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The Veneziano amplitude for x p —+ qn scattering is constructed using suitable combinations of beta-
function terms. If certain constraints for the pole structure are imposed, the amplitude shows agreement
and consistency with the experimental data over the whole energy region. The shape of the high-energy
qt p ~ qn differential cross section is reproduced. The decay widths for the —,'+ and —,

' pion-nucleon reso-
nances are obtained, and Adler s self-consistency condition is also approximately satisfied.

I. INTRODUCTION

W VER the past year it has become clear that the
attractive simplicity of the Lovelace-Veneziano

form of the meson-meson scattering amplitude is diffi-
cult to retain in the meson-nucleon scattering processes.
For example, the simplest possible representation,
written down by Greenberg, ' for pion-nucleon scattering
leads to manifestly false results. He writes the repre-
sentation of the invariant amplitudes A and 8 in terms
of only one beta function each, and determines the
residue parameters from a comparison with the Born
diagram and the Adler self-consistency condition.
However, when he extrapolates the resulting ampli-
tudes to the p-meson pole, he gets the completely
unacceptable coupling-constant relationship

gpÃxgpmm ~gnNN ~
2

Clearly, such an oversimplification has no basis; but
one might still consider, as Bose and Gupta' have done,
the physically plausible assumption of degenerate lV,
S~, and d~ trajectories. Then the width of the D13
resonance comes out to be

&*—m 2,(g.~~' g...g,~N&
!r„„=— -q* ~'~

m* 3 5 4s 4w )
which is negative. The conclusion must again be drawn
that the representation used is much too simple.

Fenster and Wali' have therefore written down repre-
sentations for the invariant amplitudes A+ and 8+
which contain eight to twelve terms each. They then
determine the 29 residue parameters by imposing
various constraints, such as (a) correct residues at the
nucleon, A(1236), and 1V~(1518) poles, (b) no T=
state on the 6 trajectory, and T=—,

' states on the
E trajectories, (c) correct forward charge-exchange
cross sections, (d) correct 5-wave scattering lengths,
etc. With the residue parameters so determined, they
are able to fit the t dependence of the forward charge-
exchange differential cross section reasonably well.

In the present work, we have constructed a model for

' David F. Greenberg (unpublished).' S. K. Bose and K. C. Gupta, Phys. Rev. 184, 1572 (1969).'S. Fenster and K. C. Wali, Phys. Rev. D 1, 1409 (1970).
Earlier references for the Veneziano-model calculations may be
traced from here.

the process4 mX —+ gS following the method of Fenster
and Wali. This process, which is mediated by the
exchange of only A2 mesons in the t channel, has been
considered by Logan and Sertorio' in the interference
model (Regge poles+resonances), and by Miyamura'
in the Veneziano model. Our work differs from that of
Miyamura in at least two important respects. First, our
representation for the invariant amplitudes contains
many more terms than considered by Miyamura. Our
enlarged representation, however, gives us the freedom
to impose constraints in the manner of Fenster and
Wali, ensuring thereby the presence of only physical
particles on at least the parent trajectories. Secondly
we have used, unlike Logan and Sertorio and Miyamura,
an A2 trajectory completely degenerate with the
p-meson trajectory. This p —A2 degeneracy is now fairly
well established7 and in any case it is a consequence of
the application of Lovelace-Veneziano ansatz for meson-
meson scattering.

The results of our calculation with this model for the
differential cross section at various energies are very
encouraging. In Sec. III the constants are evaluated,
and then in Sec. IV we give a brief discussion of our
results.

II. SCATTERING AMPLITUDE

As in pion-nucleon scattering, we write the scattering
amplitude for our process in terms of the invariant
amplitudes A and 8 as follows:

T= (m/4m W)u(p, )(—A+y QB)u(p~),

where Q=-', (q~+q~), and where p~, p2, qq, and q2 denote
the four-momenta of the initial and the final nucleon,
the initial pion, and the final g meson, respectively.
These amplitudes satisfy the s-u crossing property

A(s, t,u) =A(u, t,s), B(s,t,u) = —B(u,t,s),
where s, t, and u are the usual Mandelstam variables for
the process. The asymptotic behavior of these ampli-

Recently, M. L. Blackmon and K. C. Wali have utilized
Miyamura's model to calculate both forward and backward
differential cross sections for the reaction m p —+ 7tjn LPhys. Rev.
D 2, 258 (1970)j.

5 P. K. Logan and L. Sertorio, Nuovo Cimento 52A, 1022
(1967).' 0. Miyamura, Progr. Theoret. Phys. (Kyoto) 42, 305 (1969).

7 M. Jacob, Acta Phys. Austriaca, Suppl. No. 6 (1969).
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tudes is known to be

A(s, t) ~ S~N&'&, B(s,t) ~ s

for s large and t 6xed and

A($ t) + s B($ t) ~ s

for s large and u 6xed. Here n8r(t) and na(u) denote the
meson and baryon trajectories exchanged in the t and
I channels, respectively.

With these properties, one can write down a
Veneziano representation for the invariant amplitudes.

Our invariant amplitudes can be written as

(I/42r)A =talCN+(1, 2)+taaCN„+(1, 2) +taaCN+(2 2)

+t44CN, +(2,2)+&iCNN, +(2')2')+X2CN(2', -'2)

+~8CNy(2&2)+7l4BNy(2)2)+kBNyN (2&2) &I

(I/4ar) B=p,BN
—

(1,-', )+paBN,
—

(1,—',)+paCN
—

(2,—,')
+p4CN„(2, 2)+paBN (2,2)+paBN, (2,2)

+4'IBNNa (212)+4 2CNNa (2&2)

+4'8BN (2&2)+4'4BNy (2)2) I

where
I'(—,'m —n, (S))I'(l8 —n(t) )

B +(8am, n) = — —&(s~ u),
r(-,'m+n —n, (s) —n(t))

I'(-', m —n, (s))P(2'n —n„(u))
B.„+(2'm,—2,88) = — — —~ (s ~ u),

P(-,'(m+0) —n, (s) —n„(u))

I'(-', m —n.(S))P(-a, m —n, (u))
B.(-,'m, -', m) = ——

r(m —n.(s) —n„(u))

Here x, y denote the fermion trajectories E, E~. The
C functions C(x,y) = I'(x) P (y)/I'(x+y —1) are defined in

a similar fashion and P, (tai) denote the multiplicative
constants for (s,t) terms in the B (A) amplitude and

P; (P„) for (s,u) terms in the B (A) amplitude.

The asymptotic behavior for the leading trajectories,
for t fixed and s ~~, is

(I/4ar)A(s, t) ~ P(1—n(t)„)&+s &'&(tai+t42),

(I/4ar)B(s, t) ~ P(1 —n(t))(+$~&'&—'

X(—pl —pa —[1—n(t)](pa+ p4) ),
where

(+—1 +elm a(a)

The formula for the differential cross section in terms
of the Pauli amplitudes fl and fa is well known. We have

[(Eadem)(Eadem)] "2
, 2

—[+A+ (W+m) B],

where m is the nucleon mass, W=gs, and El and E,
are, respectively, the initial and final energies of the
nucleons in the c.m. system:

El, a ——[Wa+ma —m '(m, ')]/2W.

Here m and m„are the pion and g-meson masses. Then,

for small t,

do
1 2 1 2 I 2

dO 2

q, is the c.m. momentum, and in the limit of large s for
forward scattering we approximate

m / s
f,+f, by

I
A+ —B

4arW( 2m

fl fa b—y (I/8~)A,

and 4q, 2 by s.

III. EVALUATION OF CONSTANTS AND RESULTS

The states E(938), Era(1470), 1Vv(1518), and
1Vli(1530) occur in the energy region of interest. cV(938)
and A'v(1518) are taken to be lying on two different
trajectories. Taking the universal slope 1 GeV ',
intercepts are

nN (0) = —0.38, nN, (0) = —0.83.

We take the t-channel intercept

na(0) =ng, (0) =0.41.

In order to determine the high-energy (forward-
charge-exchange) differential cross section, the ampli-
tudes A and 8 are to be determined. For this purpose
we impose the conditions (1) correct residue for the
nucleon pole, (2) correct behavior of the amplitude at
the IV~(1518) pole, and (3) spin conditions on the lead-
ing trajectories.

(a) Absence of spin--,'states on the 1Vv trajectory:

ll4+X a =0, pa+ pa —pi+$4 =0.

(b) Absence of spin-$ states on the cV trajectory:

tal taa+~1+ll2=0l
—0.12ta i+0.82taa+1.3Q.i+0.9X2+1.0Xa ——0,

pl pa+ pa Q—i+$2 4|—la =0, —
0.18pl+0.82pa —0.82pa —0.35/4+1.35/2 —1.9$8 ——0.

(c) Absence of spin--,'states on the 1V~ trajectory:

—
442

—
t44 —Xi —Ra+0.5X4+0.5Xa ——0,

—1.36t42+0.64444 —0.8ill —1.7X8—0.15ll4+0.4ha ——0

—0.21t42+0.15t44+0.09Xi—0.474 —0.12X4—0.054 =0

pa 2p4+ pa 4' l+—24t42+4tl4 =—o,
0.21P2 —0.3P4 —0.15P8—0.11/8 —0.18&2+1.17&4——0

1.36p,+1.28p4 —0.64pa+1.2&4—1.6&2+3.7&4 ——0.

Five more equations may be set up by a comparison
with the Feynman diagrams at the nucleon and E~
poles. Writing the E*Ãx and E*Eg vertices as

(gi, a*/m ) U„(P')iq„eau(P),
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e'"~ sin8, +
ly=

(qq')"' (qq')'"(e —e)—i 2P&P" 1 1y P
g'"—— —-v"v"+—,(P"v"—v"P")

P' —M' 3 M' 3 3 M' where

where U„(P ) and N(P) are the Dirac spinors for the and in expressing the partial-wave amplitudes in terms
spin--,' and spin-2 particles, and the spin--,' propagator of widths:
in the form

)&(y P+M), W —{[(W~~m)2 ms][(W~+m)2 m2]jt/2

we easily hand the contributions of the ~ resonance to and 8'~ is the mass of the resonance considered. If one

the Jr and Jr amplitudes in the form
"

now writes the amplitudes in the form

1 gt*gs* 1qq'[(Et* m—)(Es* m—)5't'
1

4~ m' 3 JI'—s $J —ssg —s

a+c cos8, b+d cos8.
A= 8—

)

1 gt*gs* qq'[(Et* m)—(Es* m)—5"'
4x m' M' —s

cos8. .

From the partial-wave amplitude fs at reso—nance, we
then relate the coupling constants to the widths and
obtain

1 gt*gs* (qq')"'
=m*(1 ti's)'",

12m m~' E

one easily gets

C 1
W (Wg+m) I'„=—0.044,

4m 2(qq')"'

C 3
W~(Wg —m) F,= —1.571,

4m 2(qq')st'

where

'V, =[(E™)(E,*~m)]-tts
b 1

8' I'~= —0.018,
4~ 2(qq')"'

and F~ and F2 are the two partial widths for the pro-
cesses X*~E+vr and )V*~ 1V+q.s In this way we
obtain the following equations.

d 3
8;r,=2.665.

4m 2(qq')'"

1Vucleoe pole':

cV„pole:
Pt+Ps+4t+44 =5 25

We checked that both methods give the same results.
Finally, solving our equations, we obtain the following
values for our parameters:

1—A~
4m

{—[W (Wg+m)+3W+(Wg —m)
2$'J qq'

0(cos84]fs + ),

{[—W +3W+ cos8,5fs + ),
28'gqq'

(r,r,)" =0.00603 GeV Lfrom Particle Data Group, Rev.
Mod. Phys. 42, 87 (1970)j.

We take here gq1v1v /g 1v1v =0.12, which is in accordance with
the more recent value of Coleman et al. , Phys. Letters 30B, 659
(1969), where g,1v~2/g 2v1v' ——0.18+0.06.

—0.18ps+0.82p4+0.94
+1.35Xs—0.35X4+0.9X4= —0.04,

—ps —@4+At+As —X4—Xs ———10.67,

0 18P,+—0 82. P4 0 82. Ps 0—1$.t—.
—0.9y, —2.4p4 ———0.02,

ps p4+ps+4'1 4'2 4'4

We mention that the method of Fenster and Wali' does
not involve an explicit evaluation of the Feynman
diagrams but leads to the same results. Their method
consists in expanding the invariant amplitudes at reso-
nance in terms of the partial-wave amplitudes:

pt ——1.72hs+3.49,
@2=7.52)

ps
———0.72K s —5.37,

p4 = —2.18,
P g= —1.85,
X2= —5.69,
X3———3.46,

X4 = —7.57,
X5 =7.57,

Pt=2.72&s+13.69)

Ps=0.89,

Ps ———2gs —6.02,

p4= —4.47,

Ps= —3.72ys —11.84,

Ps ——3.69,
, pg =3.40,

y, = —4.47,

y, = —4.26

$4= —1.18.

Using these values of the residue parameters, we
evaluated the differential cross sections at high energies
and compared them with the available experimental
data. "It is seen from Fig. 1 that the agreement with
experiment is quite satisfactory.

"0. Guisan et al. I Phys. Letters 18, 200 (1965)) and J. S.
Danburg et at. [Phys. Letters 30B, 270 (1969)) have recently
reported new data in the process m.+n —+ gp. They have also shown
that a simple Veneziano-type model without satellite terms repro-
duces the experimental data.
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where

IOOO . —(pb/GeV )dt

500 .

200'

IOO.

dz+(m*) = —
L
—(/sr+/ss)+( —1)~+"'(4+4)]

9—s)!
Ps+Ps Ps

+(m* —m)
-(~--'). (J-s)'

A+Ps 4s
+( 1)J—1/2

20.

- O. I

h

-0.2 —0,3 —O.s!I. -0.5 -0.6
t (GeV )

FIG. 1. Differential cross section for m=p —+ qn in the small-t
region. The solid curves are obtained from the Regge-pole limits
of the formulas discussed in Sec. II. Experimental results are
from Ref. 10.The labels on each curve specify the beam momentum
in GeV/c.

Calculated Experimental"
(GeV) (GeV)

(r +r +) 1/s

(r;r;) /

0.01
0.005

&0.13
&0.017

The widths of the parity doublets are given by

(ri rs—)s/s

r(J+-,') (g~)(qq'n') ~L(Es—m)(Es —m)]'/'d —(m*)

r(Jy1)4m*s(n') s/s

where
dg (m*) = —dg+( —m*).

Thus the calculated and observed Eq widths of —,
'+ and

resonances are as follows:

IV. SOME INELASTIC WIDTHS ON
N, TRAJECTORY

In this section, we briefly mention the calculated
Eq inelastic widths of some resonances on the S
trajectory. Picking up the highest power of cos 0, in the
expansion of the invariant amplitudes at n~(S)=J,
we find

A 1 (2qq'n' cos|/, )

4gr (J——',)! J—n.v(s)

and
&&L —(ps+us)+( —1)~+"'(As+4)]

8 (2qq'n' cos8,)~ s/' Ps+P-

4m. -(~-!) (~—l)J—n~(s)

4t+4's 94
+( 1)J—1/2

(J—s)! (~-5)!

(r s+r +)1/s

re+i)(& )(w' ')'r(»+ )(&,+ )]"'d'( *)

r(J+1)im*s(n )s's

Making a partial-wave expansion, we then obtain, for
/= J—2, the following expression for the partial widths:

V. DISCUSSION

The approach utilized in this paper for constructing
Veneziano model in meson-baryon scattering is due to
Fenster and Wali but it was already advocated by
Oehme, "when he suggested using a superposition of
Veneziano terms and adjusting "the coeKcients in such
a way that all resulting residues are non-negative. "

However, if we wish to make the residues of all the
daughters non-negative, we might need an infinite
number of terms. Clearly one has to make a choice in
this approach to cut down the number of terms, and we
have shown in this simple example of a q production in
w-E interaction that such a choice can be made in
close analogy with the pion-nucleon charge-exchange
scattering calculation.

We have also calculated the Ep decay widths of the
—,'+ and —,'pion-nucleon resonances and found reasonable
agreement with experimental data.

Finally we mention that we have not been able to
obtain good agreement with the Adler condition. Writ-
ing the Adler condition in the form'~

A(s=n=m, /=ms ) =g~Ã g~~slm,

we fnd that the left-hand side is approximately 8
whereas the right-hand side is about 6. This sort of
disagreement with the Adler condition has also been
noted by Miyamura' and by Fenster and Wali. 3

"Particle Data Group, Rev. Mod. Phys. 42, 87 (1970)."R.Oehme, Nuovo Comento Letters 1, 420 (1969)."S. L. Adler, Phys. Rev. 137, 81022)(1965).


