'(t)/W(t) -+ 2/t
and, therefore,

x'+bix —ci+-,'bi'
t.(*)=

x'+ 2bix'+(bi2+2ci+4m') x'+2bi(ci+2x') x+m'bim+ci2

and R(x) is a ratio of fourth-order polynoniials in x.
The cancellation of third-order polynomials in f'(x) is
a requisite for the convergence of the integral I2(t)
D.e., it must hold if {4.10) is to be true]. The x behavior
of |'(x) for extremely large x is the slowest integer power
convergence possible. It is thus interesting to do the
integral analytically in the asymptotic region described
by Eq. (4.12). The cutoff chosen is T=2", for which

lI (t)+2-|-( )/t I «03%
It is then possible to write

f(x)4 2g

dx le(x)l',

x+2 bi+ &L(5 bi) 2 —cl]it 2

m(x) =
Lx+-', bi+&(bbci)+~x]l x+-,'bi —J(bi,ci)+in 7

sphere

I(bi ci) =L(-'bi)' —~' —cij'".
With this result, the integral of I,(t) from 2' to infinity
is found to give

dt I,(t) = tan-'
ln T+-,' bi —J(bi,ci)

+tan '
»2'+fbi+&{bi,ci)

lnT 1nT
Table VII lists the numerical results for the integration

Oxford, 1958).
"E.C. Titchmars, The Theory of I"unc+oes (Oxford U. P., a ong e cut or ot t e true and spurious solutions
31A KaIIa&a~a aIId M sgga~ara pcs Rgy. ]g$, Ig95 I'$9/I). to thc slInultancous cquatiOns solved ln thc Scc. III.
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TABLE VII. Contributions from the cut integral to the number where I(i) the integral over the Baht&
of zeros minus the number of poles in the physical amplitude
m-&(t). be put into the form

Region Solution Nonsolution -(Qt+m. )(Qi —3m.) '
I(i) =

('Jnp+ 1.) ~& t ~& 4m' —0.038 729 6 +0.120 656 8
4'~'~& t ~& T —0.250 188 2 —0.032 804 1

—0.711 083 0 —1.087 920 8
Therefore, the entire cut contribution to the integral is given by

—1.000 001 —1.000 068
with

l

do.
0

dP(1 P')—h'(n)II(n, P)

For m =140 MeV, the numbers are the same up to the
final digits. The function d8/di is shown in the resonance
region in Fig. 3.

The 6nal result, then, is that the number of zeros
minus the number of poles is given by

gg ——2 —1 =1=Zg —Ig.

Since one zero is the M bound state and there are
obviously no poles in 5K ', the result implies that there
are no ghost problems in the model.

7. RESULTS AND DISCUSSION

The three-pion cross section determines the p& form
factor through the Orsay" and Novosibirsk33 data:

o.(e+e ~ ro ~ 3m) =1.76&0.32 pb,

o(e+e ~ Q
—& 3ir) =1.01&0.21 pb.

In this paper p ~ 3m. is taken actually to be the process
y —+ pm. , p —+irrr. (This is just the model of GMSW4
extended to all t for which an eRective-range approxi-
mation is useful. The GMSK model is reasonable
because it takes into account the variation over wide

ranges of the effective masses of the several pion pairs. )
Neglecting the electron mass compared to others in the
problem, one can obtain

h'(n) =—n(1 —n)

(QI m—)(//+3m ) (g—t+m )(gi 3m )n—
X——

4m. '+(Qt+m„) (QI —3m.)n
and

&(n,p) =L4m. '+ (Qt+m. ) (Qt —3m.)n]
X

I (2m, ' —im, F,—I+m '+(gi+m )(Qt —3m„)
XI n+Ph(n)]) '+{2m'' —im, I',—1+m.'
+(QI+m )(gi —3m )I n —ph(n)])

—'+I 2m s —im I'
—Sm. ' —2(gt+m. )(Qt —3m.)n]—'I '

I(t) is sensitive to the pion mass chosen. One finds, for
m =138 (140) MeV, that I(m„') =0.105 (0.097), and
I(m&') =4.514 (4.306). The value of I(m ') was used in
determining y„, in Sec. III.

The E form factors are determined in much the same

0.9—

0.6—

nyI, I(t)
"J. B. Augustin, D. Benaksas, J. Buon, V. Gracco, J.

Haissinski, D. Lalanne, F.Laplanche, J.Le Francois, P. Lehmann,
P. Martin, F. Rumpf, and E. Silva, Phys. Letters 28B, 513 (1969);
J. K. Augustin, J. C. Bizot, J. Buon, B. Delcourt, J. Haissinski,
J. Jeanjean, D. Lalanne, P. C. Marin, H. Nguyen Ngoc, J.
Perez-y-Jorba, F. Richard, F. Rumpf, and D. Treille, ibid. 28B,
517 (1969);J. Haissinski, in Proceedings of the Conference on ~~
and Ex Interactions (Argonne National Laboratory, 1969),p. 373;
F. Laplanche, thesis, Production du meson vectoriel ~ par annihi-
lations electrons-positrons (detection du mode 7r+~ ~'). Indication
d'une interference p-~ dans le mode ~++, University of Paris,
1970 (unpublished); J. Perez-y-Jorba, in Proceedings of the
Daresbury Conference on High Energy Photon and Electron
Interactions, Daresbury, England, 1970, p. 213 (unpublished);
3. C. Bizot, J. Buon, Y. Chatelus, J. Jeanjean, D. Lalanne,
H. Nguyen Ngoc, J. Perez-y-Jorba, P, Petroff, F. Richard, F.
Rumpf, and D. Treille, Phys. Letters 32B, 416 (1970).

"V. A. Sidorov, in Proceedings of the Daresbury Conference
on High Energy Photon and Electron Interactions, Daresbury,
England, 1970, p. 227 (unpublished).

0.3-

0-
I

40 g0
I

70 80 90

Fro. 3. db/dt in the resonance region. In Figs. 3—7, t is given in
units in which rn '=1.
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fashion as the calculation above. One finds TABLE VIII. Calculated form factors compared with values
extracted from cross-section data (Refs. 32 and 33).

IF (t)l'=
3t"'o(e+e ~ KK; t)

apx'(t)
(5 1)

Form factor
Calculated

Pp (0) =0.42~0.06
Extracted

from experiment

where

px(t) =-', (t—4mx')'t'

o. is the 6ne-structure constant, and the Orsay data"
give

I p.-i~~') I'
iP, im ') i'
I tx ines') f'

0.63&0.16
490 &230

6930 &790

0.89& 0.20
462 ~ 117

10 770 %1640

o.(e+e +KK-; m&') =3.88&0.59 tjb.

Evaluating (5.1) at the P mass determines ~Frr(mq')
~

'.
The numbers resulting from the calculations described
are displayed in Table VIIl along with the computed
theoretical values.

There is some inconvenience in the calculation of the
form factors at the co mass because there is a pole there.

One must have recourse to the usual method of dealing
with 8 functions: The area under the curve remains
constant as the peak gets higher and narrower. This
means

~F(m') ~'=(2/m„i'„)'~ [residue of F(t)]( „['. (5.2)

Using Eq. (3.6), the form factors are given by

and

where

pl[a22+b22t+~(") &pIr(t)tt(t 4' )] P2a»(1 t/s1o )F,.(t) =
det5R '(t)

p2(a»+b„&+A (t) ip p (t—)0[t (m p+—1)'])—
pwca»(1 —t/mq')

Frr(t) =—
detSK '(t)

P = F (0)+[ +A(0)]F.-(0) P = »F -(o)+[ +&(0)]F (o).

(5.3)

(5 4)

The value of F„(0) is obtained from the Appendix. It is taken to be 0.42. The form factors computed from Eqs.
(5.3) and (5.4) are displayed in Figs. 4—7. The form-factor values calculated are all reasonable. Even the kaon
form factor squared at the P is all right (it is calculated in the approximation of no interchannel coupling —the
same calculation as elsewhere" ""performed for the pion —the result is about 13 000).

The charge radius is defined generally as

dF(t)
(")=6

Putting Eqs. (5.3) and (5.4) into (5.5), we obtain

5=0
(5.5)

[P —a —A (0)][b„+k'(0)]—[a„+&(0)][b„+A'(0)]+(P, 2 „) „/(.-') =6
[all+A(0)][a22+~(0)] a12

[P —a22 —&(0)][b»+A'(0)]—[a»+A (0)][b22+k'(0)]+(p~—2a») a»/ra&'
(re') =6-

[a&,+A (0)][a„+k(0)]—a„'

(5.6)

(5.7)

Then
(r ') =0.251 F'.

Similarly, the E isoscalar charge radius is given by

(rrr') =0.260 F'.
The numerical result is relatively insensitive to the
value of F, (0) chosen for a wide range of F, (0)'s.
The coupling of the channels thus seems to lead to
roughly equal charge radii in the two channels. These
values may be compared to an isovector radius of
approximately 0.4. Here, the minus sign is chosen for
a», in agreement with the Appendix. We did not really

34 G. J, Aubrecht, II, Phys. Rev. D 1, 284 (1970).

expect the px form factor at the P mass to be accurate.
The important thing is that it be small (for the g is to
be decoupled from pm).

Conditions are somewhat sensitive to the size of the
coupling in the off-diagonal channel at the g mass.
Several quantities are small there and respond to
slight variations in almost everything. The approxi-
rnately 10% variations in the a's and b's were demon-
strated above.

The agreement of the experimental numbers with the
numbers calculated from this model is not spectacular.
Nevertheless, the numbers are of approximately the
correct size. This suggests that it may be worthwhile to
extend the approach used here to include more infor-
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replaced as follows:

n(1) =9K '(1)x(1),

Imn(t) =Im[xt- (1)x{1)7=[1m~-(1)7x(&)

=R(&)x(&),

1s " R(1')X(1')
n(1) =n+pi —— dh'

1"(1'-1)

(5.9)

15000—

tOOOO—

———Fpw(0} = 0.56
Fp+(0) = 0.42

———Fpw(0) =0.48
+ ORSAY e+e ~ K'K PUT ONTO CURVE.

'

a NOVOSIBIRSK e~e ~ K+K e+e ~KK BY

FRACIioN) NORMAUZATION

w»1«» the ldt-hand cut the discontinuity g(1) is
calculated. The driving forces are the crossed-channel
singularities in the amplitude with appropriate spin
and isospin —for example, s, E, P, and so on in the
narrow-resonance approximation. "Then

Immi(1) =1m[x(&)n-'(&)7= [Imx(1)jn-'(&) =&{1),

or ImX(1) =2 (1)n(1) so that with the appropria'te
number of subtractions,

5000—

O'
55.5

I

54.0

II

I

55.0 55.5

1 Imx(t')
x(&) = — d&'

z(1') n(1')
d)' (5.10)

The S corresponding to the 5R we computed earlier
in this paper could be called n "&(1);this could be used
to generate X"&(1) to give n&'&(1), using Eqs. (5.9) and
(5.10) in tandem. We call our value nis& because we
sta, rt with X('& taken as a constant. The chain is con-
structed as fa.r as one has the patience to compute. If
no new information ls lntI'oduced lt ls unlikely that
further iterations after the first will improve the
calculation.

The connection between % and S matrices has been
exploited particularly in bootstrap theory {for example,

Fro. F~Frr(i) I' near 't=ra@' compared to the Orsay
and Novosibirsk colliding-beam results.

Zachariasen and Zemach" consider a coupled-amplitude
problem which requires the matrix formalism). It has
also been used in form-factor calculations, though not
in matrix problems.

Rewriting Xt'{1),

5R(1)=X(/) n '(1)=X(1)[cofactorn(1) 7/detn(1) .
In the X/D approximation, n(1) is real analytic in the
right half-plane, and n(1) is real analytic in the left
half-plane [X(t) contains all left-hand cuts and n(1)
contains all right-hand cuts7. The condition for a
resonance is given by

Re detn(1) I „=0.

l.2—

I.O-

.8-

Fp+(0) =ON
Fpm (0) "-0.42——- Fpm (0}"-0.48

When X is a constant matrix and there are no left-hand
cuts, it can easily be shown that 5R '(t) can be used in
place of n(1). This is the situation obtaining in the
calculation presented here. There is thus a well-de6ned
way to extend these calculations.

VI. SUMMARY
.6—

..2

0
55.5 54.0 54.5—t

55.0 55.5

Frn. 6. I F, {3)I' near / =~a&' compared to the
Orsay colliding-beam results.

' G. Chew, S-3fatrix Theory of Strong IrIteract~orfs I'Benjamin,
New York, 1963).

In the approximation in which the 3m. state is ta.ken
to be represented by the ps state (the p subsequently
decaying), the ps and XE partial-wave scattering
amplitudes and form factors are coupled, Higher-mass
intermediate states are, as usual, disregarded. The
resulting integral equation for the inverse matrix of
amplitudes is solved; because two subtractions are
necessary, there result six undetermined parameters in
the solution for 5R '. These six nun1bers are determined

"F.Zachariasen and C. Zemach, Phys. Rev. 128, 894 (1962).
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by inserting the experimental masses and widths of the
cu and p vector meson, and by requiring (in accordance
with experimental evidence) that the g be, as far as
possible, uncoupled from px. Electromagnetic effects
and possible errors in SU(3) values are demonstrated
to engender eA'ects of 10% on the values of these
six parameters.

From a consistency condition on the value of the
residue of (the experimentally inaccessible) F&(m„'), the
value of the pm form factor at zero-momentum transfer
is calculated (in the Appendix). This predicts a value
for the width I'(p —+~'y) 40 keV. The experimental
upper limit is presently

I'(p ~ ~'y) (0.24 MeV.

(c)

FIG. 8. Pictorial representation
of the vector dominance approxi-
mation for the form factors con-
sidered in the text: (a) co+ form
factor at 1=m~'; (b) pion form
factor at t=mp'; (c) pw form factor
at t=m„'; (d) nucleon form factor
at t=m '; (e) kaon isoscalar form
factor at t=m„'.

The form factors are then calculated (assuming that
there are no left-hand cuts so that the form factors are
proportional to the matrix of amplitudes). The values
compared with the Orsay data are reasonably close for
a first approximation. It is indicated how the method
may be generalized to include left-hand cuts in the
matrix BR(t).

Squared charge radii are computed for the E and
for the p~ state and found to be approximately the same
size, 0.25 F', as compared to the pion isovector charge
radius 0.4 F'.

No ghosts are found in the model by explicit
computation.

Since the values quoted for the form factors de-
pend sensitively on the value of F, (0), it will be
interesting to obtain a firm experimental value for it in
order that the model be more stringently tested against
experiment.
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APPENDIX: CALCULATION OF THE
~y TRANSITION FORM FACTOR AT

ZERO-MOMENTUM TRANSFER

In this appendix, the value of F, (0) is calculated by
two methods. First, the calculation of F (0) is reviewed.
One writes the pole-dominance diagram for y —&con"
as in Fig. 8(a), which suggests the estimate for the form
factor

mation to the pion form factor as in Fig. 8(b), or

F.(t) =g, .)i/(m, ' t) —and F (0)=1.

Then we obtain

or
I'(p '7) =-'I'( '7)

F,.(0) =-',F„.(0)=0.8.

Recent data4' suggest

Fp (0) 0.48—1.8

if one believes one-pion exchange (the authors of Ref.
42 feel that one-pion exchange is inadequate to describe
their data). The upper limit on the form factor by direct
measurement was given in the Rosenfeld tables'
as 0.98&0.12.

The next estimate is necessarily crude. It utilizes a
calculation similar to the (simpler) computation of
F„(0).However, in this case, the coupling of the ~ to
the nucleon must be used.

In the case of the pvr transition form factor, the repre-
sentation of Fig. 8(c) suggests

F,.(&) =g...) '/(m„' —t) .

F~~(0) =grape/gpwn = (v&upw/vp) =2 4 ~

This number gives approximately the correct decay rate
for &a —+ iron; it can further be used to make an SU(3)
estimate of p —+x'y. One uses the quark-model pre-
diction that the itpm coupling is small (for other justi-
fications, see Harari"). Then, using the "ideal" SU(3)
mixing angle,

F„.(/) =g„,.X/(mp' —t). Now the isoscalar nucleon form-factor estimate can be
considered (this is admittedly crude, since a single co

The constant. )i describes the p-photon coupling. It poledoesnotgiveaverygoodfitinthespacelikeregion).
may be determined from the corresponding approxi-

' J. J. Sakurai, Currents and Mesons {Chicago U. P., Chicago,
1969).

H. Harari, Phys. Rev. 155, 1565 {1967).
4' Y. Eisenberg, B. Haber, E. E. Ronat, A. Shapiro, and G.

Yekutieli, Phys. Rev. Letters 25, 764 (1970).
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Comparing to Fig. 8(d),

F~(t) =g„~gY/(m ' t)—.

Using the parametrization of Hughes et al. and others4'

in terms of 6ts to experimental form-factor data, one
obtains two simultaneous equations in two unknowns:
X'g ~g and the corresponding p coupling. Solving

Vg ~@=1.9(1+0.554),

where g„~g is the strong-interaction coupling constant,
we obtain

F,.(0)=(m~'/m. ') (v„,./g. ~m') '"(g.~~X'):0.6+—0.34.

The last method to be considered uses the formulas
derived in the main text of this paper to obtain an ex-
pression for the residue at the ~ pole. When this is
required to agree with the pole-dominance value of the

residue, an equation for F, (0) results. This would be
subject to corrections due to the finite width of the co,

but it should still be a rather good estimate. One takes,
fol $ near 52 )

so that
Fp.(0)=X'g p./m„',

V =m 'Fp, (0)/g„p. .

Using (5.5) for Fx(t), equating it to the pole-dominance
value, and using the expression for X', we obtain

Frr(t)=g rrgX'/(m„' —3), Fp (/) —g„p X'/(m„' —)),

using the representation of Figs. 8(e) and 8(c), respec-
tively. Evaluating the latter equation at t =0 (and using
the established smallness of the &pm coupling to elimi-
nate the P term),

7
m '(g xg/g„p, )Fp, (0) = — ([a~2F p (0)+2(a22+k(0))][ar~+b»m„'+A(m ')]

all+ b jim +A (m )

—a~2(1 —m„'/m, ') [-',a»+(a»+A (0))F,.(0)]).

Changing the g's to y's, we obtain

[a/2+k(0)][a»+b»m„'+A (m„')]—a»'(1 —m '/mq')
F,.(0) =—

2 m '[a~|+b»m '+A(m ')]/(6y„Irgy», )"'—a»[a»+b»m '+A(m„')]+a~2(1 —m '/m~')[a~~+A(0)]

—1.21/2( —1.433) =0.42, ar2(0

—1.21/2(7. 89) = —0.08, a») 0.

I'(p —+ m'y) =44.1 keV,

I'(p y)/I'(p s ) 0.0005 =0.05%.Fp, (0) =0.42.

uq2(0 is chosen on the basis of the calculation by the predicts
6rst methods. Then the prediction is

This clarifies the decay rate for p ~ ~0& [whose current
experimental upper limit is F, (0) =0.98&0.12] and

43 E.B.Hughes, T. A. Griffy, M. R. Yearian, and R. Hofstadter,
Phys. Rev. 139, B458 (1965); C. W. Akerlof, K. Berkelman, G.
Rouse, and M. Tigner, ib~d. 135, B810 (1964); S. Gasiorowicz,
E/ementury Particle Physics (Wiley, New York, 1966).

The value calculated for F, (0) is sensitive to variations
in the parameters and to y„, and y Irg. A 10%
change in y„, can produce a 15—20% effect in the value
of F, (0). In view of the uncertainty in the exact
values of the parameters, F„(0)should be written

Fp (0) =0.42+0.06.


